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Astrophysical motivation: we are about to see black holes!

The black hole at the centre of our galaxy: Sgr

Dec-offset (arcsec)

0.175}

0.15F

0.125[

0.075}

0.025F

2010
1992

2002

1995%

s2 (soz)-

[ESO (2009)]

. Measure of the mass of Sgr A* black hole by
stellar dynamics:

Mgy = 4.3 x 10° M,
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Astrophysical motivation: we are about to see black holes!

Can we see a black hole from

Angular diameter of the
event horizon of a
Schwarzschild BH of mass
M seen from a distance d:
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Image of a thin accretion disk around a Schwarzschild BH
[Vincent, Paumard, Gourgoulhon & Perrin, CQG 28, 225011 (2011)]
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Astrophysical motivation: we are about to see black holes!

Can we see a black hole from the Earth?

Angular diameter of the
event horizon of a
Schwarzschild BH of mass
M seen from a distance d:

M 2
—GfG—_Z()O%

Largest black holes in the
Earth's sky:

Sgr A* : O = 53 pas
M87 : O = 21 pas

M31 : © = 20 pas

Remark: black holes in

. . 5
Image of a thin accretion disk around a Schwarzschild BH X-ray binaries are ~ 10
[Vincent, Paumard, Gourgoulhon & Perrin, CQG 28, 225011 (2011)]

times smaller, for © o< M/d
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Astrophysical motivation: we are about to see black holes!

The solution to reach the pas regime: interferometry !

2: Combined Array for .
Research in Millimeter Very I—arge BaSehne

wave Astronomy - California | nterferometry
. (VLBI) in
(sub)millimeter

waves

1. Submillimeter
Array and
James Clerk
Maxwell
Telescope - [
Hawaii

Existing American VLBI network [Doeleman et al. 2011]
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The solution to reach the pas regime: interferometry !

2: Combined Array for .
Research in Millimeter Very I—arge BaSehne

wave Astronomy - California | nterferometry
. (VLBI) in
(sub)millimeter
waves

The best result so
far: VLBI

observations at
1.3 mm have shown
that the size of the

1. Submillimeter emlttlng region in
Array and W d %

James Clerk ' & — Sgr A IS Only
Maxwell - Ve 37 pas

Telescope - [

Hawaii [Doeleman et al., Nature

. ‘ r 455, 78 (2008)]

Existing American VLBI network [Doeleman et al. 2011]
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Astrophysical motivation: we are about to see black holes!

The near future: the Event Horizon Telescope

To go further:
@ shorten the wavelength: 1.3 mm — 0.8 mm
@ increase the number of stations; in particular add ALMA

A L& 7
Atacama Large Millimeter Array (ALMA)
part of the Event Horizon Telescope (EHT) to be completed by 2020
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Astrophysical motivation: we are about to see black holes!

Near-infrared optical interferometry: GRAVITY

GRAVITY instrument at
VLTI (2015)

Beam combiner (the
four 8 m telescopes +
four auxiliary telescopes)
= astrometric
precision of 10 pas

[Gillessen et al. 2010]
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Astrophysical motivation: we are about to see black holes!

Observing BH with gravitational waves: eLISA

Interferometric gravitational wave detector in space

@ Selected by ESA in November 2013 (L3 mission)
@ Launch ~ 2030
@ LISA Pathfinder to be launched in 2015

[eLISA (ESA)]
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Astrophysical motivation: we are about to see black holes!

The “no-hair” theorem

Dorochkevich, Novikov & Zel'dovich (1965), Israel (1967), Carter (1971),
Hawking (1972)

Within 4-dimensional general relativity, a stationary black hole in an otherwise
empty universe is necessarily a Kerr-Newman black hole, which is a vacuum
solution of Einstein equation described by only three parameters:

@ the total mass M
@ the total angular momentum .J

@ the total electric charge @)

= “a black hole has no hair” (John A. Wheeler)
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The “no-hair” theorem

Dorochkevich, Novikov & Zel'dovich (1965), Israel (1967), Carter (1971),
Hawking (1972)

Within 4-dimensional general relativity, a stationary black hole in an otherwise
empty universe is necessarily a Kerr-Newman black hole, which is a vacuum
solution of Einstein equation described by only three parameters:

@ the total mass M

@ the total angular momentum .J

@ the total electric charge @)

= “a black hole has no hair” (John A. Wheeler)

Astrophysical black holes have to be electrically neutral:
@ @ =0 : Kerr solution (1963)

Other special cases:
@ @ =0and a=0: Schwarzschild solution (1916)
@ a = 0: Reisnerr-Nordstrém solution (1916, 1918)
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Astrophysical motivation: we are about to see black holes!

Lowest order no-hair theorem: quadrupole moment

Asymptotic expansion (large r) of the metric in terms of multipole moments
(Mk, jk)kEN [Geroch (1970), Hansen (1974)]:

@ M mass 2*-pole moment

e J.: angular momentum 2¥-pole moment

= For the Kerr metric, all the multipole moments are determined by (M, a):
4 ./\/lo =M

e h=aM=J/c

o | My=—a’M = _ (x) < mass quadrupole moment
M

o J3=—a’M

o My=a'M

° -
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Lowest order no-hair theorem: quadrupole moment

Asymptotic expansion (large r) of the metric in terms of multipole moments
(Mk, jk)kEN [Geroch (1970), Hansen (1974)]:

@ M mass 2*-pole moment

e J.: angular momentum 2¥-pole moment

= For the Kerr metric, all the multipole moments are determined by (M, a):
o Mog=M
e h=aM=J/c

o | My=—a’M = —% (x) < mass quadrupole moment
o J3=—a’M

o My=a'M

° ..

Measuring the three quantities M, J, My provides a compatibility test w.r.t. the
Kerr metric, by checking (x) J
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Astrophysical motivation: we are about to see black holes!
Theoretical alternatives to the Kerr black hole

Within general relativity

The compact object is not a black hole but
@ a boson star
a gravastar

°
@ a dark star
o

Beyond general relativity

The compact object is a black hole but in a theory that differs from GR:
@ Einstein-Gauss-Bonnet with dilaton

Chern-Simons gravity

Hotava-Lifshitz gravity

Einstein-Yang-Mills
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Exploring spacetimes via numerical computations: the geodesic code GYOTO
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@ Exploring spacetimes via numerical computations: the geodesic code GYOTO
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Exploring spacetimes via numerical computations: the geodesic code GYOTO

How to test the alternatives to the Kerr black hole?

Search for
o stellar orbits deviating from Kerr timelike geodesics (GRAVITY)
@ accretion disk spectra different from those arising in Kerr metric (X-ray
observatories)

@ images of the black hole shadow different from that of a Kerr black hole
(EHT)
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Exploring spacetimes via numerical computations: the geodesic code GYOTO

How to test the alternatives to the Kerr black hole?

Search for
o stellar orbits deviating from Kerr timelike geodesics (GRAVITY)

@ accretion disk spectra different from those arising in Kerr metric (X-ray
observatories)

@ images of the black hole shadow different from that of a Kerr black hole

(EHT)
Need for a good and versatile geodesic integrator
to compute timelike geodesics (orbits) and null geodesics (ray-tracing) in any kind
of metric
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Exploring spacetimes via numerical computations: the geodesic code GYOTO

Gyoto code

Main developers: T. Paumard & F. Vincent

Fichier Affichage Aide |

System[: 1 ( 0.6192, 0.2841) i Damc\eotyp: (] |ntegration Of geodesics in
Star: Photon .
T Metric parameters Kerr metric
Type Kerr -
senperam. fosssoooo Bl @ |ntegration of geodesics in
N P .
Intial condltons ) any numerically computed
10 i 10,791000000000 - .
1 g, 1570796326795 — 3+1 metric
B { @, 0,000000000000 = . . .
E & [o0u000000000 E @ Radiative transfer included
0— drfdt 0,000000000000 S . . . .
7 do/dt  [0.000000000000 E n Optlca||y thin media
5 de/dt  [0.016664000000 B
: ol o Very modular code (C++)
3 PALN  [180.000000000000 [
e Inclination [120,000000000000 E P YOriCk interface
)\4 Phase  [120,000000000000 |2
% Distance  [8,00000 E

Integration parameters b Free SOftWare (GPL) :
. [revoconsooeoosoo T http://gyoto.obspm.fr/

[Vincent, Paumard, Gourgoulhon & Perrin, CQG 28, 225011 (2011)]
[Vincent, Gourgoulhon & Novak, CQG 29, 245005 (2012)]
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Exploring spacetimes via numerical computations: the geodesic code GYOTO

3+1 decomposition of the geodesic equation (1/3)

Numerical spacetimes are generally computed within the 3+1 formalism

4-dimensional spacetime (M, g)
foliated by spacelike hypersurfaces
(Et)ter

Unit timelike normal: n = — NVt
Induced metric: y=g+n®n
Shift vector of adapted coordinates
(t,2%): vector 3 tangent to X; such
that /0t = Nn + 3

X! = const.

G A’ da¥ = —N?dt? + v;5(da’ + B'dt)(dz’ + 47 dt)
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Exploring spacetimes via numerical computations: the geodesic code GYOTO

3+1 decomposition of the geodesic equation (2/3)

The geodesic equation

A particle P of 4-momentum vector p follows a geodesic iff

341 decomposition of p: |p = E(n+ V) |, with

e F : particle's energy with respect to the Eulerian observer (4-velocity n)

@ V' : vector tangent to X, representing the particle’'s 3-velocity with respect
to the Eulerian observer
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Exploring spacetimes via numerical computations: the geodesic code GYOTO

3+1 decomposition of the geodesic equation (3/3)

Equation of P’s worldline in terms of the
3+1 coordinates : x' = X'(t)

The physical 3-velocity V is related to
Swa the coordinate velocity X7 := da/dt by
_der 1At 1 plde+dX!
~dme Ndt N dt

i

i L (i i
— V= < (X4 5)
_ | 4B ivk _ i
Orth. projection of V,, p =0 along n: E:E(NK]-;CVV —V79;N)
Orth. projection of V,p = 0 onto X;:
dx? . .
—NVi—§
at b
v =NVI|Vi(9;,lnN — K k K? 31, vk i19. N 19,5
= NVI V(9N = KjV®) 4 2K, =30, VE| = 50,8 = vio;8

[Vincent, Gourgoulhon & Novak, CQG 29, 245005 (2012)]
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Exploring spacetimes via numerical computations: the geodesic code GYOTO

3+1 geodesic integration in Gyoto code (1/2)

Numerical spacetime = (N, 3,7, Ki;)

System to be integrated

dE . .
= E (NK;,ViVk —Vig;N)
dx? , ,
=NV'—p°
dt. B
dv* = NVI (9. InN — K k K 30 vk 59, N 1931
7 Y [V(jn — KjiVF) +2K°; — jkv}_’y N —V79;p

v

Integration (backward) in time: Runge—Kutta algorithms of fourth to eighth order

Problem: the 341 quantities (N, 3°, ,Vij» /(i;) and their spatial derivatives have to
be known at any point along the geode5|c and not only at the grid points issued
from the numerical relativity computation
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Exploring spacetimes via numerical computations: the geodesic code GYOTO

3+1 geodesic integration in Gyoto code (2/2)

Solution within spectral methods: thanks to their spectral expansions, the fields
(N, B, vij, K;j) are actually known at any point !

For instance, a scalar field, like IV, is expanded as
t T, 0,99 Z Nzhn T; )Y-Zm('gw)
i,4,m
with
T;: Chebyshev polynomial of degree i
e Y,/": spherical harmonic of index (£,m)

Within spectral methods, the discretization does not occur on the values in the
physical space (no grid !) but on the finite number of coefficients N;sp, J

The data are (Nj@m(tj)) for a finite series of time steps (t.7)o< <.

>Jmax

— the values (N, (1)) at an arbitrary time ¢ are obtained by a third order
interpolation from 4 neighbouring t;'s
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Exploring spacetimes via numerical computations: the geodesic code GYOTO

Gyoto code

Computed images of a thin accretion disk around a Schwarzschild black hole
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Exploring spacetimes via numerical computations: the geodesic code GYOTO

Measuring the spin from the black hole silhouette

Ray-tracing in the Kerr metric (spin parameter a)

Accretion structure around Sgr A* modelled as a ion torus, derived from the
pOIiSh doughnut class [Abramowicz, Jaroszynski & Sikora (1978)]

Proj. Rs

Radiative processes included:
thermal synchrotron,
bremsstrahlung, inverse
Compton

<+ Image of an ion torus
computed with Gyoto for the
inclination angle ¢ = 80°:

@ black: a =0.5M

o red: a =0.9M

[Straub, Vincent, Abramowicz, Gourgoulhon & Paumard, A&A 543, A83 (2012)]
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Exploring spacetimes via numerical computations: the geodesic code GYOTO

Orbits around a rotating boson

Boson star = localized configurations of i ]
a self-gravitating complex scalar field ® 10:’ ]
= “Klein-Gordon geons” [Bonazzola & Pacini [ ]
5, -
(1966), Kaup (1968)] [ ]
T 1
& of b
Boson stars may behave as black-hole ~ 0 1
mimickers SE 4
@ Solutions of the -1op ]
Einstein-Klein-Gordon system st ‘ ‘ ‘ ‘ ‘ 1
computed by means of Kadath TH1s 100 S [%/ ] 5 10 I5
[Grandclément, JCP 229, 3334 (2010)] v
@ Timelike geodesics Computed by Zero-angular-momentum orbit around a
means of Gyoto rotating boson star based on a free scalar

field ® = ¢(r, 0)e" 2%
with w = 0.75m/h.

[Granclément, Somé & Gourgoulhon, PRD 90, 024068 (2014)]
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Exploring spacetimes via symbolic computations: the SageManifolds proiect

Outline

© Exploring spacetimes via symbolic computations: the SageManifolds project
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Exploring spacetimes via symbolic computations: the SageManifolds proiect

Software for differential geometry

Packages for general purpose computer algebra systems:
@ xAct free package for Mathematica [J.-M. Martin-Garcia]
Ricci free package for Mathematica [J. L. Lee]
MathTensor package for Mathematica [S. M. Christensen & L. Parker|

o
°
o DifferentialGeometry included in Maple [I. M. Anderson & E. S. Cheb-Terrab]
o Atlas 2 for Maple and Mathematica

°

Standalone applications:

e SHEEP, Classi, STensor, based on Lisp, developed in 1970's and 1980's (free)
[R. d'Inverno, I. Frick, J. Aman, J. Skea, et al.]

o Cadabra field theory (free) [K. Peeters]

@ SnapPy topology and geometry of 3-manifolds, based on Python (free) [m.
Culler, N. M. Dunfield & J. R. Weeks]

cf. the complete list on http://www.xact.es/links.html
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Exploring spacetimes via symbolic computations: the SageManifolds proiect

Sage in a few words

@ Sage is a free open-source mathematics software system
@ it is based on the Python programming language

@ it makes use of many pre-existing open-sources packages, among which
Maxima (symbolic calculations, since 1968!)

GAP (group theory)

PARI/GP (number theory)

Singular (polynomial computations)

e matplotlib (high quality 2D figures)

and provides a uniform interface to them

@ William Stein (Univ. of Washington) created Sage in 2005; since then, ~100
developers (mostly mathematicians) have joined the Sage team

Create a viable free open source alternative to Magma, Maple, Mathematica and
Matlab.
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Exploring spacetimes via symbolic computations: the SageManifolds proiect

Some advantages of Sage

Sage is free

Freedom means

@ everybody can use it, by downloading the software from
http://sagemath.org

@ everybody can examine the source code and improve it

Sage is based on Python

| A

@ no need to learn any specific syntax to use it
@ easy access for students

@ Python is a very powerful object oriented language, with a neat syntax

A\

Sage is developing and spreading fast

...sustained by an important community of developers
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Exploring spacetimes via symbolic computations: the SageManifolds proiect

Sage approach to computer mathematics

Sage relies on a Parent / Element scheme: each object = on which some
calculus is performed has a “parent”, which is another Sage object X representing
the set to which = belongs.

The calculus rules on z are determined by the algebraic structure of X.
Conversion rules prior to an operation, e.g. x + y with 2 and y having different
parents, are defined at the level of the parents

Example

sage: x = 4 ; x.parent()

Integer Ring

sage: y = 4/3 ; y.parent()

Rational Field

sage: s = x + y ; s.parent()

Rational Field

sage: y.parent () .has_coerce_map_from(x.parent())
True

This approach is similar to that of Magma and different from that of
Mathematica, in which everything is a tree of symbols
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Exploring spacetimes via symbolic computations: the SageManifolds proiect

The Sage book

Calcul mathématique avec

by Paul Zimmermann et al. (2013)

Released under Creative Commons license:

o freely downloadable from
http://sagebook.gforge.inria.fr/

@ printed copies can be ordered at moderate
price (10 €)

English translation in progress...
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Exploring spacetimes via symbolic computations: the SageManifolds proiect

Differential geometry in Sage

Sage is well developed in many domains of mathematics:
number theory, group theory, linear algebra, combinatorics, etc.

...but not too much in the area of differential geometry:

Already in Sage

o differential forms on an open subset of Euclidean space (with a fixed set of
coordinates) (J. Vankerschaver)

@ parametrized 2-surfaces in 3-dim. Euclidean space (M. Malakhaltsev, J.
Vankerschaver, V. Delecroix)

A\

Proposed extensions (Sage Trac)

@ 2-D hyperbolic geometry (V. Delecroix, M. Raum, G. Laun, trac ticket
#9439)

v
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Exploring spacetimes via symbolic computations: the SageManifolds proiect

The SageManifolds project

http://sagemanifolds.obspm.fr/

Implement the concept of real smooth manifolds of arbitrary dimension in Sage
and tensor calculus on them, in a coordinate/frame-independent manner
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Exploring spacetimes via symbolic computations: the SageManifolds proiect

The SageManifolds project

http://sagemanifolds.obspm.fr/

Implement the concept of real smooth manifolds of arbitrary dimension in Sage
and tensor calculus on them, in a coordinate/frame-independent manner

In practice, this amounts to introducing new Python classes in Sage, basically one
class per mathematical concept, for instance:

@ Manifold: differentiable manifolds over R, of arbitrary dimension
Chart: coordinate charts

Point: points on a manifold

DiffMapping: differential mappings between manifolds

ScalarField, VectorField, TensorField: tensor fields on a manifold
DiffForm: p-forms

AffConnection, LeviCivitaConnection: affine connections

Metric: pseudo-Riemannian metrics
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Exploring spacetimes via symbolic computations: the SageManifolds proiect

Implementing coordinate charts

Given a manifold M of dimension n, a coordinate chart on an open subset

U C M is implemented in SageManifolds via the class Chart, whose main data is
a n-uple of Sage symbolic variables x, y, ..., each of them representing a
coordinate
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Exploring spacetimes via symbolic computations: the SageManifolds proiect

Implementing coordinate charts

Given a manifold M of dimension n, a coordinate chart on an open subset

U C M is implemented in SageManifolds via the class Chart, whose main data is
a n-uple of Sage symbolic variables x, y, ..., each of them representing a
coordinate

In general, more than one (regular) chart may be required to cover the entire
manifold:

@ at least 2 charts are necessary to cover the circle S, the sphere S?, and more
generally the n-dimensional sphere S"

o at least 3 charts are necessary to cover the real projective plane RIP?
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Exploring spacetimes via symbolic computations: the SageManifolds proiect

Implementing coordinate charts

Given a manifold M of dimension n, a coordinate chart on an open subset

U C M is implemented in SageManifolds via the class Chart, whose main data is
a n-uple of Sage symbolic variables x, y, ..., each of them representing a
coordinate

In general, more than one (regular) chart may be required to cover the entire
manifold:

@ at least 2 charts are necessary to cover the circle S, the sphere S?, and more
generally the n-dimensional sphere S"

o at least 3 charts are necessary to cover the real projective plane RIP?

In SageManifolds, an arbitrary number of charts can be introduced )

To fully specify the manifold, one shall also provide the transition maps on
overlapping chart domains (SageManifolds class CoordChange)
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Implementing scalar fields

A scalar field on manifold M is a smooth mapping

f:r UcM — R
p — f(p)

where U is an open subset of M
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Implementing scalar fields

A scalar field on manifold M is a smooth mapping

f:r UcM — R
p — f(p)

where U is an open subset of M

A scalar field maps points, not coordinates, to real numbers
= an object f in the ScalarField class has different coordinate
representations in different charts defined on U.
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Implementing scalar fields

A scalar field on manifold M is a smooth mapping

f:r UcM — R

where U is an open subset of M

A scalar field maps points, not coordinates, to real numbers
= an object f in the ScalarField class has different coordinate
representations in different charts defined on U.

The various coordinate representations F/, F, .. of f are stored as a Python
dictionary whose keys are the charts C, C, ...

f._express = { ,}
with f(p)=F(at,... 2" )=F(&',...,2" ) =...
~~ N—— E/—/
point coord. of p coord. of p
in chart C in chart ¢
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The scalar field algebra

Given an open subset U C M, the set C°°(U) of scalar fields defined on U has
naturally the structure of a commutative algebra over R: it is clearly a vector
space over R and it is endowed with a commutative ring structure by pointwise
multiplication:

Vi, ge C(U), YpeU, (f9)(p):=f(pglp)

The algebra C°°(U) is implemented in SageManifolds via the class
ScalarFieldAlgebra.
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Classes for scalar fields

UnigueRepresentation Parent CommutativeAlgebraElement

category: CommutativeAlgebras

ScalarFieldAlgebra ScalarField
ring: SR

Element: ScalarField Parent: ScalarFieldAlgebra

I:] native Sage class

SageManifolds class
(algebraic part) Parent: ScalarFieldAlgebra

ZeroScalarField

SageManifolds class
(differential part)
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Vector fields

Given an open subset U C M, the set X'(U) of smooth vector fields defined on U
has naturally the structure of a module over the scalar field algebra C°°(U).
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Vector fields

Given an open subset U C M, the set X'(U) of smooth vector fields defined on U
has naturally the structure of a module over the scalar field algebra C°°(U).

Modules vs. vector spaces

A module is ~ vector space, except that it is based on a ring (here C°(U))
instead of a field (usually R or C in physics)

An importance difference: a vector space always has a basis, while a module does
not necessarily have any

— A module with a basis is called a free module
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Vector fields

Given an open subset U C M, the set X'(U) of smooth vector fields defined on U
has naturally the structure of a module over the scalar field algebra C°°(U).

Modules vs. vector spaces

A module is ~ vector space, except that it is based on a ring (here C°(U))
instead of a field (usually R or C in physics)

An importance difference: a vector space always has a basis, while a module does
not necessarily have any

— A module with a basis is called a free module

When X(U) is a free module, a basis is a vector frame (e,)1<q<y, on U:
Yo e X(U), v=uv,, withv*eC®{)

At a point p € U, the above translates into an identity in the tangent vector
space 1), M:
v(p) =v*(p) €a(p), withv*(p) €R
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Vector fields

A manifold M that admits a global vector frame (or equivalently, such that
X (M) is a free module) is called a parallelizable manifold J
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Vector fields

A manifold M that admits a global vector frame (or equivalently, such that
X (M) is a free module) is called a parallelizable manifold

Examples of parallelizable manifolds

| \

R" (global coordinate charts = global vector frames)
the circle S' (NB: no global coordinate chart)

the torus T? = S* x S*

the 3-sphere S* ~ SU(2), as any Lie group

the 7-sphere S”
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Vector fields

A manifold M that admits a global vector frame (or equivalently, such that
X (M) is a free module) is called a parallelizable manifold

Examples of parallelizable manifolds

R™ (global coordinate charts = global vector frames)
the circle S' (NB: no global coordinate chart)

the torus T? = S* x S*

the 3-sphere S* ~ SU(2), as any Lie group

the 7-sphere S”

| \

Examples of non-parallelizable manifolds

o the sphere S? (hairy ball theorem!) and any n-sphere S™ with n ¢ {1,3,7}

o the real projective plane RP?

@ most manifolds...

A\
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Implementing vector fields

Ultimately, in SageManifolds, vector fields are to be described by their
components w.r.t. various vector frames.

If the manifold M is not parallelizable, one has to decompose it in parallelizable
open subsets U; (1 < i < N) and consider restrictions of vector fields to these
domains.
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Implementing vector fields

Ultimately, in SageManifolds, vector fields are to be described by their
components w.r.t. various vector frames.

If the manifold M is not parallelizable, one has to decompose it in parallelizable
open subsets U; (1 < i < N) and consider restrictions of vector fields to these
domains.

For each i, X(U;) is a free module of rank n = dim M and is implemented in
SageManifolds as an instance of VectorFieldFreelModule, which is a subclass of
FiniteRankFreeModule.

Each vector field v € X(U;) has different set of components (v*)1<q<y, in
different vector frames (e,)1<q<, introduced on U,. They are stored as a Python
dictionary whose keys are the vector frames:

(%), ...}

v._components = {(e) : (v?), (&)
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Module classes in SageManifolds

:I native Sage class

SageManifolds class
(algebraic part)

UniqueRepresentation Parent

SageManifolds class
(differential part)

category: Modules

FiniteRankFreeModule
ring: CommutativeRing

Zategory: Modules Element: FiniteRankFreeModuleElement
category: | VectorFieldModule

Modules | ring: ScalarFieldAlgebra

. Element: VectorField
TensorFieldModule

ring: ScalarFieldAlgebra VECtorFleldFrEEMOdUIe TensorFreeModule
Element: TensorField ring: ScalarFieldAlgebra
Element: VectorFieldFreeParal Element: FreeModuleTensor
TensorFieldFreeModule TangentSpace
ring: ScalarFieldAlgebra ring: SR
Element: TensorFieldParal Element: TangentVector
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Tensor field classes in SageManifolds

I:I native Sage class

SageManifolds class
(algebraic part) “

Element

SageManifolds class
(differential part)

ModuleElement

Parent: Module

TensorField FreeModuleTensor
Parent: TensorFieldModule Parent: TensorFreeModule
VectorField TensorFieldParal FiniteRankFreeModuleElement
Parent: VectorFieldModule Parent: TensorFieldFreeModule| Parent: FiniteRankFreeModule
VectorFieldParal TangentVector
Parent: VectorFieldFreeModule Parent: TangentSpace
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Tensor field storage

TensorField

T

domain 1:

dictionary TensorField. restrictions

Exploring black hole spacetimes with computers

TensorFieldParal domain 2: | TensorFieldparal
U, T|y= T“bea®e":T“i)aé®sb:~-~ U, T,
V4
Zz
dictionary TensorFieldParal. components
c Components Components
rame 1: frame 2: &
(Ta ) Té aas
b)1<a,b< € i
(€a) SO (a) b/)1<ab<n
7
dictionary Components._comp
ScalarField ScalarField
1) 1 12): 1 s
T 1 T 2
/I
dictionary ScalarField. express
FunctionChart FunctionChart
chart 1: 1 1 chart 2: 1 1
n n aea
(@) | Th@Eh .z | o) [ ThE ™)
| |
Expression Expression
! cosa? (y' + ) cos(y* —y?)

IRMA
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SageManifolds at work: the Mars-Simon tensor example

Definition
Given a 4-dimensional spacetime (M, g) endowed with a Killing vector field &, the
Mars-Simon tensor w.r.t. £ is the type-(0,3) tensor S defined by

‘ Sapy = 4Cuavs §"€" 5] + Yaip Cyjpun & F

where
® Yop i= Agap + Ealp, With X := =&, &

£y

@ Copuy = Copuy + %EWW Clspo, with C%; ., being the Weyl tensor and
€apuv the Levi-Civita volume form
@ Fop = Fup+1"Fup, with F,53 := V{3 (Killing 2-form) and

1
*Fop i= 5e”’”aﬁFW (Hodge dual of F,z)

® 0, 1= 2F,o&" (Ernst 1-form)
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Mars-Simon tensor

The Mars-Simon tensor provides a nice characterization of Kerr spacetime:

Theorem (Mars, 1999)

If g satisfies the vacuum Einstein equation and (M, g) contains a stationary
asymptotically flat end M such that £ tends to a time translation at infinity in
M and the Komar mass of £ in M*° is non-zero, then

S =0 < (M,g) is locally isometric to a Kerr spacetime
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Mars-Simon tensor

The Mars-Simon tensor provides a nice characterization of Kerr spacetime:

Theorem (Mars, 1999)

If g satisfies the vacuum Einstein equation and (M, g) contains a stationary
asymptotically flat end M such that £ tends to a time translation at infinity in
M and the Komar mass of £ in M*° is non-zero, then

S =0 < (M,g) is locally isometric to a Kerr spacetime

Let us use SageManifolds...

...to check the < part of the theorem, namely that the Mars-Simon tensor is
identically zero in Kerr spacetime.

o

NB: what follows illustrates only certain features of SageManifolds; other ones,
like the multi-chart and multi-frame capabilities on non-parallelizable manifolds,
are not considered in this example. =—> More examples are provided at
http://sagemanifolds.obspm.fr/examples.html
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Object-oriented notation

To understand what follows, be aware that

as an object-oriented language, Python (and hence Sage) makes use of the
following postfix notation:

result = object.function(arguments)

In a functional language, this would be written as

result = function(object,arguments)
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Object-oriented notation

To understand what follows, be aware that

as an object-oriented language, Python (and hence Sage) makes use of the
following postfix notation:

result = object.function(arguments)

In a functional language, this would be written as

result = function(object,arguments)

riem = g.riemann()
lie t.v =t.lie der(v)
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M = Manifold(4, 'M', latex_name=r'\mathcal{M}"')
print M

4-dimensional manifold 'M'
‘We introduce the standard Boyer-Lindquist coordinates as follows:

X.<t,r,th,ph> = M.chart(r't r:(0,+00) th:(,pi):\theta ph:(0,2%pi):\phi’
print X ; X

chart (M, (t, r, th, ph))

(M, (t, 7,6, )

Metric tensor

The 2 parameters m and a of the Kerr spacetime are declared as symbolic variables:

var('m, a')

(m,a)

Let us introduce the spacetime metric g and set its components in the coordinate frame associated with Boyer-Lindquist coordinates, which is the
current manifold's default frame:

g = M.lorentz metric('g")

rho2 = r*2 + (a*cos(th))"2

Delta = r*2 -2*m*r + a"2

g[0,0] -(1-2*m*r/rho2)

gl0,3] -2*a*m*r*sin(th)"~2/rho2

gl[1,1], gl[2,2] = rho2/Delta, rho2

g[3,3] = (r"2+a~2+2*m*r*(a*sin(th))”~2/rho2)*sin(th)"2
g.view()

2 N 2 2 .
9= (f M)dt@dt—»— (— M)dt®d¢+ (M)drt@ ar+ (azcos(9)2+r2)d9®d9+ (— Zamr st

a?cos (6)°+r? a? cos (6)"+r a’-2mrirt a?cos (0]
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 atcos (8) —2mrer? ~ 2amrsin ()"

0 0
a?cos (8) 42 a? cas (8) 412
a? cos (8)"+r2
0 e 0 0
0 0 o cos(\‘))2 + 0
3 amrsin (6)’ 0 2atmrsin (0)' + (a2 44 (ot +a¥r?) cos (0)°) sin (6)°
a? cos (8) 412 a? cas (8) 412

The Levi-Civita connection V associated with g:

nab = g.connection() ; print nab

Levi-Civita connection 'nabla g' associated with the Lorentzian metric
'g" on the 4-dimensional manifold 'M*

As a check, we verify that the covariant derivative of g with respect to V vanishes identically:
nab(g).view()
Vg =0
Killing vector

The default vector frame on the spacetime manifold is the coordinate basis associated with Boyer-Lindquist coordinates:

M.default frame() is X.frame()

True

X.frame()
4 4 8 a
(v (2.5 5.2))
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Let us consider the first vector field of this frame:

xi = X.frame()[0] ; xi
L2
at
print xi

vector field 'd/dt' on the 4-dimensional manifold 'M'

The 1-form associated to it by metric duality is

xi_form = xi.down(g)
xi_form.set name('xi_form', r'\upderline{\xi}')
print xi_form ; xi_form.view()

1-form 'xi_form' on the 4-dimensional manifold 'M*
(- a2 cos (ﬂ)2722mr+r2 ats (- 2amrsinz(9)! 4o
= a2 cos () +r? a2 cos (6) +r2

Its covariant derivative is

nab xi = nab(xi_form)
print nab xi ; nab xi.view()
tensor field 'nabla g xi form' of type (0,2) on the 4-dimensional

manifold 'M*
2,

= at cos (0)'+2 a2r2 cos (6] at cos (8)"+2 a2 cos (8) 04

Let us check that the Killing equation is satisfied:

nab_xi.symmetrize().view()
0

(8)"+2a2r? cos (6)+

2 . 2
V€ = (w)dt ®dr ( 2ar con(0) i) )dt 281 (7 i cos (0)' e
) e

(emces
2% cos (0)

)dr@dt+
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la Firefox
4] sM_Mars-Simen - Sage % B
Equivalently, we check that the Lie derivative of the metric along £ vanishes:

g.lie_der(xi), view()
0

Thank to Killing equation, V £ is antisymmetric. We may therefore define a 2-form by F' := —V4£. Here we enforce the antisymmetry by calling

the function antisymmetrize () onnab_xi:

F = - nab xi.antisymmetrize()
F.set_name('F')

print F

F.view()

on the 4-dimensional manifold 'M'
2(a

2 . 2
(a*m cos (6)°~amr?) sin (0) dr A dds (7 2

at cos (6)+2 a?r? cas (8) 4 at ol

2-form 'F'
2a?mr cos(6) sin(6) )dt/\d9+ -

F= ,M dt Adr 4 [ — —=amresiismis)
at cos (6) +2a2r cos () +r a4 cos (6) +2 a?r? cos (6) 4t

We check that

The squared norm of the Killing vector is:

lamb = - g(xi,xi)
lamb.set name('lambda’,

print lamb
Tanb. view()

r*\lambda")

scalar field 'lambda' on the 4-dimensional manifold 'M*

A M —
a? cos (0)° 2 mr+r2
a? cos (9)"+r2

(t.7.6,9) —
IRMA, Strasbourg, 18 Sept.
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Instead of invoking g(£,£), we could have evaluated A by means of the 1-form £ acting on the vector field &:

lamb == - xi_form(xi)

True

or, in index notation,

lamb == - ( xi_forml['_: )
True
Curvature

The Riemann curvature tensor associated with g is:

print Riem
tensor field 'Riem(g)’' of type (1,3) on the 4-dimensional manifold 'M'

The component an, is

Riem(0,1,2,3]

(a'm—2aPm?r +a’mr?) cos(6) sin (6) "+ (a'm+2 d¥mr +6 a¥mr?_6 a¥m?r+5 admr) cos(6) sin (8)° 2 (am—aPmr? 5 admrd—3 amst)

os (6) sin(6)

02582 mrT4r5+ (a8—2 abmr+a¥r?) cos (6)"+3 (abr2—2 atmrS+airt) cos (6)'+3 (atri—2 a2mrS+a2r9) cos (8)°
The Ricci tensor:
Ric = g.ricci()
print Ric

field of symmetric bilinear forms 'Ric(g)' on the 4-dimensional manifold
M
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la Firefox

4] sM_Mars-Simen - Sage % B

Let us check that we are dealing with a solution of Einstein equation:

Ric.view()
Ric(g) =0

The Weyl conformal curvature tensor is

C = g.weyl()
print C

tensor field 'C(g)' of type (1,3) on the 4-dimensional manifold 'M*
Let us exhibit two of its components CDI% and Cnml:

cre,1,2,3]
_ (a'm-2a* mirraimr?) cos(6) sin (6) "+ (aTm+2 a*mPr 6 a*mr?—6 atmtrd+5 a*mrt) cos(8) sin (6)'—2 (a'm—a®mr? —5 a¥mr'—3 ams%) cos(6) sin(6)

a?rf 2 mrt+r8+ (a5~ 2 abmr-+a®r2) cos (6)"+3 (aSr2—2atmrd+a*rt) cos ()" +3 (atrt—2 a?mrs+a2r) cos (6)°

C[6,1,0,1]
3 atmr cos (8)'+3 amrd+ 2 mr (9 atmr+7a2mrd) cos (6)

a2 2mpT 415+ (a5 2 abmr-+adr?) cos (8)°+3 (a5r2 2 atmrd +atrt) cos (8)'+3 (atrt—2 atmrd+a?r5) cos ()

To form the Mars-Simon tensor, we need the fully covariant (type-(0,4) tensor) form of the Weyl tensor (i.e. Caguy = gMCUgW); we get it by
lowering the first index with the metric:

¢d = C.down(g)
print ¢d
tensor field of type (0,4) on the 4-dimensional manifold 'M"

The (monoterm) symmetries of this tensor are those inherited from the Weyl tensor, i.e. the antisymmetry on the last two indices (position 2 and 3,
the first index being at position 0):
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irefox

[ sM_Mars-Simon - Sage Ed +

The (monoterm) symmetries of this tensor are those inherited from the Weyl tensor, i.e. the antisymmetry on the last two indices (position 2 and 3,
the first index being at position 0):

cd.symmetries()
no symmetry; antisymmetry: (2, 3)

Actually, Cd is also antisymmetric with respect to the first two indices, as we can check:

Cd == Cd.antisymmetrize((®,1))
True

To take this symmetry into account explicitely, we set

Cd = Cd.antisymnetrize((0,1))

Hence we have now

d.symmetries()
no symmetry; antisymmetries: [(@, 1), (2, 3)]

Mars-Simon tensor

The Mars-Simon tensor with respect to the Killing vector £ is a rank-3 tensor introduced by Marc Mars in 1999 (Class. Quantum Grav. 16, 2507).
It has the remarkable property to vanish identically if, and only if, the spacetime (M, g) is locally isometric to a Kerr spacetime.

Let us evaluate the Mars-Simon tensor by following the formulas given in Mars' article. The starting point is the self-dual complex 2-form
associated with the Killing 2-form F, i.e. the ohject F := F 4 i *F, where * F is the Hodge dual of F":

FE = F + I * F.hodge star(g)

FE.set_name('FF', r'\mathcal{F}') ; print FF

2-form 'FF' on the 4-dimensional manifold 'M'
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FE.view()

F_ (_ a?m cos (9)2+2iamrcus(9)fmr2)dt/\dr+ ((ia’m cas (6)* -2 a?mr cos(6) i amr?) sin6)

i admir? cos(8) sin (6) "+ (a¥mrt -2 am?
- - - - dt A db +
atcos (6) +2a2r? cos (8) +r! a' cos (6) +2 a?r? cos (6) +r!

a?rb—2m

Let us check that F is self-dual, i.e. that it obeys *F = —iF:

EE.hodge star(g) == - I * FE
True
Let us form the right self-dual of the Weyl tensor as follows
i
Casuw = Coguw + 5 & Cagpo

where €’ is associated to the Levi-Civita tensor €,q,, and is obtained by
eps = g.volume _form(2) # 2 = the first 2 indices are contravariant

print eps
€ps. symmetries()

tensor field of type (2,2) on the 4-dimensional manifold 'M'
no symmetry; antisymmetries: [(@, 1), (2, 3)]

The right self-dual Weyl tensor is then:

CC=Cd + I/2%( eps['*rs_..'1*Cd['_..rs'] )
CC.set name('CC', r'\mathcal{C}') ; print CC

tensor field 'CC' of type (0,4) on the 4-dimensional manifold 'M'
CC.symmetries()

no symmetry; antisymmetries: [(0, 1), (2, 3)]

CC[0,1,2,3]
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ccre,1,2,3]

(a¥m cos (6)"+3i abrur cos (8)"+3i a2mr®+2i mr’— (3 a¥m+5 a¥mr?) cos ()" +(~9% amr—7i a*mr®) cos (6)"+3 (3 a¥mr®+2 amr) cos(6) ) sin(6)

a cos (8) +3a'r? cos () +3 a?r cas (6) +¢
The Ernst 1-form 0, = 2.F 4 £" (0 = contraction on the first index of F):

sigma = 2*FF.contract(0, xi)

Instead of invoking the function contract (), we could have used the index notation to denote the contraction:

sigma == 2*( EE['_ma']*xi['"m'] )

True
sigma.set name('sigma’, r'\sigma’) ; print sigma
sigma.yview()

1-form 'sigma' on the 4-dimensional manifold 'M’

oo (7 zazmm(gmm,m(g)_zm,z) s (21 am cos (6)" -4 a?mr cos(6) 21 amr? ) sin(6) W

at cos (0)*+2 a2 cos (6)*+14 at cos ()" +2a2r2 cos ()14
The symmetric bilinear formy = Ag+ £ & &:

gamma = lamb*g + xi form * xi form
gamma.set _pame('gamma’, r'\gamma‘) ; print gamma
gamma.yiew()

field of symmetric bilinear forms 'gamma’ on the 4-dimensional manifold
M

2a?mr sin (0)'~ (2 a?mr—a?r +2mr —rt~(a*+ar?) cos ()”) s (6)"

a? cos (6)" 12

d¢

a?—2mrr?

2 2 2
= (M)drc@drnt (0.2005(9)2 - 2m7‘+7‘2)d9®d9+
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xploring spacetimes via symbolic computations: the SageManifolds project

la Firefox

4] sM_Mars-Simen - Sage % B

Final computation leading to the Mars-Simon tensor:

First, we evaluate
1
50 = 1€ £ 0,

1 = 4%( CC.contract(®,xi).contract(l,xi) ) * sigma
print S1

tensor field of type (0,3) on the 4-dimensional manifold 'M"

Then we form the tensor

2
Sif’r)'r = Yag Cypur & F

by first computing C.,,,,, £

XxiCC = CC['_.r..'"]*xi['"r']
print xiCC

tensor field of type (0,3) on the 4-dimensional manifold 'M'
and evaluating F* = g"“gﬂ"fw:

FFuu = FF.up(g)

‘We use the index notation to perform the double contraction C.,p#,,}- e,

52 = gamma * ( xiCC['_.mn'1*FFuu["~mn'] )
print s2
52.synmetries ()

tensor field of type (0,3) on the 4-dimensional manifold 'M"
symmetry: (0, 1); no antisymmetry
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xploring spacetimes via symbolic computations: the SageManifolds project

la Firefox

4] sM_Mars-Simen - Sage % B

The Mars-Simon tensor with respect to £ is obtained by antisymmetrizing S5 (1) and $® on their last two indices and adding them:
— g (2)
Sy = Sagy) + Salpy
‘We use the index notation for the antisymmetrization:

S1A
S2A

[}
—

An equivalent writing would have been (the last two indices being in position 1 and 2):

# S1A = Sl.antisymmetrize((1,2))
# S2A = S2.antisymmetrize((1,2))

The Mars-Simon tensor is

S = S1A + S2A

.set_name('S') ; print S

-symmetries()
tensor field 'S' of type (8,3) on the 4-dimensional manifold 'M*
no symmetry; antisymmetry: (1, 2)

wn

w

view()
S=0

‘We thus recover the fact that the Mars-Simon tensor vanishes identically in Kerr spacetime.

To check that the above computation was not trival, here is the component 112=rrg for each of the two parts of the Mars-Simon tensor:

S1A[1,1,2]
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2] SM_Mars-Simon - Sage

The Mars-Simon tensor is

S = S1A + S2A

S.set_name('S') ; print S

S.symmetries()
tensor field 'S' of type (0,3) on the 4-dimensional manifold "M’
no symmetry; antisymmetry: (1, 2)

S.yiew()

5=0

‘We thus recover the fact that the Mars-Simon tensor vanishes identically in Kerr spacetime.

To check that the above computation was not trival, here is the component 112=rr@ for each of the two parts of the Mars-Simon tensor:

S1A[1,1,2]
(4a%m? cos (6)"+20i a’m?r cos (6)°—8i wm®s®+4i am?r 4 (2 &Pmir+9 aPu?r?) cos (6)°+(~dvi &*m

a2r19-2 it 4124 (122 10mr+a1972) cos (8)'"+5 (al972 -2 a¥mrS+a511) cos (6)°+10 (a®r—2 aSmrd+a5r8) cos (8)°+10 (abr—2 atmrT+atrs) cos (

312201 a*mr¥) cos (6)'+20 (4a'm¥r—a'm?r!) cos (8)°+(80i a*mir!-

S2A[1,1,2]
(4a8m2 cos (6)"+20i am?r cos (6)° 8 amsS-+4i a4 (2abmir+9 abms2) cos (6) +(—40i a2 20 a¥m?r?) cos

a2ri0_2 mpll 4124 (o122 amr+al®r2) cos (6)"+5 (allr?—2abmrd+asrd) cos (8) 10 (air—2 abmys-+abr) cos (8)'+10 (abrb—2 admrT+airs) cos (6)

(8)*+20 (4 atm 3 —atm?rt) cos (6)*+(80i a®mri—36

S1A[1,1,2] + S2A[1,1,2]
0

evaluate
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Exploring spacetimes via symbolic computations: the SageManifolds proiect

Another feature of SageManifolds: display of chart grids

1.1
Function Chart.plot()
-0-02 ‘I =~ | < Stereographic coordinates on the
VIS L0 2-sphere J
Two charts:
L1 o X;: S*\ {N} = R?
. 1.0
e o X, §*\ {S} = R?
x ¥
0.0 0.0
1.1 -1.1
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Exploring spacetimes via symbolic computations: the SageManifolds proiect

Another feature of SageManifolds: display of chart grids

Three charts X, ¥,, X3
covering the real projective plane
RP?, displayed via the Apéry
immersion of RP? into R* (Boy
surface)

2.2

Identifying RP? with the set of
lines A through the origin of R?,
we have

e Xi: A (z1,y1) such
that ANTL.—; = (21,1, 1)

o Xo: A (z9,y2) such
0.1’ Pn_n that AmH;p:] - (17$2?y2)

o Xj: A — (l'g,yg,) such
1.1 -1.1 that AN Hy:1 = (y3 171‘3)
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Exploring spacetimes via symbolic computations: the SageManifolds proiect

Another feature of SageManifolds: display of chart grids

Carter-Penrose diagram of Schwarzschild spacetime J

Plot of the standard Schwarzschild-Droste coordinates (,7) in terms of the
conformal Kruskal-Szekeres coordinates (7', X).
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Conclusion and perspectives
Conclusion and perspectives

o SageManifolds is a work in progress
~ 34,000 lines of Python code up to now (including comments and doctests)

@ A preliminary version (v0.5) is freely available (GPL) at
http://sagemanifolds.obspm.fr/
and the development version (to become v0.6 soon) is available from the Git
repository https://github.com/sagemanifolds/sage

o Already present:

maps between manifolds, pullback operator

e submanifolds, pushforward operator

standard tensor calculus (tensor product, contraction, symmetrization, etc.),
even on non-parallelizable manifolds

all monoterm tensor symmetries

exterior calculus, Hodge duality

Lie derivatives

affine connections, curvature, torsion

pseudo-Riemannian metrics, Weyl tensor
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Conclusion and perspectives

e Not implemented yet (but should be soon):

e extrinsic geometry of pseudo-Riemannian submanifolds
e computation of geodesics (numerical integration via Sage/GSL or Gyoto)
e integrals on submanifolds

e To do:

e add more graphical outputs

e add more functionalities: symplectic forms, fibre bundles, spinors, variational
calculus, etc.

e connection with Lorene, CoCoNuT, ...

Want to join the project or simply to stay tuned?

visit http://sagemanifolds.obspm.fr/
(download page, documentation, example worksheets, mailing list)
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