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Local context (i.e. within the Meudon - Warsaw group)

[Zdunik, Haensel, Gourgoulhon, A&A 372, 535 (2001)]

Most previous computations:
stationary models of compacts stars

• single rotating stars: determination of
maximum mass, maximum rotation rate,
ISCO frequency, accretion induced spin-up,
for various models of dense matter

• binary stars : determination of last stable
orbit (end of chirp phase in the GW signal)
for neutron stars and strange quark stars

Exceptions: 1D gravitational collapse NS → BH [in GR (1991,1993) and in tensor-scalar
theories (1998)], 3D stellar core collapse [Newtonian (1993) and IWM approx. (2004)],
inertial modes in rotating star [Newtonian (2002) and IWM approx. (2004)].
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Computing time evolution of neutron stars

Astrophysical motivations:

• Oscillations and stability

? beyond the linear regime
? for rapidly rotating stars

• Direct computation of resulting gravitational wave emission

• Phase transitions

• Collapse of supramassive neutron stars to black hole

• Formation and stability of black hole - torus systems
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Global context (i.e. studies from other groups)

Numerical studies of time evolution of rapidly rotating NS

2D (axisymmetric) codes:

• Nakamura et al. (1981,1983) : rotating collapse to a black hole, full GR, cylindrical
coordinates ($, z, ϕ)

• Stark & Piran (1985) : rotating collapse to a black hole, extraction of GW, full
GR, spherical coordinates (r, θ, ϕ)

• Dimmelmeier, Font & Müller (2002) : stellar core collapse, IWM approx. to GR,
spherical coordinates (r, θ, ϕ) [A&A 388, 917 (2002)] [A&A 393, 523 (2002)]

• Shibata (2003) : general purpose axisymmetric full GR code, Cartesian coordinates
(x, y, z) + “cartoon” method [Shibata, PRD 67, 024033 (2003)]

→ GW from axisymmetrically oscillating NS [Shibata & Sekiguchi, PRD 68, 104020 (2003)]

→ GW from axisymmetric stellar core collapse to NS [Shibata & Sekiguchi, PRD 69, 084024

(2004)]

→ collapse of rotating supramassive NS to BH [Shibata, ApJ 595, 992 (2003)]

→ collapse of rapidly rotating polytopes to BH [Sekiguchi & Shibata, PRD 70, 084005 (2004)]
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Global context (i.e. studies from other groups)

Numerical studies of time evolution of rapidly rotating NS

3D codes:

• Shibata (1999) [Shibata, Prog. Theor. Phys. 101, 1199 (1999)] [Shibata, PRD 60, 104052 (1999)] : full
GR, Cartesian coordinates (x, y, z)
→ 3D collapse of rotating NS (γ = 1) [Shibata, Baumgarte & Shapiro, PRD 61, 044012 (2000)]

→ binary NS merger [Shibata & Uryu, PRD 61, 064001 (2000)], [Shibata, Taniguchi & Uryu, PRD 68, 084020

(2003)]

• GR ASTRO/Cactus code (2000,2002) [Font et al., PRD 61, 044011 (2000)] [Font et al., PRD 64,

084024 (2002)] : full GR, Cartesian coordinates (x, y, z)

• Whisky/Cactus code (2004) [Baiotti et al., gr-qc/0403029]: full GR, Cartesian coordinates
(x, y, z)

• “Mariage des maillages” code (2004) [Dimmelmeier, Novak, Font, Ibañez & Müller, gr-qc/0407174]

: IWM approx. to GR, spherical coordinates (r, θ, ϕ)
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Time evolution in general relativity: the 3+1 formalism

Foliation of spacetime by a family of spacelike hypersurfaces (Σt)t∈R ; on each

hypersurface, pick a coordinate system (xi)i∈{1,2,3}
=⇒ (xµ)µ∈{0,1,2,3} = (t, x1, x2, x3) = coordinate system on spacetime

n : future directed unit normal to Σt :
n = −N dt, N : lapse function
et = ∂/∂t : time vector of the natural
basis associated with the coordinates (xµ)

N : lapse function
β : shift vector

}
et = Nn + β

Geometry of the hypersurfaces Σt:
– induced metric γ = g + n⊗ n

– extrinsic curvature : K = −1
2
£nγ

gµν dxµ dxν = −N2 dt2 + γij (dxi + βidt) (dxj + βjdt)
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3+1 decomposition of Einstein equation

Orthogonal projection of Einstein equation onto Σt and along the normal to Σt :

• Hamiltonian constraint: R + K2 −KijK
ij = 16πE

• Momentum constraint : DjK
ij −DiK = 8πJ i

• Dynamical equations :

∂Kij

∂t
−£βKij = −DiDjN + N

[
Rij − 2KikK

k
j + KKij + 4π((S − E)γij − 2Sij)

]

E := T(n,n) = Tµν nµnν, Ji := −γ µ
i Tµν nν, Sij := γ µ

i γ ν
j Tµν, S := S i

i

Di : covariant derivative associated with γ, Rij : Ricci tensor of Di, R := R i
i

Kinematical relation between γ and K:
∂γij

∂t
+ Diβj + Djβi = 2NKij

Resolution of Einstein equation ≡ Cauchy problem
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Free vs. constrained evolution in 3+1 numerical relativity

Einstein equations split into





dynamical equations
∂

∂t
Kij = ...

Hamiltonian constraint R + K2 −KijK
ij = 16πE

momentum constraint DjK
j

i −DiK = 8πJi

• 2-D computations (80’s and 90’s):
partially constrained schemes: Bardeen & Piran (1983), Stark & Piran (1985),
Evans (1986)
fully constrained schemes: Evans (1989), Shapiro & Teukolsky (1992), Abrahams
et al. (1994)

• 3-D computations (from mid 90’s): almost all based on free evolution schemes:
BSSN, symmetric hyperbolic formulations, etc...
=⇒ problem: exponential growth of constraint violating modes

Standard issue 1: the constraints usually involve elliptic equations
and 3-D elliptic solvers are CPU-time expensive !
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Cartesian vs. spherical coordinates in 3+1 numerical relativity

• 1-D and 2-D computations: massive usage of spherical coordinates (r, θ, ϕ)

• 3-D computations: almost all based on Cartesian coordinates (x, y, z), although
spherical coordinates are better suited to study objects with spherical topology (black
holes, neutron stars). Two exceptions:
– Nakamura et al. (1987): evolution of pure gravitational wave spacetimes in spherical
coordinates (but with Cartesian components of tensor fields)
– Stark (1989): attempt to compute 3D stellar collapse in spherical coordinates

Standard issue 2: spherical coordinates are singular at r = 0 and θ = 0 or π !
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Standard issues 1 and 2 can be overcome

Standard issues 1 and 2 are neither mathematical nor physical, but technical ones
=⇒ they can be overcome with appropriate techniques

Spectral methods allow for

• an automatic treatment of the singularities of spherical coordinates (issue 2)

• fast 3-D elliptic solvers in spherical coordinates: 3-D Poisson equation reduced to a
system of 1-D algebraic equations with banded matrices [Grandclément, Bonazzola, Gourgoulhon

& Marck, J. Comp. Phys. 170, 231 (2001)] (issue 1)
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Conformal metric and dynamics of the gravitational field

York (1972) : Dynamical degrees of freedom of the gravitational field carried by the
conformal “metric”

γ̂ij := γ−1/3 γij with γ := det γij

γ̂ij = tensor density of weight −2/3

To work with tensor fields only, introduce an extra structure on Σt: a flat metric f such

that
∂fij

∂t
= 0 and γij ∼ fij at spatial infinity (asymptotic flatness)

Define γ̃ij := Ψ−4 γij or γij =: Ψ4 γ̃ij with Ψ :=
(

γ

f

)1/12

, f := det fij

γ̃ij is invariant under any conformal transformation of γij and verifies det γ̃ij = f

Notations: γ̃ij: inverse conformal metric : γ̃ik γ̃kj = δ j
i

D̃i : covariant derivative associated with γ̃ij, D̃i := γ̃ijD̃j

Di : covariant derivative associated with fij, Di := f ijDj
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Dirac gauge

Conformal decomposition of the metric γij of the spacelike hypersurfaces Σt:

γij =: Ψ4 γ̃ij with γ̃ij =: f ij + hij

where fij is a flat metric on Σt, hij a symmetric tensor and Ψ a scalar field defined by

Ψ :=
(

det γij

det fij

)1/12

Dirac gauge (Dirac, 1959) = divergence-free condition on γ̃ij: Djγ̃
ij = Djh

ij = 0

where Dj denotes the covariant derivative with respect to the flat metric fij.

Compare
• minimal distortion (Smarr & York 1978) : Dj

(
∂γ̃ij/∂t

)
= 0

• pseudo-minimal distortion (Nakamura 1994) : Dj
(
∂γ̃ij/∂t

)
= 0

Notice: Dirac gauge ⇐⇒ BSSN connection functions vanish: Γ̃i = 0
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Dirac gauge: discussion

• introduced by Dirac (1959) in order to fix the coordinates in some Hamiltonian
formulation of general relativity; originally defined for Cartesian coordinates only:
∂

∂xj

(
γ1/3 γij

)
= 0

but trivially extended by us to more general type of coordinates (e.g. spherical)

thanks to the introduction of the flat metric fij: Dj

(
(γ/f)1/3γij

)
= 0

• fully specifies (up to some boundary conditions) the coordinates in each hypersurface
Σt, including the initial one ⇒ allows for the search for stationary solutions

• leads asymptotically to transverse-traceless (TT) coordinates (same as minimal
distortion gauge). Both gauges are analogous to Coulomb gauge in electrodynamics

• turns the Ricci tensor of conformal metric γ̃ij into an elliptic operator for hij =⇒ the
dynamical Einstein equations become a wave equation for hij

• results in a vector elliptic equation for the shift vector βi
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3+1 Einstein equations in maximal slicing + Dirac gauge
[Bonazzola, Gourgoulhon, Grandclément & Novak, PRD in press, gr-qc/0307082 v4]

• 5 elliptic equations (4 constraints + K = 0 condition) (∆ := DkDk = flat Laplacian):

∆N = Ψ4N
[
4π(E + S) + AklA

kl
]−hklDkDlN−2D̃k lnΨ D̃kN (N=lapse function)

∆(Ψ2N) = Ψ6N

(
4πS +

3
4
AklA

kl

)
− hklDkDl(Ψ2N) + Ψ2

[
N

( 1
16

γ̃klDkh
ijDlγ̃ij

−1
8
γ̃klDkh

ijDjγ̃il + 2D̃k lnΨ D̃k lnΨ
)

+ 2D̃k lnΨ D̃kN

]
.

∆βi +
1
3
Di

(Djβ
j
)

= 2AijDjN + 16πNΨ4J i − 12NAijDj lnΨ− 2∆i
klNAkl

−hklDkDlβ
i − 1

3
hikDkDlβ

l
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3+1 equations in maximal slicing + Dirac gauge (cont’d)

• 2 scalar wave equations for two scalar potentials χ and µ :

−∂2χ

∂t2
+ ∆χ = Sχ

−∂2µ

∂t2
+ ∆µ = Sµ

(for expression of Sχ and Sµ see [Bonazzola, Gourgoulhon, Grandclément & Novak, PRD in press,

gr-qc/0307082 v4])

The remaining 3 degrees of freedom are fixed by the Dirac gauge:

(i) From the two potentials χ and µ, construct a TT tensor h̄ij according to the
formulas (components with respect to a spherical f-orthonormal frame)

h̄rr =
χ

r2
, h̄rθ =

1
r

(
∂η

∂θ
− 1

sin θ

∂µ

∂ϕ

)
, h̄rϕ =

1
r

(
1

sin θ

∂η

∂ϕ
+

∂µ

∂θ

)
, etc...

with ∆θϕη = −∂χ/∂r − χ/r
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Recovering the conformal metric γ̃ij from the TT tensor h̄ij

(ii) hij is uniquely determined by the TT tensor h̄ij as the following divergence-free
(Dirac gauge) tensor :

hij = h̄ij +
1
2

(
h f ij −DiDjφ

)
(1)

where h := fijh
ij is the trace of hij with respect to the flat metric and φ is the

solution of the Poisson equation ∆φ = h. The trace h is determined in order to enforce
the condition det γ̃ij = det fij (definition of Ψ) by

h = −hrrhθθ − hrrhϕϕ − hθθhϕϕ + (hrθ)2 + (hrϕ)2 + (hθϕ)2 − hrrhθθhϕϕ

−2hrθhrϕhθϕ + hrr(hθϕ)2 + hθθ(hrϕ)2 + hϕϕ(hrθ)2 (2)

Equations (1) and (2) constitute a coupled system which can be solved by iterations
(starting from hij = h̄ij), at the price of solving the Poisson equation ∆φ = h at each
step. In practise a few iterations are sufficient to reach machine accuracy.

(iii) Finally γ̃ij = f ij + hij.
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Numerical implementation

Numerical code based on the C++ library Lorene (http://www.lorene.obspm.fr)
with the following main features:

• multidomain spectral methods based on spherical coordinates (r, θ, ϕ), with
compactified external domain (=⇒ spatial infinity included in the computational
domain for elliptic equations)

• very efficient outgoing-wave boundary conditions, ensuring that all modes with
spherical harmonics indices ` = 0, ` = 1 and ` = 2 are perfectly outgoing
[Novak & Bonazzola, J. Comp. Phys. 197, 186 (2004)]

(recall: Sommerfeld boundary condition works only for ` = 0, which is too low for
gravitational waves)
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Results on a pure gravitational wave spacetime

Initial data: similar to [Baumgarte & Shapiro, PRD 59, 024007 (1998)], namely a momentarily static
(∂γ̃ij/∂t = 0) Teukolsky wave ` = 2, m = 2:

{
χ(t = 0) = χ0

2 r2 exp
(
−r2

r2
0

)
sin2 θ sin 2ϕ

µ(t = 0) = 0
with χ0 = 10−3

Preparation of the initial data by means of the conformal thin sandwich procedure

Evolution of hϕϕ in the plane θ = π
2
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Test: conservation of the ADM mass
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Number of coefficients in each domain: Nr = 17, Nθ = 9, Nϕ = 8
For dt = 5 10−3r0, the ADM mass is conserved within a relative error lower than 10−4
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Late time evolution of the ADM mass
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At t > 10 r0, the wave has completely left the computation domain
=⇒ Minkowski spacetime

1st Astro-PF workshop, CAMK, Warsaw, 13-15 October 2004



21

Long term stability
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Nothing happens until the run is switched off at t = 400 r0 !
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Another test: check of the ∂Ψ
∂t relation

The relation
∂

∂t
lnΨ− βkDk lnΨ =

1
6
Dkβ

k (trace of the definition of the extrinsic

curvature as the time derivative of the spatial metric) is not enforced in our scheme.
=⇒ This provides an additional test:
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Summary

• Dirac gauge + maximal slicing reduces the Einstein equations into a system of
– two scalar elliptic equations (including the Hamiltonian constraint)
– one vector elliptic equations (the momentum constraint)
– two scalar wave equations (evolving the two dynamical degrees of freedom of the
gravitational field)

• The usage of spherical coordinates and spherical components of tensor fields is crucial
in reducing the dynamical Einstein equations to two scalar wave equations

• The unimodular character of the conformal metric (det γ̃ij = det fij) is ensured in
our scheme

• First numerical results show that Dirac gauge + maximal slicing seems a promising
choice for stable evolutions of 3+1 Einstein equations and gravitational wave
extraction

• It remains to be tested on black hole spacetimes !
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Advantages for NS spacetimes

• Spherical coordinates (inherent to the new formulation) are well adapted to the
description of stellar objects (axisymmetry limit is immediate)

• Far from the central star, the time evolved quantities (hij) are nothing but the
gravitational wave components in the TT gauge =⇒ easy extraction of gravitational
radiation

• Isenberg-Wilson-Mathews approximation (widely used for equilibrium configurations
of binary NS) is easily recovered in our scheme, by setting hij = 0

• Dirac gauge fully fixes the spatial coordinates =⇒ along with the resolution of
constraints within the scheme, this allows for getting stationary solutions within the
very same scheme, simply setting ∂/∂t = 0 in the equations

A drawback: the quasi-isotropic coordinates usually used to compute stationary
configurations of rotating NS do not belong to Dirac gauge, except for spherical
symmetry
1st Astro-PF workshop, CAMK, Warsaw, 13-15 October 2004
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Future prospects

• Evolution of the gravitational field part (Einstein equations) is already implemented
in Lorene (classes Evolution and Tsclice dirac max)

• Implementation of the hydrodynamic equations (L. Villain)

• A first step: computation of stationary configurations of rotating stars within Dirac
gauge (L.-M. Lin)

• Dynamical evolution of unstable rotating stars

• Gravitational collapse

• etc...
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