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Local context (i.e. within the Meudon - Warsaw group)

e single rotating stars: determination of

liquide de quarks D | ) ) .
u Cup), d (down) maximum mass, maximum rotation rate,

s (strange) p ISCO frequency, accretion induced spin-up,
= for various models of dense matter

z [km]

—10 — -
_ e binary stars : determination of last stable
[T R T orbit (end of chirp phase in the GW signal)
for neutron stars and strange quark stars

[Zdunik, Haensel, Gourgoulhon, A&A 372, 535 (2001)]

1D gravitational collapse NS — BH [in GR (1991,1993) and in tensor-scalar
theories (1998)], 3D stellar core collapse [Newtonian (1993) and IWM approx. (2004)],
inertial modes in rotating star [Newtonian (2002) and IWM approx. (2004)].
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Computing time evolution of neutron stars

e Oscillations and stability

* beyond the linear regime
* for rapidly rotating stars

e Direct computation of resulting gravitational wave emission
e Phase transitions
e Collapse of supramassive neutron stars to black hole

e Formation and stability of black hole - torus systems
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Global context (i.e. studies from other groups)

Numerical studies of time evolution of rapidly rotating NS

Nakamura et al. (1981,1983) : rotating collapse to a black hole, full GR, cylindrical
coordinates (w, z, )

Stark & Piran (1985) : rotating collapse to a black hole, extraction of GW, full
GR, spherical coordinates (7,6, ¢)

Dimmelmeier, Font & Miiller (2002) : stellar core collapse, IWM approx. to GR,
spherical coordinates (7,6, @) [A&A 388, 917 (2002)] [A&A 393, 523 (2002)]

Shibata (2003) : general purpose axisymmetric full GR code, Cartesian coordinates
(x,y,z) + “cartoon” method [Shibata, PRD 67, 024033 (2003)]

— GW from axisymmetrically oscillating NS [Shibata & Sekiguchi, PRD 68, 104020 (2003)]

— GW from axisymmetric stellar core collapse to NS [Shibata & Sekiguchi, PRD 69, 084024
(2004)]

— collapse of rotating supramassive NS to BH [Shibata, ApJ 595, 992 (2003)]

— collapse of rapidly rotating polytopes to BH [Sekiguchi & Shibata, PRD 70, 084005 (2004)]

1st Astro-PF workshop, CAMK, Warsaw, 13-15 October 2004


http://publish.aps.org/abstract/PRD/v67/e024033
http://publish.aps.org/abstract/PRD/v68/e104020
http://publish.aps.org/abstract/PRD/v69/e084024
http://publish.aps.org/abstract/PRD/v69/e084024
http://publish.aps.org/abstract/PRD/v70/e084005

Global context (i.e. studies from other groups)

Numerical studies of time evolution of rapidly rotating NS

e Shibata (1999) [Shibata, Prog. Theor. Phys. 101, 1199 (1999)] [Shibata, PRD 60, 104052 (1999)] : full
GR, Cartesian coordinates (z,y, z)
— 3D collapse of rotating NS (v = 1) [Shibata, Baumgarte & Shapiro, PRD 61, 044012 (2000)]
— binary NS merger [Shibata & Uryu, PRD 61, 064001 (2000)], [Shibata, Taniguchi & Uryu, PRD 68, 084020
(2003)]

e GR_ASTRO/Cactus code (2000,2002) [Font et al., PRD 61, 044011 (2000)] [Font et al., PRD 64,
084024 (2002)] : full GR, Cartesian coordinates (x, ¥, )

e Whisky/Cactus code (2004) [Baiotti et al., gr-qc/0403029]: full GR, Cartesian coordinates
(7,9, 2)

e “Mariage des maillages” code (2004) [Dimmelmeier, Novak, Font, Ibafiez & Miiller, gr-qc/0407174]
: IWM approx. to GR, spherical coordinates (r, 8, ¢)

1st Astro-PF workshop, CAMK, Warsaw, 13-15 October 2004


http://publish.aps.org/abstract/PRD/v60/e104052
http://publish.aps.org/abstract/PRD/v61/e044012
http://publish.aps.org/abstract/PRD/v61/e064001
http://publish.aps.org/abstract/PRD/v68/e084020
http://publish.aps.org/abstract/PRD/v68/e084020
http://publish.aps.org/abstract/PRD/v61/e044011
http://publish.aps.org/abstract/PRD/v65/e084024
http://publish.aps.org/abstract/PRD/v65/e084024
http://arXiv.org/abs/gr-qc/0403029
http://arXiv.org/abs/gr-qc/0407174

Time evolution in general relativity: the 341 formalism

Foliation of spacetime by a family of spacelike hypersurfaces (X;),. ; on each
hypersurface, pick a coordinate system (2");cy1.2,3}
= (") 1eq0.1,2,3) = (t,z', 2%, 2°) = coordinate system on spacetime

n : future directed unit normal to X :
n=—Ndt, N : lapse function

e; = 0/0t : time vector of the natural
basis associated with the coordinates (z*)

N : lapse function B
3 : shift vector } e = Nn+p

Geometry of the hypersurfaces ¥;:
— induced metricy =g+ n®n

— extrinsic curvature : K = —§£n'y

G dzt dx” = —N?dt* + v;; (dx* + 8'dt) (dz’ + 3 dt)
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3+1 decomposition of Einstein equation

Orthogonal projection of Einstein equation onto XJ; and along the normal to >; :

e Hamiltonian constraint: R+ K? - K;;K" =167E
e Momentum constraint : D,K" — D'K = 8rJ’
e Dynamical equations :
5 £8Kij = —D;D;N + N |R;; — 2K, K", + KK, + 47((S — E)vi; — 25i;)]
E:=T(n,n) =T, n"n", Ji ==y, " T n”, Sij =% " Ty, 8= S,

D; : covariant derivative associated with v, R;; : Ricci tensor of D;, R := R/’

oY
Ot

Kinematical relation between ~ and K: + D37+ DBt =2NKY

Resolution of Einstein equation = Cauchy problem
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Free vs. constrained evolution in 341 numerical relativity
( 0
dynamical equations EKM = ...

Einstein equations split into ¢ pymiltonian constraint R + K2 — K;;K"” = 167E
| momentum constraint D;K,”’ — D;K = 8w J,

e 2-D computations (80’s and 90's):
partially constrained schemes: Bardeen & Piran (1983), Stark & Piran (1985),
Evans (1986)
fully constrained schemes: Evans (1989), Shapiro & Teukolsky (1992), Abrahams
et al. (1994)

e 3-D computations (from mid 90’s): almost all based on free evolution schemes:
BSSN, symmetric hyperbolic formulations, etc...
— problem: exponential growth of constraint violating modes

Standard issue 1: the constraints usually involve elliptic equations
and 3-D elliptic solvers are CPU-time expensive !
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Cartesian vs. spherical coordinates in 341 numerical relativity

o massive usage of

o almost all based on , although
spherical coordinates are better suited to study objects with spherical topology (black
holes, neutron stars). Two exceptions:

— Nakamura et al. (1987): evolution of pure gravitational wave spacetimes in spherical
coordinates (but with Cartesian components of tensor fields)
— Stark (1989): attempt to compute 3D stellar collapse in spherical coordinates

Standard issue 2: spherical coordinates are singular at » =0 and 6 =0 or 7 !
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Standard issues 1 and 2 can be overcome

Standard issues 1 and 2 are neither mathematical nor physical, but technical ones
—> they can be overcome with appropriate techniques

allow for

e an automatic treatment of the singularities of spherical coordinates (issue 2)

e fast 3-D elliptic solvers in spherical coordinates: 3-D Poisson equation reduced to a
system of 1-D algebraic equations with banded matrices [Grandclément, Bonazzola, Gourgoulhon
& Marck, J. Comp. Phys. 170, 231 (2001)] (issue 1)
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Conformal metric and dynamics of the gravitational field

York (1972) : of the gravitational field carried by the
conformal “metric”
—1/3

"A}/ij =y Vi with v := det Yij

¥i; = tensor density of weight —2/3

To work with tensor fields only, introduce an extra structure on ;. a flat metric f such
0 fij

that
Y

= 0 and ~;; ~ fi; at spatial infinity (asymptotic flatness)

1/12
Define 5/70 — \11_4 Vi or Yij =: \114 ;5/7/] with | U := (%) . f :— det fw

7ij is invariant under any conformal transformation of v;; and verifies det 7;; = f

Notations: 4%: inverse conformal metric : 7, 7" = 52_7'
D; : covariant derivative associated with 7;;, D" := "D,
D; : covariant derivative associated with f;;, D' := f"D;
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Dirac gauge

Conformal decomposition of the metric ~y;; of the spacelike hypersurfaces >.;:
vig =0y with  §Y = fY 4 Y
where f;; is a flat metric on X, h' a symmetric tensor and ¥ a scalar field defined by
det 7, 1/12
v =
det fij
(Dirac, 1959) = condition on 7: | D;47 = D,;h" =0

where D; denotes the covariant derivative with respect to the flat metric f;;.

Compare -
e minimal distortion (Smarr & York 1978) : D; (07" /9t) =0

e pseudo-minimal distortion (Nakamura 1994) : D7 (95" /dt) =0
Notice: Dirac gauge <= BSSN connection functions vanish: I = 0
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Dirac gauge: discussion

introduced by Dirac (1959) in order to fix the coordinates in some Hamiltonian
formulation of general relativity; originally defined for Cartesian coordinates only:

o -
| ( 1/3 /Y’I,j) —0
oxJ

but trivially extended by us to more general type of coordinates (e.g. spherical)

thanks to the introduction of the flat metric f;;: D, ((’y/f)l/gvij) =0

fully specifies (up to some boundary conditions) the coordinates in each hypersurface
>3¢, Including the initial one = allows for the search for stationary solutions

leads asymptotically to transverse-traceless (TT) coordinates (same as minimal
distortion gauge). Both gauges are analogous to Coulomb gauge in electrodynamics

turns the Ricci tensor of conformal metric 7;; into an elliptic operator for h”/ = the
dynamical Einstein equations become a for h*

results in a vector elliptic equation for the shift vector 3!
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13
3+1 Einstein equations in maximal slicing 4+ Dirac gauge
[Bonazzola, Gourgoulhon, Grandclément & Novak, PRD in press, gr-qc/0307082 v4]

e 5 elliptic equations (4 constraints + K = 0 condition) (A := D, D* = flat Laplacian):

AN = N [47(E + S) + Ay AF]—h*'DyDIN—2D;, In W D* N (N=lapse function)

3 1 )
A(U2N) = TSN (475 1 ZAMA"“> — W*'D,Dy(U2N) + U2 | N (Eﬁ“th”Dm

1 iy ~ ~ ~ ~
—g"’“Zth”Dﬂil + 2D In ¥ D*In xp) + 2D In W D’“N] .

AB' + D" (D;7) = 2A4"D;N+16rNU*J' — 12NAYD;In ¥ — 2A" ;N A

A
~hHDyDB = Sh DD
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3+1 equations in maximal slicing + Dirac gauge (cont’d)

e 2 scalar wave equations for two scalar potentials x and pu :

82
2 +Ax Sy
82
o2 +Ap =35,

(fOI’ expression of SX and S,u, See [Bonazzola, Gourgoulhon, Grandclément & Novak, PRD in press,

gr-qc,/0307082 v4] )

(i) From the two potentials y and j, construct a TT tensor b/ according to the
formulas (components with respect to a spherical f-orthonormal frame)

BT’I":& ]_17"9:1<877_ 1 a:u)' hrcp 1( 1 6774_8/1) etc. |
T

r2’ 00  sinf oy sinfdp 06
with Ag,n = —0x/0r — x/r
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Recovering the conformal metric ¥;; from the TT tensor h%

(ii) h* is uniquely determined by the TT tensor h% as the following divergence-free
(Dirac gauge) tensor :
U | g o
W =h + 5 (hfY = D'D9) (1)
where h := fijhij is the trace of h%/ with respect to the flat metric and ¢ is the
solution of the Poisson equation A¢ = h. The trace h is determined in order to enforce
the condition det¥;; = det f;; (definition of ¥) by

I _hrrhOG’ _ RITRHPY h99hg0g0 4+ (hT«9>2 + (hrgp)Q + (h9gp)2 . hrththmp
_QhTHhrgohecp + hrr(hQLp)Z + h@@(hmo)Q + hcpgo(hTH)Q (2)
Equations (1) and (2) constitute a coupled system which can be solved by iterations

(starting from h* = h%), at the price of solving the Poisson equation A¢ = h at each
step. In practise a few iterations are sufficient to reach machine accuracy.

(iii) Finally 4" = f“ + h".
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Numerical implementation

Numerical code based on the C++ library LORENE (http://www.lorene.obspm.fr)
with the following main features:

© based on spherical coordinates (7,6, ), with
compactified external domain (= spatial infinity included in the computational
domain for elliptic equations)

e very efficient , ensuring that all modes with
spherical harmonics indices £ =0, £ =1 and ¢ = 2 are perfectly outgoing
[Novak & Bonazzola, J. Comp. Phys. 197, 186 (2004)]
(recall: Sommerfeld boundary condition works only for ¢ = 0, which is too low for
gravitational waves)
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Results on a pure gravitational wave spacetime

initial data: similar to [Baumgarte & Shapiro, PRD 59, 024007 (1998)], namely a momentarily static
(07% /Ot = 0) Teukolsky wave £ =2, m = 2:

2 . .
XEZ — O; — ?TQ exp (—;’:—8> sin? @ sin 2¢p with o = 10~
ILL p— p—

Z

Evolution of h¥% in the plane 6 = 5

S Frtp—
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Test: conservation of the ADM mass

—— 6domains R@(t =8 dt=0.01
roT T T T T T |_-_- 7domains Rext =10 dt=0.01
3537&08 | —— 6domains Rext =8 dt=0.005

3.536e-08

ADM mass

3.535e-08

3.534e-08 - -

tlmet/rO

Number of coefficients in each domain: N, =17, Ny =9, N, = 8
For dt = 51073y, the ADM mass is conserved within a relative error lower than 104
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Late time evolution of the ADM mass

1le-07¢ . . , , , , | — 6domains R_ =8
§ e — — 7 domains R =10
B \\ ]
1e-08 \\ -
- \ =
B \ .
- \ -
\
Q 1e-09 = \\ =
e - Y ]
= B \ .
0O 1e-10E =
< = 3
le1lE 4
- ]
i 4
led2 3 | | | | | | |
0 3 4 5 6 7 8 9 10 11 12 13 14

timet/r0

At t > 10rq, the wave has completely left the computation domain
—> Minkowski spacetime
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Long term stability

0.0001 ]
1e-06[ ]
= 1e08F -
s | g
S = 5
1e-10- -
le12[ -
% | | | | | | | | | | | | | | | | | | | %

le-14, 100 200 300 400

timet/ o

Nothing happens until the run is switched off at ¢ = 4007 !
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Another test: check of the

The relation %mxp — B*DpIn¥ =

curvature as the time derivative of the spatial metric) is not enforced in our scheme.

—> This provides an additional test:

1

ow

B relation

6Dkﬂk (trace of the definition of the extrinsic

0-01: T T T T T T T T T T T T | T T T T E

- — dt=1e2 / ]

i dt =5e-3 I

I [ ]

5 - / -

£ 0.001- -

© C ]

c L _

(@) L _

5 : ]

) - ]
g

5 0.0001 -

go) - .

v N .

| | | | | | | | | | | | | | | | | | |
1e-05; 1 2 3 4
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Summary

Dirac gauge + maximal slicing reduces the Einstein equations into a system of

— two scalar elliptic equations (including the Hamiltonian constraint)

— one vector elliptic equations (the momentum constraint)

— two scalar wave equations (evolving the two dynamical degrees of freedom of the
gravitational field)

The usage of spherical coordinates and spherical components of tensor fields is crucial
in reducing the dynamical Einstein equations to two scalar wave equations

The unimodular character of the conformal metric (det?;; = det f;;) is ensured in
our scheme

First numerical results show that Dirac gauge + maximal slicing seems a promising
choice for stable evolutions of 341 Einstein equations and gravitational wave
extraction

It remains to be tested on black hole spacetimes !
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Advantages for NS spacetimes

e Spherical coordinates (inherent to the new formulation) are well adapted to the
description of stellar objects (axisymmetry limit is immediate)

e Far from the central star, the time evolved quantities (h"’) are nothing but the

gravitational wave components in the TT gauge = easy extraction of gravitational
radiation

e Isenberg-Wilson-Mathews approximation (widely used for equilibrium configurations
of binary NS) is easily recovered in our scheme, by setting A"/ = 0

e Dirac gauge fully fixes the spatial coordinates = along with the resolution of
constraints within the scheme, this allows for getting stationary solutions within the
very same scheme, simply setting d/0t = 0 in the equations

A drawback: the quasi-isotropic coordinates usually used to compute stationary
configurations of rotating NS do not belong to Dirac gauge, except for spherical

symmetry
1st Astro-PF workshop, CAMK, Warsaw, 13-15 October 2004
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Future prospects
e Evolution of the gravitational field part (Einstein equations) is already implemented
in LORENE (classes Evolution and Tsclice_dirac_max)
e Implementation of the hydrodynamic equations (L. Villain)

e A first step: computation of stationary configurations of rotating stars within Dirac
gauge (L.-M. Lin)

e Dynamical evolution of unstable rotating stars
e Gravitational collapse

e ctc...
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