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Black holes in general relativity
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Black holes in general relativity

What is a black hole?

... for the layman:

A black hole is a region of
spacetime from which nothing,
not even light, can escape.

The (immaterial) boundary
between the black hole interior
and the rest of the Universe is
called the event horizon.

[Alain Riazuelo, 2007]
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Black holes in general relativity
What is a black hole?

... for the mathematical physicist:

singularity l

black hole: [5:= .4 — J(#7)]

i.e. the region of spacetime where light
rays cannot escape to infinity

o (#,g) = asymptotically flat
manifold

o .t = future null infinity
o J (F1) = causal past of &

event horizon: H :=0J (4 7)
(boundary of J~ (£ 1))

‘H smooth = H null hypersurface
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Black holes in general relativity

What is a black hole?

singularité

spacetime diagram depicting
the formation of a black
hole from the gravitational
collapse of the core of a
massive star (supernova
phenomenon)

horizon des
événements

tube d'univers
de la surface de
I'étoile

temps

=0 singularity: curvature — oo
espace

Eric Gourgoulhon (LUTH) Black holes and tests of gravitation Ecole Polytechnique, 27 January 2015



Black holes in general relativity
What is a black hole?

... for the astrophysicist: a very deep gravitational potential well

Release of potential gravitational energy by accretion on a black hole: up to 42%
of the mass-energy mc? of accreted matter !

NB: thermonuclear reactions release less than 1% mc?

Matter falling in a black hole
forms an accretion disk
[Lynden-Bell (1969),
Shakura & Sunayev (1973)]

[J.-A. Marck (1996)]

7/52
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Black holes in general relativity

Main properties of black holes (1/3)

@ In general relativity, a black hole contains a region where the spacetime
curvature diverges: the singularity (NB: this is not the primary definition of a
black hole). The singularity is inaccessible to observations, being hidden by

the event horizon.
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Black holes in general relativity

Main properties of black holes (1/3)

@ In general relativity, a black hole contains a region where the spacetime
curvature diverges: the singularity (NB: this is not the primary definition of a
black hole). The singularity is inaccessible to observations, being hidden by
the event horizon.

@ The singularity marks the limit of validity of general relativity: to describe it,
a quantum theory of gravitation would be required.
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Black holes in general relativity

Main properties of black holes (1/3)

@ In general relativity, a black hole contains a region where the spacetime
curvature diverges: the singularity (NB: this is not the primary definition of a
black hole). The singularity is inaccessible to observations, being hidden by
the event horizon.

@ The singularity marks the limit of validity of general relativity: to describe it,
a quantum theory of gravitation would be required.

@ The event horizon H is a global structure of spacetime: no physical
experiment whatsoever can detect the crossing of H.
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Black holes in general relativity

Main properties of black holes (2/3)

The event horizon as a null cone

t=T
0] H '
o d B .
£ g :
e ; g
cbne de lumiére horizon des événements
espace t=0 t=0
espace-temps plat espace-temps avec trou noir
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Black holes in general relativity

Main properties of black holes (3/3)

@ Viewed by a distant observer, the horizon approach is perceived with an
infinite redshift, or equivalently, by an infinite time dilation
@ A black hole is not an infinitely dense object: on the contrary it is made of
vacuum (except maybe at the singularity); if one defines its “mean density”
by p = M/(4/37R?), then
o for the Galatic center BH (Sgr A*): 5~ 10% kgm™ ~ 2 10™* pyhite dwarf
o for the BH at the center of M87: 5~ 2kgm™3 ~ 2 1072 puater !

M M
= a black hole is a compact object: = large, not s !

@ Due to the non-linearity of general relativity, black holes can form in
spacetimes empty of any matter, by collapse of gravitational wave packets.
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Black holes in general relativity

The “no-hair” theorem

Dorochkevitch, Novikov & Zeldovitch (1965), Israel (1967), Carter (1971),
Hawking (1972)

Within 4-dimensional general relativity, a black hole in equilibrium in an otherwise
empty universe is necessarily a Kerr-Newmann black hole, which is a vacuum
solution of Einstein described by only three parameters:

@ the total mass M

@ the total angular momentum J

o the total electric charge @

= ‘a black hole has no hair” (John A. Wheeler)

Astrophysical black holes have to be electrically neutral:
e @ =0 : Kerr solution (1963)
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Black holes in general relativity
The Kerr solution

Roy Kerr (1963)

2GMr 4GMarsin® 0 p2
e 3 __ 2 142 2
gap dz dzf = — (1 — 22 ) cedt” — 702/12 cdtdp + —dr

2G'Ma?rsin® 0
+p?d6? + <T2 +a® + c12r2sm> sin? 0 dp?
cp

where

2GM J
p? =12+ a’cos? 0, A=r?—-"—r+d? a:=—
c? cM

GM
3 event horizon (black hole) <= |a| < —
C

Schwarzschild subcase (a = 0):

2GM 2GM\
Jap dz de? = — <1 L ) (:2dt2+<1 — G; ) dr?4r? (d92 + sin? 9d<,92)
cer cer
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Black holes in general relativity
The black hole parameters

@ The mass M is not some measure of the “"amount of matter” inside the black
hole, but rather a parameter characterizing the external gravitational field; it
is measurable from the orbital period of a test particle in circular orbit around
the black hole and far from it (Kepler's third law).
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Black holes in general relativity
The black hole parameters

@ The mass M is not some measure of the “amount of matter” inside the black
hole, but rather a parameter characterizing the external gravitational field; it
is measurable from the orbital period of a test particle in circular orbit around
the black hole and far from it (Kepler's third law).

o Similarly, the angular momentum J = caM is a parameter characterizing the
gravito-magnetic part of the external gravitational field. It is measurable from
the precession of a gyroscope orbiting the black hole (Lense-Thirring effect).
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Black holes in general relativity
The black hole parameters

@ The mass M is not some measure of the “"amount of matter” inside the black
hole, but rather a parameter characterizing the external gravitational field; it
is measurable from the orbital period of a test particle in circular orbit around
the black hole and far from it (Kepler's third law).

o Similarly, the angular momentum J = caM is a parameter characterizing the
gravito-magnetic part of the external gravitational field. It is measurable from
the precession of a gyroscope orbiting the black hole (Lense-Thirring effect).

Remark: the radius of a black hole is not a well defined concept: it does not
correspond to some distance between the black hole “centre” (the singularity) and
the event horizon. A well defined quantity is the area of the event horizon, A.
The radius can be then defined from it: for a Schwarzschild black hole:

A 2G M M
R:=\/— B(JWQ> km

A7 c?
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Black holes in general relativity

Why is the Kerr metric special?

Spherically symmetric (non-rotating) case:

Birkhoff theorem

Within 4-dimensional general relativity, the spacetime outside any spherically
symmetric body is described by Schwarzschild metric

= No possibility to distinguish a non-rotating black hole from a non-rotating
dark star by monitoring orbital motion or fitting accretion disk spectra
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Black holes in general relativity

y is the Kerr metric special?

Spherically symmetric (non-rotating) case:

Birkhoff theorem

Within 4-dimensional general relativity, the spacetime outside any spherically
symmetric body is described by Schwarzschild metric

= No possibility to distinguish a non-rotating black hole from a non-rotating
dark star by monitoring orbital motion or fitting accretion disk spectra

Rotating axisymmetric case:

No Birkhoff theorem

Moreover, no “reasonable” matter source has ever been found for the Kerr metric
(the only known source consists of two counter-rotating thin disks of collisionless
particles [Bicak & Ledvinka, PRL 71, 1669 (1993)])

= The Kerr metric is specific to rotating black holes (in 4-dimensional general
relativity)
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Black holes in general relativity

Lowest order no-hair theorem: quadrupole moment

Asymptotic expansion (large r) of the metric in terms of multipole moments
(Mk,, jk,)keN [Geroch (1970), Hansen (1974)]:

e M mass 2*-pole moment

@ Ji: angular momentum 2%_pole moment

= For the Kerr metric, all the multipole moments are determined by (M, a):
(] M() =M
e Ji=aM=J/c

o | Msy=—a’M = —% (¥x) <« mass quadrupole moment
o J3=—a’M

o My=da'M

° ...
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Black holes in general relativity

Lowest order no-hair theorem: quadrupole moment

Asymptotic expansion (large r) of the metric in terms of multipole moments
(Mk,, jk,)keN [Geroch (1970), Hansen (1974)]:

e M mass 2*-pole moment

@ Ji: angular momentum 2%_pole moment

= For the Kerr metric, all the multipole moments are determined by (M, a):
(] M() =M
e Ji=aM=J/c

o [ My=—a’M = _c;];/[ (x) < mass quadrupole moment
o J3=—a’M

e My=a*M

° ...

Measuring the three quantities M, J, M provides a compatibility test w.r.t. the
Kerr metric, by checking (x) J
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Black holes in general relativity

Other theoretical aspects

@ The four laws of black hole dynamics
@ Quantum properties (Bekenstein entropy, Hawking radiation)

@ Black holes in higher dimensions
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Astrophysical black holes
Known black holes

Three kinds of black holes are known in the Universe:

o Stellar black holes: supernova remnants:
M ~ 10 - 30 Mg and R ~ 30 — 90 km

example: Cyg X-1: M =15 Mg and R =45 km
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Astrophysical black holes
Known black holes

Three kinds of black holes are known in the Universe:

o Stellar black holes: supernova remnants:
M ~ 10 - 30 Mg and R ~ 30 — 90 km

example: Cyg X-1: M =15 Mg and R =45 km
@ Supermassive black holes, in galactic nuclei:
M ~10° = 10'° Mg and R ~ 3 x 10° km - 200 UA

example: Sgr A* : M = 4.3 x 10° M, and
R =13 x10° km = 18 R, = 0.09 UA = i x radius of Mercury's orbit
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Astrophysical black holes
Known black holes

Three kinds of black holes are known in the Universe:

o Stellar black holes: supernova remnants:
M ~ 10 - 30 Mg and R ~ 30 — 90 km

example: Cyg X-1: M =15 Mg and R =45 km
@ Supermassive black holes, in galactic nuclei:
M ~10° = 10'° Mg and R ~ 3 x 10° km - 200 UA

example: Sgr A* : M = 4.3 x 10° M, and
R =13 x10° km = 18 R, = 0.09 UA = i x radius of Mercury's orbit

o Intermediate mass black holes, as ultra-luminous X-ray sources (?):
M ~ 10% = 10* Mg and R ~ 300 km — 3 x 10* km

example: ESO 243-49 HLX-1 : M > 500 Mg and R > 1500 km
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Astrophysical black holes

Stellar black holes in X-ray binaries

~ 20 identified stellar black
holes in our galaxy
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Astrophysical black holes

Stellar black holes in X-ray binaries
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Astrophysical black holes

Supermassive black holes in active galactic nuclei (AGN)

Jet emitted by the nucleus of
the giant elliptic galaxy M87, at
the centre of Virgo cluster [HST]

Mpy = 3 x 100 ]\[(::
Viet 2 0.99¢
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The black hole at the centre of our galaxy: Sgr A*

0.175}

+ 2010
1992 1995%

0.15F

0.125[
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T

0.075:- | ]
[ [ESO (2009)]

Dec-offset (arcsec)
o
&

. Measure of the mass of Sgr A* black hole by
stellar dynamics:

0.025} Mgy = 4.3 x 10° M,

< Orbit of the star S2 around Sgr A*

P =16yr, 7per = 120UA = 1400 Rg,
Voer = 0.02¢

RA-offset (arcsec) [Genzel, Eisenhauer & Gillessen, RMP 82, 3121 (2010)]
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The near-future observations of black holes
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The near-future observations of black holes

Can we see a black hole from the Earth?

Angular diameter of the
event horizon of a
Schwarzschild BH of mass
M seen from a distance d:

GM 2Ry
—6V3 = ~ 2602
S} 6\/502(1 60d

Image of a thin accretion disk around a Schwarzschild BH
[Vincent, Paumard, Gourgoulhon & Perrin, CQG 28, 225011 (2011)]
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The near-future observations of black holes

Can we see a black hole from the Earth?

Angular diameter of the
event horizon of a
Schwarzschild BH of mass
M seen from a distance d:

GM 2Ry
—6V3 = ~ 2602
S} 6\/502(1 60d

Largest black holes in the
Earth's sky:

Sgr A* : O = 53 pas
M87 : © = 21 pas

M31 : © = 20 pas

Remark: black holes in

. i . i _ . . 5
Image of a thin accretion disk around a Schwarzschild BH X ray binaries are ~ 10
[Vincent, Paumard, Gourgoulhon & Perrin, CQG 28, 225011 (2011)] times smaller, for © ]\/[/d
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The near-future observations of black holes

The solution to reach the pas regime: interferometry !

2: Combined Array for .
Research in Millimeter Very I—arge BaSehne

wave Astronomy - California | nterferometry
. (VLBI) in
(sub)millimeter

Wwaves

1. Submillimeter

Array and s s
James Clerk

Maxwell

Telescope - [

Hawaii "

Existing American VLBI network [Doeleman et al. 2011]
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The near-future observations of black holes

The solution to reach the pas regime: interferometry !

2: Combined Array for .
Research in Millimeter Very I—arge BaSehne

wave Astronomy - California | nterferometry
1 (VLBI) in
(sub)millimeter
Wwaves

The best result so
far: VLBI

observations at

1.3 mm have shown

that the size of the
py—— 4 emitting region in
i’":gjgirk R . - \ Sgr A* is only
Maxwell . , B 37 pas

Telescope - [

Hawaii [Doeleman et al., Nature

. ‘ r 455, 78 (2008)]

Existing American VLBI network [Doeleman et al. 2011]
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The near-future observations of black holes

The near future: the Event Horizon Telescope

To go further:
@ shorten the wavelength: 1.3 mm — 0.8 mm
@ increase the number of stations; in particular add ALMA

Lk '
7 L2 A
Atacama Large Millimeter Array (ALMA)
part of the Event Horizon Telescope (EHT) to be completed by 2020
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The near-future observations of black holes

Near-infrared optical interferometry: GRAVITY

GRAVITY instrument at
VLTI (late 2015)

Beam combiner (the
four 8 m telescopes +
four auxiliary telescopes)
= astrometric
precision of 10 pas

[Gillessen et al. 2010]
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The near-future observations of black holes

X-ray observations (Athena)

The accretion disk as a spacetime probe

1 Ka line: X fluorescence line
E drfl  aile bleue 7 of Fe atoms in the accretion

aile rouge .
1 disk (the Fe atoms are
{ excited by the X-ray emitted

from the plasma corona
surrounding the disk)

1.3

intensité

Redshift = time dilatation |

laboratoire

x 1 1 I 1

©3 4 5 6 7 8
énergie (keV)

Athena X-ray observatory
selected in 2014 for ESA L2
Ka line in the nucleus of the galaxy MCG-6-30-15 mission = launch ~ 2028
observed by XMM-Newton (red) and Suzaku (black)
(adapted from [Mmiller (2007)])
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The near-future observations of black holes

Another way to “see” BHs: gravitational waves

Link between black holes and
gravitational waves:

Black holes and gravitational waves are
both spacetime distortions:

o extreme distortions (black holes)

@ small distortions (gravitational
waves)

In particular, black holes and gravitational waves are both vacuum solutions of
general relativity equations (Einstein equations)
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The near-future observations of black holes

VIRGO: a giant Michelson interferometer...

Gravitational wave detector VIRGO in Cascina, near Pisa (Italy) [CNRS/INFN]
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The near-future observations of black holes

Optical scheme of the VIRGO interferomete

End mirror
diam = 350 mm
R=3450m
surf. deform =10 nm
Re =0.9995
losses < Sppm. VIRGO Interferometer
Sensitivity = 310E-23 AHz ax 100 He
3K 10E-21 ~Hz at 10Hz
Fabry-Perot 8 o1 7 %™ Seicmic atenwation < 10511 at10 He
Cavity residual oms before locking = 1000 nm
residual thermal modon after locking = 10E-18 wA/HZ ar 10 Hz
rderors orientation precision = 1 nrad
Re =086
Fabry-Perot
Cavity
F=50
Laser 2w H il H
Nd:Ya:
: Beam u 50KW
1064 nmn Splitter
0% Recycling Re=050
3 Km
df= 10E-6 HzNHZ Mirror diam = 230 o
for 1% arms asymetry o - 30 (E-150) 1W surf. deform = 12
dP/P = 310E-7 /HE at 500 Ha Re-093

disun = 120 toon =
Photodiodes

InAsGa
eff. quant =095
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The near-future observations of black holes

VIRGO sensitivity curve

N F GPS: 1004560800, Local time: Nov00,2011-09h00m00s (9,10 Mpc)
E r o Reference Sensitivity: August Sth, 2011 (1176 Mpe)
1 0- 19 ——— Virgo+ design
<y —————————————  Virgo+ with MS design
=

1 0-20

10!

T TTTTH]

T
=
Y

1074

1 0—23 l

107 10° 10*
Frequency (Hz)
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The near-future observations of black holes

Advanced VIRGO

Advanced VIRGO: dual recycled (power + signal) interferometer with laser power
~ 125 W

AdV Noise Curve: Fin =1250W

‘ ‘ ‘ Qu;ntum noige ‘
Girawity Gradients N
— G Uspehsion thermal noiss .
: Coating Brownian noise o VIRGO+ deCOmmlSSIOned
22 Coating Thermo-optic noiss H
— 1T EN Substrate Brownian noise || n NOV' 2011
N Excess Gas .
T Total nobe @ Construction of Advanced
= VIRGO underway
o
g o First lock in 2015
w
@ Sensitivity ~ 10 x VIRGO
@ — explored Universe

y volume 10? times larger !
10

Frequency [Hz]

[CNRS/INFN/NIKHEF]
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The near-future observations of black holes

International Pulsar Timing Array (IPTA)

Coalescing binary
black—-holes
= SN Core
e collapse
an
&
8 - Current -
]
Unresolved
Galactic binaries
NS—NS
Coalescence ‘Advanced
i PTA LISA LIGO
M . L . 1 . 1 \ 1 . 1 \ 1 \ 1
'"“10 -8 -6 —4 -2 0 2 4

log,o(f/Hz)

[Hobbs et al., CQG 27, 084013 (2010)]
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The near-future observations of black holes

Gravitational wave detector in space = low frequency range: [10% 10~'] Hz

@ eLISA scientific theme selected in Nov. 2013 for
ESA L3 mission = launch in 2028

[http://www.elisascience.org/] @ LISA Pathfinder: launch in Sept.—Nov. 2015
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Tests of gravitation

@ Tests of gravitation
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Tests of gravitation
Theoretical alternatives to the Kerr black hole

Within general relativity

The compact object is not a black hole but
@ a boson star
a gravastar

°
@ a dark star
o

Beyond general relativity

The compact object is a black hole but in a theory that differs from GR:
Einstein-Gauss-Bonnet with dilaton

Chern-Simons gravity
Hofava-Lifshitz gravity
Einstein-Yang-Mills
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Tests of gravitation

How to test the alternatives to the Kerr black hole?

Search for
o stellar orbits deviating from Kerr timelike geodesics (GRAVITY)
@ accretion disk spectra different from those arising in Kerr metric (X-ray
observatories)

@ images of the black hole shadow different from that of a Kerr black hole
(EHT)

Eric Gourgoulhon (LUTH) Black holes and tests of gravitation Ecole Polytechnique, 27 January 2015
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How to test the alternatives to the Kerr black hole?

Search for
o stellar orbits deviating from Kerr timelike geodesics (GRAVITY)

@ accretion disk spectra different from those arising in Kerr metric (X-ray
observatories)

@ images of the black hole shadow different from that of a Kerr black hole

(EHT)
Need for a good and versatile geodesic integrator
to compute timelike geodesics (orbits) and null geodesics (ray-tracing) in any kind
of metric
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Tests of gravitation

Black hole images from null geodesics

(2011)]

- :
. imaire
2 jmage prim .
v
of ¥ trou noir
disque image secondaire
plaque photo

Systeme

dessus du

/disque

dessous du
\disque

‘\cliché

Image du systeme

Eric Gourgoulhon (LUTH)

Black holes and tests of gravitation

Ecole Polytechnique, 27 January 2015

Simulated image of a thin accretion disk around
a Schwarzschild black hole
[Vincent, Paumard, Gourgoulhon & Perrin, CQG 28, 225011

Light ray trajectories
http://luth.obspm.
fr/~luminet/
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Tests of gravitation

Flight to a black hole

Images computed by J.-A. Marck [Marck, CQG 13, 393 (1996)]
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Tests of gravitation

Isolated black hole in front of a stellar background

Image computed by A. Riazuello (IAP) [Riazuelo, 2007]
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Isolated black hole in front of a stellar background

Image computed by A. Riazuello (IAP) [Riazuelo, 2007]
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Tests of gravitation

Gyoto code

Main developers: T. Paumard & F. Vincent

Fichier Affichage Aide |

St T (00T, o e @ Integration of geodesics in
Starl Photon .
T Metric parameters Kerr metric
Type Kerr -
sprparam. ososononos | @ Integration of geodesics in
Mass 4000000 B .
inital condtons _ any numerically computed
10— i 10,791000000000 = .
It 8, 1,570796326795 = 3+1 metric
B { @, 0,000000000000 = . . .
] t,  [osocoososoece : o Radiative transfer included
0— drfdt 0,000000000000 S . . . .
7 do/dt  [0.000000000000 E n Optlca||y thin media
Ty i | dip/dt 0,016664000000 —
] T o Very modular code (C++)
3 PALN  [180,000000000000 |2
e Inclination [120,000000000000 E ° YOriCk interface
)\4 Phase  [120,000000000000 |2
% Distance  [2,00000 E

= o Free software (GPL) :
Integration parameters

. [revoconeooeoosoo T http://gyoto.obspm.fr/

[Vincent, Paumard, Gourgoulhon & Perrin, CQG 28, 225011 (2011)]
[Vincent, Gourgoulhon & Novak, CQG 29, 245005 (2012)]
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Tests of gravitation

Gyoto code

Computed images of a thin accretion disk around a Schwarzschild black hole
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Tests of gravitation

Measuring the spin the black hole silhouette

Ray-tracing in the Kerr metric (spin parameter a)

Accretion structure around Sgr A* modelled as a ion torus, derived from the
pO/iSh C/OUghI‘IUt class [Abramowicz, Jaroszynski & Sikora (1978)]

Proj. Rs

Radiative processes included:
thermal synchrotron,
bremsstrahlung, inverse
Compton

<+ Image of an ion torus
computed with Gyoto for the
inclination angle ¢ = 80°:

@ black: a =0.5M

o red: a =0.9M

[Straub, Vincent, Abramowicz, Gourgoulhon & Paumard, A&A 543, A83 (2012)]
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Tests of gravitation

rbits around a rotating boson star

Boson star = localized configurations of F 1
a self-gravitating complex scalar field ® 10p .
= “Klein-Gordon geons” [Bonazzola & Pacini L
5k b
(1966), Kaup (1968)] T
5
& of b
Boson stars may behave as black-hole ~ I
mimickers -sf :
@ Solutions of the -1op ]
Einstein-Klein-Gordon system st ‘ ‘ ‘ ‘ ‘ 1
computed by means of Kadath s E T [%/ ] 5 10 I5
[Grandclément, JCP 229, 3334 (2010)] *
o Timelike geodesics computed by Zero-angular-momentum orbit around a
means of Gyoto rotating boson star based on a free scalar

field ® = ¢(r, )"« T2%)
with w = 0.75m/h.

[Granclément, Somé & Gourgoulhon, PRD 90, 024068 (2014)]
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Tests of gravitation

Another tool to explore black hole spacetimes:

SageManifolds

Symbolic differential geometry based on the modern free open-source
mathematics software system Sage

@ Sage is based on the Python programming language

@ it makes use of many pre-existing open-sources packages, among which
Maxima (symbolic calculations, since 1968!)

GAP (group theory)

PARI/GP (number theory)

Singular (polynomial computations)

matplotlib (high quality 2D figures)

and provides a uniform interface to them

@ William Stein (Univ. of Washington) created Sage in 2005; since then, ~100
developers (mostly mathematicians) have joined the Sage team

Create a viable free open source alternative to Magma, Maple, Mathematica and
Matlab.
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Tests of gravitation
The SageManifolds project

http://sagemanifolds.obspm.fr/

Implement the concept of real smooth manifolds of arbitrary dimension in Sage
and tensor calculus on them, in a coordinate/frame-independent manner
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Tests of gravitation

geManifolds project

http://sagemanifolds.obspm.fr/

Implement the concept of real smooth manifolds of arbitrary dimension in Sage
and tensor calculus on them, in a coordinate/frame-independent manner

In practice, this amounts to introducing new Python classes in Sage, basically one
class per mathematical concept, for instance:

Manifold: differentiable manifolds over R, of arbitrary dimension
Chart: coordinate charts

Point: points on a manifold

DiffMapping: differential mappings between manifolds

ScalarField, VectorField, TensorField: tensor fields on a manifold
DiffForm: p-forms

AffConnection, LeviCivitaConnection: affine connections

Metric: pseudo-Riemannian metrics
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SageManifols

M = Manifold(4, 'M', latex_name=r'\mathcal{M}"')
print M

4-dimensional manifold 'M'
We introduce the standard Boyer-Lindquist coordinates as follows:

X.<t,r,th,ph> = M.chart(r't r:(0,+00) th:(0,pi):\theta ph:(8,2*pi):\phi’)
print X . X

chart (M, (t, r, th, ph))

(M, (¢,7,60,9))

Metric tensor

The 2 parameters m and a of the Kerr spacetime are declared as symbolic variables:

var('m, a')

(m,a)

Let us introduce the spacetime metric g and set its components in the coordinate frame associated with Boyer-Lindquist coordinates, which is the
current manifold's default frame:

g = M.lorentz metric('g")
rho2 = r°2 + (a*cos(th))~2
Delta = r~2 -2*m*r + a"2

gl[0,0] = -(1-2*m*r/rho2)

g[0,3] = -2*a*m*r*sin(th)"2/rho2

g[1,1]1, g[2,2] = rho2/Delta, rho2

g[3,3] = (r*2+a”2+2*m*r*(a*sin(th))”~2/rho2)*sin(th)"2

g.view()

g= (_ ﬂzcm(9)272mr+r2)dt®dt+ (_ Zamrsin(ﬁ)z)dt®d¢'+(

a?cos (6)*+r2 a2 cas (6) +r2

2cos (8) 41
al-2 mr+r?

)dr@ dr + (mzcos (9)2 +r2)d9®d9+ (— Zamrsix

a?cos (6)
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 aleos (0)2mrir? 0 0

a?cos (6)°+r?

a? cos (8)1+r2
@—2mrr?

0 0 a? c:os(l‘))2 + 77

0
B 2amr5in2(9)z 0
a?cos (8) +r2
The Levi-Civita connection V associated with g:

nab = g.connection()

i print nab

2 amrsin (8)°

a? cos (6) +r?

0
0

2a?mrsin (6) '+ (azr2+r4+(a4+azr2) cos (s)‘) sin (8)°

a? cos (9)"+12

Levi-Civita connection ‘nabla_g' associated with the Lorentzian metric

'g"' on the 4-dimensional manifold 'M’

As a check, we verify that the covariant derivative of g with respect to V vanishes identically:

nab(g).view()

Vag=0

Killing vector

The default vector frame on the spacetime manifold is the coordinate basis associated with Boyer-Lindquist coordinates:

M.default frame() is X.frame()

True

X.frame()

(M (5.2.5.2))

Ecole Polytechniqu
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Let us consider the first vector field of this frame:

xi = X.frame()[0] ; xi

2
at

print xi
vector field 'd/dt' on the 4-dimensional manifold 'M’

The 1-form associated to it by metric duality is

xi_form = xi.down(g)
xi_form.set name('xi_form', r'\underline{\xi}")
print xi_form ; xi form.view()

1-form 'xi_form' on the 4-dimensional manifold 'M*

- (7 a? cos (9)272mr+r2>dt+ (7 2amsin(9)‘>d¢

a? cos (0) 412 a? cos (6) +r2

Its covariant derivative is

nab xi = nab(xi_form)
print nab xi ; nab xi.view()
tensor field 'nabla g xi form' of type (0,2) on the 4-dimensional
manifold 'M*

2 cos (6)" —mr? 2a%mr cas(6) sin(6) atm cos (6) _mr? (am cos
Ve = (—gmea @) w3 gy g g (2emres@ i@ gy gqp, (- wmesl@ mr Yo g gy
{11 (a4cc.s(e)*+zazr=m (8)"+rt @dr+ ai cos (6)"+2 a?r? cos (8) +rt A Grone (6)"+2a2r2 cos (6)°+r4 redis at cos (8)

Let us check that the Killing equation is satisfied:

nab_xi.symmetrize().view()
0
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Equivalently, we check that the Lie derivative of the metric along £ vanishes:

g.lie der(xi) view()

0

Thank to Killing equation, V, & is antisymmetric. We may therefore define a 2-form by F':= —V4&. Here we enforce the antisymmetry by calling

the function antisymmetrize () Onnab_xi:

F = - nab xi.antisymmetrize()
F.set_name('F')

print F

F.yiew()

2-form 'F' on the 4-dimensional manifold 'M’

a?m cas (6)’—mr aZmr cos(6) sin a*m cos (6)”—amr?) sin (6)" a
Fo (oo @t g 2eme@a®) g g (e @iy
at cos () ' +2 a2 cos (6)*+r4 da

atcos (6)'+2a2r? cos (6)° +r1 at cos (8) ' +2 a2 cos (6)" +r4
D

We check that

The squared norm of the Killing vector is:

lamb = - g(xi,xi)
lamb.set name('lambda’, r'\lambda’)

print lamb

lamb.view()
scalar field 'lambda' on the 4-dimensional manifold 'M*
A M —

a? cos (6) 2 mr+r?

a? cos (6)°+r2

(7, 0,4) —
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Instead of invoking g(&, £), we could have evaluated A by means of the 1-form £ acting on the vector field £:

lamb == - xi_form(xi)

True

or, in index notation,

lamb - ( xi_form['_a'l*xi['"a"] )
True
Curvature

The Riemann curvature tensor associated with g is:
Riem = g.riemann()
print Riem
tensor field 'Riem(g)’' of type (1,3) on the 4-dimensional manifold 'M'

The component R0123 is

Riem[©,1,2,3]

_ (@'m-20* mir+a'mr?) cos(6) sin (6) "+ (aTm+2 a*m?r+6 a¥mr?—6 adms 45 amrt) cos(6) sin (6)°—2 (a'm—a’mr? —5 a¥mr'—3 ams%) cos(6) sin(6)

a2 mrT+r8+ (a8 2 abmr-+abr?) cos (8)"+3 (afr2—2atmrd+adrt) cos (6)'+3 (atri-2 aZmri+a?rt) cos (6)

The Ricci tensor:

Ric = g.ricci()

print Ric

field of symmetric bilinear forms 'Ric(g)' on the 4-dimensional manifold
e
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