
Black holes and tests of gravitation
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Black holes in general relativity

What is a black hole ?

[Alain Riazuelo, 2007]

... in a few words:

A black hole is a region of
spacetime from which nothing,
not even light, can escape.

The (immaterial) boundary
between the black hole interior
and the rest of the Universe is
called the event horizon.
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Black holes in general relativity

The “no-hair” theorem

Dorochkevitch, Novikov & Zeldovitch (1965), Israel (1967), Carter (1971),
Hawking (1972)

Within 4-dimensional general relativity, a black hole in equilibrium in an otherwise
empty universe is necessarily a Kerr-Newmann black hole, which is a vacuum
solution of Einstein described by only three parameters:

the total mass M

the total angular momentum J

the total electric charge Q

=⇒ “a black hole has no hair” (John A. Wheeler)

Astrophysical black holes have to be electrically neutral:

Q = 0 : Kerr solution (1963)
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Black holes in general relativity

The Kerr solution

Roy Kerr (1963)

gαβ dxα dxβ = −
(

1− 2GMr

c2ρ2

)
c2dt2 − 4GMar sin2 θ

c2ρ2
cdtdϕ+

ρ2

∆
dr2

+ρ2dθ2 +

(
r2 + a2 +

2GMa2r sin2 θ

c2ρ2

)
sin2 θ dϕ2

where

ρ2 := r2 + a2 cos2 θ, ∆ := r2 − 2GM

c2
r + a2, a :=

J

cM

Event horizon (black hole) ⇐⇒ |a| ≤ GM

c2

Schwarzschild subcase (a = 0):

gαβ dxα dxβ = −
(

1− 2GM

c2r

)
c2dt2+

(
1− 2GM

c2r

)−1
dr2+r2

(
dθ2 + sin2 θ dϕ2

)
Éric Gourgoulhon (LUTH) Black holes and tests of gravitation SF2A, Paris, 3 June 2014 6 / 17



Black holes in general relativity

The black hole parameters

The mass M is not some measure of the “matter amount” inside the black
hole, but rather a parameter characterizing the external gravitational field; it
is measurable from the orbital period of a test particle in circular orbit around
the black hole and far from it (Kepler’s third law).

Similarly, the angular momentum J = caM is a parameter characterizing the
gravito-magnetic part of the external gravitational field. It is measurable from
the precession of a gyroscope orbiting the black hole (Lense-Thirring effect).

Remark: the radius of a black hole is not a well defined concept: it does not
correspond to some distance between the black hole “centre” (the singularity) and
the event horizon. A well defined quantity is the area of the event horizon, A.
The radius can be then defined from it: for a Schwarzschild black hole:

R :=

√
A

4π
=

2GM

c2
' 3

(
M

M�

)
km
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Black holes in general relativity

Why is the Kerr metric special ?

Spherically symmetric (non-rotating) case:

Birkhoff theorem

Within 4-dimensional general relativity, the spacetime outside any spherically
symmetric body is described by Schwarzschild metric

=⇒ No possibility to distinguish a non-rotating black hole from a non-rotating
dark star by monitoring orbital motion or fitting accretion disk spectra

Rotating axisymmetric case:
No Birkhoff theorem
Moreover, no “reasonable” matter source has ever been found for the Kerr metric
(the only known source consists of two counter-rotating thin disks of collisionless
particles [Bicak & Ledvinka, PRL 71, 1669 (1993)])

=⇒ The Kerr metric is specific to rotating black holes (in 4-dimensional general
relativity)
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Black holes in general relativity

Lowest order no-hair theorem: quadrupole moment

Asymptotic expansion (large r) of the metric in terms of multipole moments
(Mk,Jk)k∈N [Geroch (1970), Hansen (1974)]:

Mk: mass 2k-pole moment

Jk: angular momentum 2k-pole moment

=⇒ For the Kerr metric, all the multipole moments are determined by (M,a):

M0 = M

J1 = aM = J/c

M2 = −a2M = − J2

c2M
(∗) ← mass quadrupole moment

J3 = −a3M
M4 = a4M

· · ·

Measuring the three quantities M , J , M2 provides a compatibility test w.r.t. the
Kerr metric, by checking (∗)
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Alternatives to the Kerr black hole

Theoretical alternatives to the Kerr black hole

Within general relativity

The compact object is not a black hole but

boson stars (cf. Claire Somé’s talk)

gravastar

dark stars

...

Beyond general relativity

The compact object is a black hole but in a theory that differs from GR:

Einstein-Gauss-Bonnet with dilaton

Chern-Simons gravity

Hǒrava-Lifshitz gravity

Einstein-Yang-Mills

...
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Alternatives to the Kerr black hole

Alternative theories of gravity

Class of metric theories of gravity, described by the action

S = Sgrav + Smat(g,Ψ1,Ψ2, . . .)

g: spacetime metric, Ψ1,Ψ2, . . .: matter fields

=⇒ test particles follow geodesics of g

General relativity:

Sgrav =
1

16πG

∫
R
√
−g d4x (Einstein-Hilbert action)

R: scalar curvature of metric g: R := gµνRσµσν
Rαβµν : Riemann curvature tensor of g
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Alternatives to the Kerr black hole

Scalar-tensor theories

Gravity action depends on a scalar field φ in addition to the spacetime metric g:

Sgrav = Sgrav(g, φ) =
1

16πG

∫ [
φR− ω(φ)

φ
gµν∂µφ∂νφ− φ2V

] √
−g d4x

Special case: Jordan-Fierz-Brans-Dicke theory: ω(φ) = const

No-hair theorem: for a real scalar field φ, the only black hole solution is Kerr

However, for complex scalar fields, hairy black hole solutions exist [Herdeiro & Radu,

arXiv:1403.2757 (2014)]
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Alternatives to the Kerr black hole

Einstein-Gauss-Bonnet with dilaton

Gravity action is quadratic in the curvature:

Sgrav =
1

16πG

∫ [
R+ eγφ

(
R2 − 4RµνR

µν +RµνρσR
µνρσ

)
−β

2
(gµν∂µφ∂νφ+ 2V (φ))

] √
−g d4x

Low energy expansion of string theory
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Alternatives to the Kerr black hole

Chern-Simons gravity

Gravity action is quadratic in the curvature:

Sgrav =
1

16πG

∫ [
R+

α

4
φR∗µνρσR

µνρσ

−β
2

(gµν∂µφ∂νφ+ 2V (φ))

] √
−g d4x

Low energy expansion of string theory or loop quantum gravity
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Alternatives to the Kerr black hole

How to test the alternatives ?

Search for

orbital motion (stellar orbits, hot spot in accretion structure) deviating from
Kerr timelike geodesics (cf. talks by C. Somé, F. Vincent and T. Paumard)
→ GRAVITY (cf. talk by F. Eisenhauer)

accretion disk spectra different from those arising in Kerr metric
→ X-ray observatories

images of the black hole shadow different from that of a Kerr black hole
→ Event Horizon Telescope

Need for a good and versatile geodesic integrator
to compute timelike geodesics (orbits) and null geodesics (ray-tracing) in any kind

of metric
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Alternatives to the Kerr black hole

Gyoto code

developed by F. Vincent and T. Paumard

Integration of geodesics in
Kerr metric

Integration of geodesics in
any numerically computed
3+1 metric

Radiative transfer included
in optically thin media

Very modular code (C++)

Yorick interface

Free software (GPL) :
http://gyoto.obspm.fr/

[Vincent, Paumard, Gourgoulhon & Perrin, CQG 28, 225011 (2011)]

[Vincent, Gourgoulhon & Novak, CQG 29, 245005 (2012)]
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