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Einstein equations in 34+1 form

(the equations to be solved)




3+1 formalism of general relativity
Slicing of spacetime by a family of spacelike hypersurfaces ;.

n : unit normal to 3; (n = —NV?t)
N : lapse function, 3 : shift vector

%:NnJrﬁ with n-8=0




3-metric v induced by the spacetime metric g onto the hypersurfaces >J;:
Y=gtn®n

Components of the metric tensor expressed in terms of the lapse function and the
components of the shift vector and the 3-metric:

gudrtdr’ = —(N? — 3;8°) dt? + 26; dt dz* + ~;; dx* dx?
M J

Extrinsic curvature tensor K of the hypersurface >,

1
K=—-£%
5 nYy

(Lie derivative of the 3-metric along the flow normal to ;)




Vacuum Einstein equations within the 341 formalism
e Hamiltonian constraint: R+ K?—K;;K”7 =0
e Momentum constraint: D;KY — D'K =0
e "Dynamical” equations:

6’Kz-j
ot

~ £gK;; = —D;D;N + N (Ry; — 2Ky K% + KKy5)

07ij

675 — fﬁ’)/m = —QNK,L'j

(Ri; : Ricci tensor of the 3-metric vy, D; : covariant derivative associated with )




Numerical methods

Multi-domain spectral methods




Spectral methods versus finite differences

represent a given function (physical scalar or tensorial field) u by
another function I u belonging to a certain vectorial space of finite dimension H.

represent a physical function u by a finite set of numbers: the
values (uq,...,u,) taken by u at some grid points (z1,...,x,).

This fundamental difference — function vs. numbers — is the reason why spectral
methods are usually much more precise than finite difference methods.




Spectral expansions
Physical fields : Hilbert space W (typically a L? space)

Vectorial space H of the spectral method : chosen to be a finite dimensional

sub-space of the Hilbert space VW
(0, -..,@nN) : orthonormal basis of H

Orthogonal projection of u onto H:

N
Pu= Z Un P
n=0

Coefficients (g, ..., un) given by the scalar product within W of u with the basis

functions:

~

Up = <’LL, Qpn>




Aliasing error

Usually the scalar product (u, ¢,,) involves an integral which cannot be computed
exactly. For this reason, the representation of u within the spectral method is not

P 1 but a function

N
Iu= g UnPn
n=0

where the coefficients u,, are some approximations of the coefficients wu,,. The
difference between u,, and 4,, is called the (contamination of w,, by

the high frequencies u; with k& > N).

For the spectral method, the function u is entirely described by the set of its

coefficients (g, ..., UnN).




Evaluation of linear operators

Any linear operation on w, such as a partial derivative, amounts to a
in the coefficient space. Indeed, if L is a linear operator

N N

N
L-Iu:Zf&nL-gpn:Z Zakn’fbn Pk

n=0 k=0 n=0
where the coefficients ay,, are defined by

N

L-p,= Zaknspk -
k=0




Multi-domain spectral methods

Multi-domain spectral methods for 3-D numerical relativity have been introduced
in Bonazzola, Gourgoulhon & Marck, Phys. Rev. D 58, 104020 (1998).

The computational domain is covered by a ; in each domain, basis
functions are chosen and spectral expansions are performed.



http://publish.aps.org/abstract/PRD/v58/e104020�

Example: set of spherical domains covering the entire space

external compactified
domain

physical coordinates
(r,0,¢)

comput. coordinates

(&0, ¢)




Sets of domains for a binary system
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Basis functions for the spectral expansions

N,/2 Ng—1 N, —1

u(&, 0,p) = S‘ S‘ S: Ui X j(g) e’

m=0 35=0 =0

Regularity at the origin and on the axis 8 = 0 + equatorial symmetry:

® (» expansion:

e () expansion: or
— for m even: ©;(0) = cos(2j0) or ©;(0) = Pj}(cos0)
— for m odd: ©;(0) =sin((25 + 1)0) or ©;(0) = P37, (cos0)

e £ expansion:
— in the kernel: X;(&) = T5;(&) for m even, X,;(&) = Th;11(&) for m odd
— in the shells and the external compactified domain: X;(&) = T;(€)




Resolution of elliptic equations with non-compact sources

Maximal slicing: AN = S
Minimal distortion equation for the shift vector: A3 + %V(V -B)=S

-16

10

1 1 1 1 1
5 10 15 20 25 30 35
Number of Chebyshev coefficients

Error on the z component of the solution of the minimal distortion equation with a

non-compact source
Grandclément, Bonazzola, Gourgoulhon & Marck, J. Comp. Phys. 170, 231 (2001).



http://www.idealibrary.com/links/doi/10.1006/jcph.2001.6734�

Behavior of the numerical error in solving Poisson-type equations

e Source with a . evanescent error, i.e. error o< exp(—N;.)

e Source with a , decaying as r*:

— evanescent error if the source does not contain any spherical harmonics of
index ¢ > k — 3 (scalar case) or £ > k — 5 (vectorial case)

— error decreasing as N 2(5=2) otherwise




Adaptive domains

General mapping for starlike domains:

Application to binary neu-
tron stars (surface-fitted
coordinates)

Gourgoulhon, Grandclément, Taniguchi, Bonazzola & Marck, Phys. Rev. D 63, 064029 (2001)
Taniguchi, Gourgoulhon & Bonazzola, Phys. Rev. D 64, 064012 (2001)
Taniguchi & Gourgoulhon, astro-ph/0108086



http://publish.aps.org/abstract/PRD/v63/e064029�
http://publish.aps.org/abstract/PRD/v64/e064012�
http://xxx.lpthe.jussieu.fr/abs/astro-ph/0108086�

Numerical implementation

languages (C++, Ada, Java, ...) are much more efficient than
languages (Fortran, C, ...) when treating complex problems.

Our choice (Jean-Alain Marck 1997): C++
C++ based language developed in Meudon:




Binary black holes

on circular orbits




Problem treated:
Binary black holes in the pre-coalescenge stage
= the notion of has still some meaning

Basic idea:

Construct an approximate, but full spacetime (i.e. ) representing 2

orbiting black holes

Previous numerical treatments: 3-dimensional (initial value problem on a spacelike
3-surface)

4-dimensional approach =- rigorous definition of orbital angular velocity

First results:
Gourgoulhon, Grandclément & Bonazzola, gr-qc/0106015.
Grandclément, Gourgoulhon & Bonazzola, gr-qc/0106016.



http://xxx.lpthe.jussieu.fr/abs/gr-qc/0106015�
http://xxx.lpthe.jussieu.fr/abs/gr-qc/0106016�

Spacetime manifold

Topology : R x Misner-Lindquist

(t,r1,61V
@ C

w D)
Pe < 7 N 7

IR’

(t, r2,62 ’(pz)\) 5 /‘Tz/
-~ IRS

Canonical mapping: I : (t,r1,01,01) — (t £,91,§01>

7741




Isometry between the two sheets

Assumption: the canonical mapping I is an isometry: [,g =g

Consequences:
o /[.t=1tand I.Vt =Vt
I.n=+n
I.N = £N (same sign as n)
I.B=p
Ly =~
I.K = +K (same sign as n)




Choice of the minus sign

Two families of maximal slicing of the Schwarzschild spacetime:

‘1
N

'[ )
(o
¢

—>

o< t ﬁ
\Ml |
t M R=2M

time evolving preserves the stationarity

R=2M




Helical symmetry

when the two holes are sufficiently far apart, the radiation
reaction can be neglected
Gravitational radiation reaction circularizes the orbits

there exists a Killing vector field £ such that:

(i) far from the system (asymptotically in-
ertial coordinates (to, rg, 0o, ©o)),




Discussion

Helical symmetry is exact

In and In

e in general relativity for a non-axisymmetric system (binary) only with

But a spacetime with a helical Killing vector and standing gravitational waves
(Gibbons & Stewart 1983).




Rotation state of each black hole
rotation synchronized with the orbital motion ( )

the two throats are associated with ¢:
-Ls =0 and -Llg =0.

[cf. the rigidity theorem for a Kerr black hole]

- L=—-N*"+p3-3

Since (choice of the minus sign in the isometry condition for the lapse) N|g =0,

the shift vector must vanish on the throats:

Bls, =0 and Bls, =0.




Einstein equations
Maximal slicing: K =0
conformally flat spatial metric: v = ¥f

Amounts to solve 5 of the 10 Einstein equations:

(Hamiltonian constraint)
o1 ° o _
AB" + §D1Djﬁ‘7 = 2A" (DjN —6ND;In \I!) (momentum constraint)
AN = NU*A;; A —2D;In ¥ D/ N (trace of 25ii = ...
with Aij = \11_4Kij and Aij = \IJ4KU

Kinematical relation between ~ and K:

Ny 1 .
AY = ﬁ(l}ﬁ)” (traceless part)

D;p" = —63"D;ln ¥ (trace part)

with (L3)" = DG + DIG — - Dy £




Boundary conditions

isometry condition on ,.,: asymptotic flatness:

v v o v
0 + =0 + =0 VU — 1 when r — oo
(97“1 27“1 S, (97"2 27“2 So

corotating black holes: definition of £:
0
=0 =0 {0— wh
5‘51 5|32 8 — 9o when r — o0

isometry condition on NN: asymptotic flatness:

Nls, =0 Nls, =0 N — 1 when r — o0




Regularity on the horizon

204 N > = one must have L3|s = 0 for K to be regular
Nls =0

(1) Bls =0 (rigid rotation)
One has (2) I,3=3 (isometry) » = LB|ls =0

(3) D;B'=—68'D;,In¥ (K =0)

y
However, only (1) and the part of (2) implied by (1) are really imposed when
solving the vector Poisson equation for (3.

Set 3

throats.

= Bo1q4 + Beor With 3., chosen so that (2) and (3) are fulfilled on the

new

At the end of the computation, 8., must be zero (to get an exact solution) or

small (to get an approximate solution).

cor




Determination of (2
O(r—1!) part of the metric (r — oc) same as Schwarzschild

[The only quantity “felt” at the O(r~!) level by a distant observer is the total
mass of the system.]
A priori

M
U~ ] —ADM and N~1-— X

2r r

(virial assumption) <= Mapy = Mk

(virial assumption) <= WU?N




Link with the classical virial theorem

Einstein equations =-
Aln(T’N) = U*[4rS,*+3 A;; AV |- 1[D;In ND* In N+D; In(¥>N)D* In(¥* N)]

No monopolar 1/r term in V2N <

fz {anS;"+2A;; A — 19 *[D;In ND"In N+D; In(¥>N)D* In(¥2N)| }¥*\/f d®z = 0
t

Newtonian limit is the classical virial theorem:

2Exin + 3P + Egrav =0




Defining an evolutionary sequence

An evolutionary sequence is defined by:

dMapwm

=
dJ

sequence

This is equivalent to requiring the constancy of the horizon area of each black
hole, by virtue of the First law of thermodynamics for binary black holes :

1
dMADM = QdJ + 8_ (lil dAl + K9 dAg)
™

recently established by Friedman, Uryu & Shibata, gr-qc/0108070.



http://xxx.lpthe.jussieu.fr/abs/gr-qc/0108070�

Numerical results




Z
c
S
S
)
)

2
3

D
e

=
P

Q
o

[EEN
P

H
o

Tests passed by the numerical code

(single nonrotating black hole)
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(momentarily static binary black
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(binary black hole)
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Lapse in the orbital plane

ISCO configuration

Lapse function




Lapse in the orbital plane

ISCO configuration

Lapgse function

N
=




Shift vector in the orbital plane

ISCO configuration

SHIFT VECTOR

e
I

.00 o




Conformal factor in the orbital plane

ISCO configuration




Extrinsic curvature in the orbital plane

ISCO configuration

EATRINSIC CURVATURE @ K xy




Evolutionary sequence

Comparison Numerical results <-> 3-PN EOB

Total energy along a sequence

Comparison Numerical results <-> 3-PN EOB
Total angular momentum along a sequence

— Grandclement et al. 2001, 33x21x20

— — Grandclement et al. 2001, 21x17x16
EOB 3-PN a4=4.67 corot, Damour et al. 2001
EOB 3-PN a4=4.67 irrot, Damour et al. 2000
Cook 1994, Pfeiffer et al. 2000, irrot

— Grandclement et al. 2001, 33x21x20

— — Grandclement et al. 2001, 21x17x16
EOB 3-PN a4=4.67 corot, Damour et a. 2001
EOB 3-PN a4=4.67 irrot, Damour et a. 2000
Cook 1994, Pfeiffer et al. 2000, irrot




Location of the ISCO

Comparison with other methods

33*21*20

21*17*16

3-PN, corotating, =0 (Damour et al. 2001)

3PN, S=0, w_=-9 (Damour et al. 2000)

Conformal imaging S=0 (Pfeiffer et al. 2000)
)\ Conformal imaging S=0.08 (Pfeiffer et al. 2000)
~ "+ Conformal imaging S=0.17 (Pfeiffer et al. 2000)
[[] Puncture S=0 (Baumgarte 2000)
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