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Free vs. constrained evolution in 341 numerical relativity

( 0
dynamical equations &Ki‘j = ...
Einstein equations split into ¢ Hamiltonian constraint R 4+ K2 — K;;K"” = 167E

| momentum constraint DK, ) — DK = 8rJ;

e 2-D computations (80’s and 90's):
partially constrained schemes: Bardeen & Piran (1983), Stark & Piran (1985),
Evans (1986)
fully constrained schemes: Evans (1989), Shapiro & Teukolsky (1992), Abrahams
et al. (1994)

e 3-D computations (from mid 90’s): almost all based on free evolution schemes:
BSSN, symmetric hyperbolic formulations, etc...
— problem: exponential growth of constraint violating modes
[see talks by C. Gundlach (constraint-preserving BC), A.P. Gentle (constraints as evolution equations)

and H. Pfeiffer (constraint projection)]

Standard issue 1: the constraints usually involve elliptic equations
and 3-D elliptic solvers are CPU-time expensive !
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Cartesian vs. spherical coordinates in 341 numerical relativity

o massive usage of

o almost all based on , although
spherical coordinates are better suited to study objects with spherical topology (black

holes, neutron stars). Two exceptions:

— Nakamura et al. (1987): evolution of pure gravitational wave spacetimes in spherical
coordinates (but with Cartesian components of tensor fields)

— Stark (1989): attempt to compute 3D stellar collapse in spherical coordinates

Standard issue 2: spherical coordinates are singular at r =0 and § =0 or 7 !
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Standard issues 1 and 2 can be overcome

Standard issues 1 and 2 are neither mathematical nor physical, but technical ones
—> they can be overcome with appropriate techniques

allow for

e an automatic treatment of the singularities of spherical coordinates (issue 2)

e fast 3-D elliptic solvers in spherical coordinates: 3-D Poisson equation reduced to a
system of 1-D algebraic equations with banded matrices [Grandclément, Bonazzola, Gourgoulhon
& Marck, J. Comp. Phys. 170, 231 (2001)] (issue 1)

[see talks by H. Dimmelmeier, R. Meinel, J. Novak, and H. Pfeiffer for various examples of usage of

spectral methods in numerical relativity]
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Dirac gauge

As in BSSN formalism, perform a conformal decomposition of the metric ~;; of the
spacelike hypersurfaces >.;:

Vi = Ut 3y with S
where f;; is a flat metric on X, h' a symmetric tensor and ¥ a scalar field defined by
det v, 1/12
v .=
det f'l,j

(Dirac, 1959) = condition on 7 | D;47 = D,;h" =0

where D; denotes the covariant derivative with respect to the flat metric f;;.

Compare -
e minimal distortion (Smarr & York 1978) : D; (07" /9t) =0

e pseudo-minimal distortion (Nakamura 1994) : D7 (93" /0t) =0
Notice: Dirac gauge <= BSSN connection functions vanish: I = 0
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Dirac gauge: discussion

introduced by Dirac (1959) in order to fix the coordinates in some Hamiltonian
formulation of general relativity; originally defined for Cartesian coordinates only:

but trivially extended by us to more general type of coordinates (e.g. spherical)
thanks to the introduction of the flat metric f;;: D, ((v/f)l/?’vij) =0

fully specifies (up to some boundary conditions) the coordinates in each hypersurface
Y¢, including the initial one = allows for the search for stationary solutions

leads asymptotically to transverse-traceless (TT) coordinates (same as minimal
distortion gauge). Both gauges are analogous to Coulomb gauge in electrodynamics

turns the Ricci tensor of conformal metric 7;; into an elliptic operator for h”/ = the
dynamical Einstein equations become a for h*

results in a vector elliptic equation for the shift vector 3!
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3+1 Einstein equations in maximal slicing 4+ Dirac gauge
[Bonazzola, Gourgoulhon, Grandclément & Novak, gr-qc/0307082 v2]

e 5 elliptic equations (4 constraints + K = 0 condition) (A := D, D" = flat Laplacian):
AN = UiN [47(E + S) + Ay AF] —h¥'DyDIN—2D), In W D* N (N=lapse function)

1 iy
N (557 Db Dy

A(T°N) = VN <4wS+ZAszM) — WD (WPN) + 7 | N (-

1 y ~ ~ ~ ~
—§~’€lz>khw>m + 2D In ¥ D*In qf) +2D;In ¥ DkN] .

AB' + D" (D;) = 2AYD;N + 16rNU*J" — 12NA'D;In ¥ — 2A" ;N A"

1 .
~h*'"DyDy3" — Sh'* DDy
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341 equations in maximal slicing + Dirac gauge (cont’d)

e 2 scalar wave equations for two scalar potentials x and pu :

02
T —|—AX Sy
02
T +Ap =29,

for expression of S, and S,, see [Bonazzola, Gourgoulhon, Grandclément & Novak, gr-qc/0307082 v2
P X I

(i) From the two potentials y and p, construct a TT tensor A%/ according to the
formulas (components with respect to a spherical f-orthonormal frame)

Zer _ X gre_ 1 (On 1 Ou ro L (1 0n  Ou
& T2 " (6’0 sin90g0>' ! sin 0 Jyp 96 )
with Ag,n = —0x/0r — x/r
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Recovering the conformal metric 7;; from the TT tensor h%

(ii) A is uniquely determined by the TT tensor A% as the following divergence-free
(Dirac gauge) tensor :

W = R 4 (h f — DDI) (1)

where h := f;;h" is the trace of h"/ with respect to the flat metric and ¢ is the
solution of the Poisson equation A¢ = h. The trace h is determined in order to enforce
the condition det 7;; = det f;; (definition of ¥) by

I _hrrhee _ RITRHPY h99hcp<,o 4+ (hr9)2 + (hwp)Z + (h9<p)2 L hrrhﬁehcpgo
_2hr9hrcph9g0 4+ hrr(h0¢)2 + h@@(hﬂp)2 + hcpgo(hre)2 (2)
Equations (1) and (2) constitute a coupled system which can be solved by iterations

(starting from h* = h%), at the price of solving the Poisson equation A¢ = h at each
step. In practise a few iterations are sufficient to reach machine accuracy.

(iii) Finally 4" = f“ + p%.
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Numerical implementation

Numerical code based on the C++ library LORENE (http://www.lorene.obspm.fr)
with the following main features:

o based on spherical coordinates (7,60, ), with
compactified external domain (= spatial infinity included in the computational
domain for elliptic equations)

e very efficient , ensuring that all modes with
spherical harmonics indices £ =0, £ =1 and ¢/ = 2 are perfectly outgoing
[Novak & Bonazzola, J. Comp. Phys. 197, 186 (2004)]

(recall: Sommerfeld boundary condition works only for £ = 0, which is too low for
gravitational waves)

[see M. Chirvasa’s poster for alternative outgoing-wave conditions|
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Results on a pure gravitational wave spacetime

Initial data: similar to [Baumgarte & Shapiro, PRD 59, 024007 (1998)], namely a momentarily static
(074" /0t = 0) Teukolsky wave £ =2, m = 2:
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Evolution of h?¥ in the plane 6 = 5
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Test: conservation of the ADM mass
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Number of coefficients in each domain: N, =17, Ng =9, N, = 8
For dt = 51073y, the ADM mass is conserved within a relative error lower than 104
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Late time evolution of the ADM mass
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At t > 10rg, the wave has completely left the computation domain

Nothing happens until the run is switched off at ¢t = 3007y | =
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Another test: check of the %—‘f relation

0 1
The relation aln\If — B*DpIn ¥ = EDkﬂk (trace of the definition of the extrinsic

curvature as the time derivative of the spatial metric) is not enforced in our scheme.
—> This provides an additional test:
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Conclusions and future prospects

e Dirac gauge + maximal slicing reduces the Einstein equations into a system of
— two scalar elliptic equations (including the Hamiltonian constraint)
— one vector elliptic equations (the momentum constraint)
— two scalar wave equations (evolving the two dynamical degrees of freedom of the
gravitational field)

e The usage of spherical coordinates and spherical components of tensor fields is crucial
in reducing the dynamical Einstein equations to two scalar wave equations

e The unimodular character of the conformal metric (det?;; = det f;;) is ensured in
our scheme

e First numerical results show that Dirac gauge + maximal slicing seems a promising
choice for stable evolutions of 341 Einstein equations and gravitational wave
extraction

e |t remains to be tested on black hole spacetimes !
[cf. J.L. Jaramillo’s talk for boundary conditions on black hole horizons]
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