Are neutron stars actually strange stars ?

Eric Gourgoulhon
Laboratoire de I'Univers et de ses Théories (LUTH)
CNRS / Observatoire de Paris
Meudon, France

Based on a collaboration with
Dorota Gondek-Rosińska, Pawel Haensel \& Leszek Zdunik

Eric.Gourgoulhon@obspm.fr
http://www.luth.obspm.fr

Plan

1. Strange quark matter
2. Theoretical models of strange quark stars
3. Searching for strange quark stars
4. Recent Chandra observations

1

Strange quark matter

The strange quark

Quark properties

flavor	d	u	s	c	b	t
spin	$1 / 2$					
baryon number	$1 / 3$					
electric charge	$-\frac{e}{3}$	$\frac{2 e}{3}$	$-\frac{e}{3}$	$\frac{2 e}{3}$	$-\frac{e}{3}$	$\frac{2 e}{3}$
isospin $(z-$-comp. $)$	$-\frac{1}{2}$	$\frac{1}{2}$	0	0	0	0
mass $\left[\mathrm{MeV} \mathrm{c}^{-2}\right]$	~ 7	~ 3	~ 150	~ 1200	~ 4200	$\sim 175 \mathrm{GeV} \mathrm{c}^{-2}$

Recall: nucleons: $\mathrm{p}=$ uud, $\mathrm{n}=$ udd hyperons: $\Lambda=$ usd, $\Sigma^{+}=$uus,...

$$
\text { mesons: } \quad \pi^{+}=\mathrm{u} \overline{\mathrm{~d}}, \pi^{-}=\overline{\mathrm{u} d}, \ldots
$$

Strange quark matter hypothesis and strange stars

1971: A.R. Bodmer \rightarrow the ground state of nuclear matter may be a state of deconfined quarks.

1984: E. Witten reformulated (independently) this idea, and contemplated the possibility that neutron stars are in fact strange quark stars.

1986: first numerical models of static strange stars by P. Haensel, J.L. Zdunik \& R. Schaeffer, as well as C. Alcock, E. Farhi \& A.V. Olinto.

1989: announcement of a half-millisecond pulsar in SN 1987A
1996: discovery of high frequency QPO in low-mass X-ray binaries
2002 : NASA announcement of "discovery" of two strange quark stars

Ground state of hadronic matter

Why non-zero strangeness ?

Quarks are fermions:

Pauli exclusion principle \Longrightarrow 3-flavor quark matter has a lower energy than 2-flavor quark matter.

Approximate treatment of QCD

Complexity of $\mathrm{QCD} \Longrightarrow$ a direct computation of the quark matter EOS is not doable.

The simplified approach to quark matter EOS:

- describe non-perturbative aspects of QCD (quark confinement and asymptotic freedom) by a very simplified phenomenological model: the MIT bag model;
- describe perturbative effects (quark interactions within the bag) by an expansion in $\alpha_{\mathrm{s}}=g^{2} /(4 \pi)$, where g is the QCD coupling constant .

MIT bag model

Pressure of physical vacuum acting on the bag: B
\Rightarrow balance of total pressure acting on the bag by the total quark pressure:

$$
P_{\mathrm{ext}}+B=\sum_{\text {flavor } i} P_{i}
$$

Energy density of deconfined vacuum with respect to physical vacuum: B \Rightarrow total energy density of the bag:

$$
\varepsilon=\sum_{\text {flavor } i} \varepsilon_{i}+B
$$

Bag constant $B \sim 60 \mathrm{MeV} \mathrm{fm}^{-3}=: B_{60}$

Simple estimations within the bag model

Approximation: neglect the quark masses, and the quark interactions ($\alpha_{\mathrm{s}}=0$)
\Rightarrow each quark flavor i behaves as a ultra-relativistic Fermi free gas: the pressure at number density n_{i} is

$$
P_{i}=\frac{1}{4}\left(\frac{6 \pi^{2}}{\gamma_{i}}\right)^{1 / 3} \hbar c n_{i}^{4 / 3}=\frac{1}{3} \varepsilon_{i}
$$

with the degeneracy $\gamma_{i}=2($ spin $) \times 3$ (color) $=6$.

Total pressure:

$$
P=\frac{\pi^{2 / 3}}{4} \hbar c \sum_{\text {flavor } i} n_{i}^{4 / 3}-B
$$

Total energy density: $\quad \varepsilon=\frac{3 \pi^{2 / 3}}{4} \hbar c \sum_{\text {flavor } i} n_{i}^{4 / 3}+B=3 P+4 B \leftarrow N B$: asymp. fr.
Baryon density:

$$
n_{\mathrm{B}}=\frac{1}{3} \sum_{\text {flavor } i} n_{i}
$$

At zero pressure: $\quad \varepsilon=4 B=: \varepsilon_{0} \quad$ and $\quad \frac{\pi^{2 / 3}}{4} \hbar c \sum_{\text {flavor } i} n_{i}^{4 / 3}=B$

2-flavor quark matter

Hypothesis: only u and d quarks.
Electric neutrality $\Rightarrow n_{\mathrm{d}}=2 n_{\mathrm{u}}$.
Then $n_{\mathrm{B}}=\frac{1}{3}\left(n_{\mathrm{d}}+n_{\mathrm{u}}\right)=n_{\mathrm{u}}$
and, at zero pressure, $\frac{\pi^{2 / 3}}{4} \hbar c\left(1+2^{4 / 3}\right) n_{\mathrm{u}}^{4 / 3}=B$
$\begin{aligned} & \text { Energy per baryon: }\left.\frac{E}{A}\right|_{(\mathrm{u}, \mathrm{d})}=\frac{\varepsilon_{0}}{n_{\mathrm{B}}}=\left(4 \pi^{2}\right)^{1 / 4}\left(1+2^{4 / 3}\right)^{3 / 4}(\hbar c)^{3 / 4} B^{1 / 4} \\ &\left.\frac{E}{A}\right|_{(\mathrm{u}, \mathrm{d})}=943.6 B_{60}^{1 / 4} \mathrm{MeV}\end{aligned}$

3-flavor quark matter

Hypothesis: massless u, d and s quarks.
Electric neutrality + weak-reaction equilibrium $\Rightarrow n_{\mathrm{d}}=n_{\mathrm{u}}=n_{\mathrm{s}}$.
Then $n_{\mathrm{B}}=\frac{1}{3}\left(n_{\mathrm{d}}+n_{\mathrm{u}}+n_{\mathrm{s}}\right)=n_{\mathrm{u}}$
and, at zero pressure, $\frac{3 \pi^{2 / 3}}{4} \hbar c n_{\mathrm{u}}^{4 / 3}=B$
Energy per baryon: $\left.\quad \frac{E}{A}\right|_{(\mathrm{u}, \mathrm{d}, \mathrm{s})}=\frac{\varepsilon_{0}}{n_{\mathrm{B}}}=\left(4 \pi^{2}\right)^{1 / 4} 3^{3 / 4}(\hbar c)^{3 / 4} B^{1 / 4}$

$$
\left.\frac{E}{A}\right|_{(\mathrm{u}, \mathrm{~d}, \mathrm{~s})}=837.3 B_{60}^{1 / 4} \mathrm{MeV}
$$

We recover that $\left.\frac{E}{A}\right|_{(\mathrm{u}, \mathrm{d}, \mathrm{s})}<\left.\frac{E}{A}\right|_{(\mathrm{u}, \mathrm{d})}$

Bounds on the bag constant

- Stability of nucleons against strangelets formation:

$$
\left.\frac{E}{A}\right|_{(\mathrm{u}, \mathrm{~d})}>\left.\frac{E}{A}\right|_{56 \mathrm{Fe}}=930.4 \mathrm{MeV} \Longleftrightarrow B>58.9 \mathrm{MeV} \mathrm{fm}^{-3}
$$

- SQM being the ground state of matter:

$$
\left.\frac{E}{A}\right|_{(\mathrm{u}, \mathrm{~d}, \mathrm{~s})}<\left.\frac{E}{A}\right|_{56 \mathrm{Fe}}=930.4 \mathrm{MeV} \Longleftrightarrow B<91.5 \mathrm{MeV} \mathrm{fm}^{-3}
$$

But note that surface effects increase E / A for small $A(A \lesssim 30)$, making the hyperon $\Lambda(A=1)$ unstable ($\tau=3 \times 10^{-10} \mathrm{~s}$), and making ordinary matter stable (ouf !).

Conclusion: for massless and non-interacting (except for confinement effects) quarks in the MIT bag model:

$$
58.9 \mathrm{MeV} \mathrm{fm}^{-3}<B<91.5 \mathrm{MeV} \mathrm{fm}^{-3}
$$

Improved bag model

Take into account

- the finite mass of quark s: $100 \mathrm{MeV} c^{-2} \lesssim m_{\mathrm{s}} \lesssim 300 \mathrm{MeV} c^{-2}$
- the lowest order gluon interactions, via an expansion in $\alpha_{\mathrm{s}}=g^{2} /(4 \pi)$, where g is the QCD coupling constant.
\Longrightarrow 3-parameter EOS for SQM matter: $\left(B, m_{\mathrm{s}}, \alpha_{\mathrm{s}}\right)$

Variation of the energy per baryon E / A with the strange quark mass and the QCD structure constant $\alpha_{\text {s }}$ [from Zdunik, A\&A 359, 311 (2001)]

Alternatives to the bag model for strange quark matter

- Dey et al. EOS SS1 and SS2 [Dey, Bombaci, Dey, Ray, Samanta, PLB 438, 123 (1998)]: "dynamical" density-dependent approach to confinement, with asymptotic freedom built in; quark interaction described by
* a colour-Debye-screened inter-quark vector potential originating from gluon exchange
* a density-dependent scalar potential which restores chiral symmetry at high density
- high density EOS from perturbative QCD [Fraga, Pisarski, Schaffner-Bielich, PRD 63, 121702(R) (2001)]: up to the second order in α_{s}.

2
 Numerical models of strange quark stars

Static strange stars

First numerical models computed by Haensel, Zdunik \& Schaeffer [A\&A 160, 121 (1986)] and Alcock, Fahri \& Olinto [ApJ 310, 261 (1986)] by integration of the Tolman-Oppenheimer-Volkoff equations with MIT bag-model EOS.

Basic features:

- finite density at the surface (zero pressure)
- for small mass (weak gravity): almost constant density profile $\varepsilon \sim 4 B$

[from Glendenning (1997)]

Mass-radius relation

From strangelets to strange stars

Gravitational mass as a function of the areal radius for nonrotating strange stars in the MIT bag model [from Bombaci (2001)]

Approximate scaling laws (exact for $\left.\alpha_{\mathrm{s}}=0\right)$ [Zdunik, A\&A 359, 311 (2001)] :
$M \simeq M\left[B_{60}=1, \alpha_{\mathrm{s}}, m_{\mathrm{s}} B_{60}^{-1 / 4}\right] B_{60}{ }^{-1 / 2}$
$R \simeq R\left[B_{60}=1, \alpha_{\mathrm{s}}, m_{\mathrm{s}} B_{60}^{-1 / 4}\right] B_{60}{ }^{-1 / 2}$

Comparison with neutron stars

Gravitational mass as a function of the areal radius for nonrotating neutron stars (BBB1, BBB2, Hyp and K^{-}) and nonrotating strange stars in the MIT bag model (B90) and Dey et al model (SS1 and SS2) [from Bombaci (2002)]
neutron stars $=$ gravitationally bound objects
strange quark stars \sim self-bound objects

What about charm stars ?

At very high density, charm quarks appear in the medium, in addition to u, d, and s quarks.

[from Glendenning (1997)]
Charm stars are unstable with respect to radial perturbations.

Rotating strange quark stars

[from Gourgoulhon et al., A\&A 349, 851 (1999)]
Minimal rotation period (for $m_{\mathrm{s}}=0$ and $\alpha_{\mathrm{s}}=0$): $P_{\min }=0.634 B_{60}{ }^{-1 / 2} \mathrm{~ms}$

Solid crust

EOS: $B=56 \mathrm{MeV} \mathrm{fm}^{-3}, \alpha_{\mathrm{s}}=0.2, m_{\mathrm{s}}=200 \mathrm{MeV} c^{-2}$ star: $M_{\mathrm{B}}=1.63 M_{\odot}, f=1210 \mathrm{~Hz}$.
[from Zdunik, Haensel, Gourgoulhon, A\&A 372, 535 (2001)]

Stellar radius in presence of crust

There exists a minimal radius:

[from Zdunik, Haensel, Gourgoulhon, A\&A 372, 535 (2001)]

Innermost stable circular orbit (ISCO)

Relativistic gravitation + rotation-induced oblateness $\Rightarrow \mathrm{ISCO}$

...... radius of the ISCO

- - - ISCO slow rot. approx.
- - - stellar radius with crust
—— radius of bare star
[from Zdunik, Haensel, Gondek-Rosińska, Gourgoulhon, A\&A 356, 612 (2000)]

Small mass strange stars seem to be the only objects in nature to have an ISCO around them given by purely Newtonian gravitational potential [Zdunik \& Gourgoulhon, PRD 63, 087501 (2001)], [Amsterdamski, Bulik, Gondek-Rosińska, Kluźniak, A\&A 381, L21 (2002)]

3

Searching for strange stars

Rapid rotators

1989: announcement of discovery of a 0.5 ms pulsar in the remnant of supernova 1987A in LMC [Kristian et al., Nature 338, 234 (1989)]

Rotation rate too rapid for standard neutron star EOS

\Rightarrow strange quark star could be a solution [Frieman, Olinto, Nature 341, 633 (1989)] [Glendenning, PRL 63, 2629 (1989)]

Mass-frequency plane for rotating strange stars constructed upon the Dey et al. EOS SS2
[from Gondek-Rosińska et al., A\&A 363, 1005 (2000)]

QPO in LMXB

Quasi-periodic oscillations (QPO) observed by RXTE in the X-ray binary Sco X-1.

In the most popular model of QPOs, the high frequency peak gives the orbital frequency at the inner edge of the accretion disk \Rightarrow ISCO

Interpreting the QPO in terms of ISCO

Neutron stars and strange quark stars have very different ISCO behavior:

[from Gondek-Rosińska, Kluźniak,

Proc.
Moriond 2002]

Gravitational radiation

Strange quark stars can have large T / W ratio \Rightarrow Jacobi-like bar-mode instability (viscosity-driven) \Rightarrow gravitational wave emission at twice the rotation frequency

All configurations above the dashed line are unstable
[from Gondek-Rosińska, Gourgoulhon, Haensel, in preparation]

4

Chandra observations

RX J1856.5-3754

Isolated Neutron Star RX J185635-3754
HST • WFPC2
PRC97-32 • ST Scl OPO • September 25, 1997
F. Walter (State University of New York at Stony Brook) and NASA

- Discovered as an X-ray source with ROSAT in 1996 [Walter et al., Nature 379, 233 (1996)]

Best fit black body $k T_{\infty}=57 \pm 1 \mathrm{eV}$ $\Longleftrightarrow T_{\infty} \simeq 6.6 \times 10^{5} \mathrm{~K}$
In front of molecular cloud R Coronae
Australis $\Rightarrow d \lesssim 130-170 \mathrm{pc}$

- Optical counterpart discovered in 1997 with HST [Walter \& Matthews, Nature 389, 358 (1997)] magnitude $V=25.6$
Optical flux 2 to 3 times larger than the tail of the 57 eV black body

RX J1856.5-3754 observed by VLT

VLT Kueyen + FORS2 (field: $80 " \times 80^{\prime \prime}$)
\rightarrow bowshock (heated interstellar gas by accelerated e^{-}and p from the star ?) [ESO 2000]

Distance to RX J1856.5-3754

- First measure of proper motion and parallax (erroneous) [Walter, ApJ 549, 433 (2001)]
\Rightarrow erroneous $d=61 \pm 9 \mathrm{pc}$
- New determinations of parallax:
$d=140 \pm 40 \mathrm{pc}$ [Kaplan, van
Kerkwijk, Anderson, astro-ph/0111174]
$d=117 \pm 12 \mathrm{pc} \quad[$ Walter \&
Lattimer, astro-ph/0204199]

RX J1856.5-3754 spectrum

Chandra image of RX J1856.5-3754

Spectrum from Chandra, EUVE and HST data:

- - - : : black body best fit to Chandra data $k T_{\infty}=63 \mathrm{eV}$ [Burwitz et al., A\&A 379, L35 (2001)]
.........: 63 eV black body +15 eV black body with $R_{\infty}(15 \mathrm{eV})=5 R_{\infty}(63 \mathrm{eV})$
[from Walter \& Lattimer, astro-ph/0204199]

Simple estimation of radius from black body emission

Observed quantities: (at infinite distance from the star)

- electromagnetic flux f_{∞}
- surface temperature T_{∞} (black body fit to the spectrum)
- distance d (parallax)

Estimation of the radius:

Total luminosity for black body emission: $L_{\infty}=4 \pi R_{\infty}^{2} \sigma T_{\infty}^{4}$
Flux on Earth: $f_{\infty}=\frac{L_{\infty}}{4 \pi d^{2}}=\left(\frac{R_{\infty}}{d}\right)^{2} \sigma T_{\infty}^{4}$
Hence the radius "measured" at infinity: $\quad R_{\infty}=\frac{d}{T_{\infty}^{2}}\left(\frac{f_{\infty}}{\sigma}\right)^{1 / 2}$

Relation between R_{∞} and the true radius of the star R

Areal radius of the star (surface value of the Schwarzschild coordinate r): R
Redshift factor at the surface of the star: $N=\sqrt{-g_{00}}=\left(1-\frac{2 G M}{c^{2} R}\right)^{1 / 2}$
Gravitational dilation of time: $d t_{\infty}=N^{-1} d t \quad$ (N : lapse function)
Energy and wavelength of a particle reaching infinity: $E_{\infty}=N E$ and $\lambda_{\infty}=N^{-1} \lambda$
Luminosity at infinity: $L_{\infty}=\frac{d E_{\infty}}{d t_{\infty}}=N^{2} \frac{d E}{d t}=N^{2} L$
Local black body emissivity: R areal radius $\Rightarrow L=4 \pi R^{2} \sigma T^{4}$
"Observed" temperature: $\lambda_{\max } T=$ const. $\Rightarrow T_{\infty}=N T$
Observed black body: $L_{\infty}=4 \pi R_{\infty}^{2} \sigma T_{\infty}^{4}$
Hence $R_{\infty}=N^{-1} R$, i.e. $R_{\infty}=\left(1-\frac{2 G M}{c^{2} R}\right)^{-1 / 2} R$

The very small radius puzzle

- Erroneous distance of Walter $2001: d=61 \mathrm{pc} \Rightarrow R_{\infty}=3.3 \mathrm{~km}$ (for $f_{\infty}^{\mathrm{ROSAT}}$ and $\left.k T_{\infty}=57 \mathrm{eV}\right)$.
- New distance of Walter \& Lattimer 2002 : $d=117 \mathrm{pc} \Rightarrow R_{\infty}=4.8 \mathrm{~km}$ (for $f_{\infty}^{\text {Chandra }}$ and $\left.k T_{\infty}=61 \mathrm{eV}\right)$.
- New distance of Kaplan et al. 2002 : $d=140 \mathrm{pc} \Rightarrow R_{\infty}=5.8 \mathrm{~km}$ (for $f_{\infty}^{\text {Chandra }}$ and $\left.k T_{\infty}=61 \mathrm{eV}\right)$.

Minimal radius of neutron stars

Solid lines: neutron star models; dashed line: strange quark star with MIT bag model EOS: $B=41 \mathrm{MeV} \mathrm{fm}^{-3}, m_{\mathrm{s}}=150 \mathrm{MeV} \mathrm{c}^{-2}, \alpha_{\mathrm{s}}=0.6$ [from Haensel, A\&A 380, 186 (2001)].

Minimal radius of strange quark stars

[from Gondek-Rosińska, Kluźniak \& Stergioulas, in preparation (2002)]

A proposed solution

Pons et al. [ApJ 564, 981 (2002)] : the emission is not a pure black body one.
Two atmospheric models:

1. Uniform temperature + heavy elements (Fe)
2. Two thermal components (optical flux from cooler part)

Model $1 \Rightarrow R_{\infty} \simeq 15 \mathrm{~km}$ for $d=117 \mathrm{pc}, f_{\infty}^{\mathrm{ROSAT}}$ and $k T_{\infty}=57 \mathrm{eV}$
Model $2 \Rightarrow R_{\infty} \simeq 21 \mathrm{~km}$ for $d=117 \mathrm{pc}, f_{\infty}^{\text {Chandra }}$ and $k T_{\infty}=63 \mathrm{eV}$
[Walter \& Lattimer, astro-ph/0204199]

Recent Chandra observations

Drake et al. [ApJ 572, 996 (2002)] have conducted deep observations of RX J1856.5-3754 in October 2001 (446 ks of data).

Findings:

- X-ray spectrum well represented by a black body spectrum with $k T_{\infty}=61.2 \pm 1.0 \mathrm{eV}$ $\left(T_{\infty}=7.1 \times 10^{5} \mathrm{~K}\right)$
- no heavy element spectral lines \Rightarrow disfavors atmospheric model 1 of Pons et al. (2002)
- no X-ray pulsation (pulse fraction $<2.7 \%$) \Rightarrow disfavors atmospheric model 2 of Pons et al. (2002)

Inferred pure black body radius: $R_{\infty}=4.12 \pm 0.68 \mathrm{~km} \frac{d}{100 \mathrm{pc}}$

Has a strange quark star been discovered ?

Maybe, but one should remain cautious:

- extrapolation of the $\sim 61 \mathrm{eV}$ black body spectrum to low frequencies underpredicts the optical flux by a factor 6 [Walter \& Lattimer, astro-ph/0204199]
- disagreement between Chandra flux and ROSAT one: $f_{\text {Chandra }} \sim 0.8 f_{\text {ROSAT }}$
- $R_{\infty}=5.8 \mathrm{~km}(d=140 \mathrm{pc})$ implies a maximum mass of only $\sim 0.7 M_{\odot} \Rightarrow$ how to form such light star ?

A possible answer proposed by Nakamura [astro-ph/0205526] :
Gravitational collapse of a very rapidly neutron star with Kerr parameter J / M^{2} larger than 1 does not lead to a black hole but to a small mass quark star + a jet. In addition this provides a source for gamma ray bursts !

The second strange star candidate: 3C 58

3C 58: remnant of the supernova SN 1181 (younger than Crab nebula: SN 1054)
Central object: X-ray and radio pulsar PSR J0205+6449, $P=65 \mathrm{~ms}$, discovered by Chandra observations [Murray et al., ApJ 568, 226 (2002)]

Argument for a strange quark star: $T_{\infty}<1.1 \times 10^{6} \mathrm{~K}$, too cold for a neutron star 820 years old [Slane, Helfand, Murray, ApJ 571, L45 (2002)]

...but this argument is not conclusive !

Many alternatives are possible within cooling theories of ordinary neutron stars:

[from Yakovlev, Kaminker, Haensel, Gnedin, astro-ph/0204233]

Conclusions and perspectives

- From our (poor) knowledge of strong interaction, it is not inconceivable that strange quark matter constitutes the ground state of cold dense matter.
- A class of compact stellar objects, bound by strong interaction (in addition to gravity), would then constitute an alternative to neutron stars: strange quark stars.
- Strange quark stars have some features (small radius, large break-up rotation velocity, location of ISCO, etc...) than make them observationally distinguishable from neutron stars.
- Discovering a strange quark star would be an extremely valuable contribution of astrophysics to particle physics.
- From the two claims of discovery based on recent Chandra observations, of RX J1856.5-3754 can be considered as providing a strange quark star serious candidate. It has to be confirmed by further observational studies.

Conclusions and perspectives (cont'd)

- If RX J1856.5-3754 is confirmed as a strange star, there remains to explain the formation of such a small mass object.
- Since RX J1856.5-3754 is one of the closest compact stars, it would be then likely that most, if not all, compact stars are actually strange quark stars.
- A strong support for the possible existence of strange quark star would be the discovery of strangelets in the next generation of ultra-relativistic heavy ion colliders (RHIC at Brookhaven, LHC at CERN).

