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General features of spectral methods

developed in Meudon
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An overview

e Multidomain three-dimensional
e Spherical-type coordinates (7,0, )

e Expansion functions: r : Chebyshev; 6 : cosine/sine or associated Legendre functions;
© : Fourier

e Domains = spherical shells + 1 nucleus (contains r» = 0)

e Entire space (IR?) covered: compactification of the outermost shell

e Adaptative coordinates : domain decomposition with spherical topology
e Multidomain PDEs: patching method (strong formulation)

e Treatment of non-linear terms: pseudospectral method
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Domain decomposition

external compactified

domain
physical coordinates
1 (7,0, )
r =
o,(1-€) comput. coordinates
~1<E<1 (&0, ¢")
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Starlike domain decomposition

N

e Dy : nucleus

e D, (1<q<N —2): shell

e Dy : external domain

DoUDiU---UDp_1 =R?
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Mapping computational space — physical space

[—1+ doq, 1] x [0, 7] x |0,27] — D,

Mapping for domain D,;: (£,0,0) — (1,0,9)

:0=0" and o=

. In the nucleus: r = g [5 4+ <3§4 o 256) 170((97 S0) 4+ % <5§3 L 3£5> GO(Q’ SO)]

I a4 (@3 RO+ (€ 3642600 +
B

. in the external domain: % — [5 n i (53 _ 3¢+ 2) Flot(0, ) — 1]

[Bonazzola, Gourgoulhon & Marck, Phys. Rev. D 58, 104020 (1998) |
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Example: binary star with surface fitted coordinates

[Taniguchi, Gourgoulhon & Bonazzola, Phys. Rev. D 64, 064012 (2001) |

Double domain decomposition

Surface fitted coordinates:

Fu(0,¢) and Go(0, @) chosen so that
¢ = 1 & surface of the star
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Basis functions

Polynomial interpolant of a field u in a given domain D, :

NSO/2 N9 1 Ny—1

Toug6,0,0) = > > Y gy Xi(€) ©;(0) €™ with N := (N,, Ny, N,,)

m=0 35=0 =0

Regularity at the origin and on the axis # = 0 + equatorial symmetry:
® (» expansion:

e () expansion: or

* for m even: ©;(0) = cos(2j0) or ©;(0) = Py;(cos0)
* for m odd: ©;(0) =sin((2j +1)0) or ©;(0) = P37, 1(cos0)

e & expansion:

* in the kernel: X;(§) = T5;(&) for m even, X;(&) = T;11(&) for m odd
* in the shells and the external compactified domain: X;(&) = T;(&)
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Numerical implementation: LORENE

A library of C++ classes devoted to multi-domain spectral methods, with adaptive
spherical coordinates.

e 1997 : start of Lorene project (Jean-Alain Marck, EG)

e 1999 : Accurate models of rapidly rotating strange quark stars

e 1999 : Neutron star binaries on closed circular orbits

e 2001 : Public domain (GPL), Web page: http://www.lorene.obspm.fr
e 2001 : Black hole binaries on closed circular orbits

e 2002 : 3-D wave equation with non-reflecting boundary conditions

e 2002 : Maclaurin-Jacobi bifurcation point in general relativity

e 2004 : 3-D time evolution of Einsteins equations
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Resolution of elliptic equations:
the initial value problem

of general relativity
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Resolution of Poisson equation with noncompact source

Consider the three-dimensional Poisson equation on R3:

Au(r,0,¢) = s(r,0,¢) (1)
with the boundary condition
u(r,0,¢9) — 0 when r — +00 (2)

The source s has a non-compact support and obeys to the fall-off conditions

%) 14

Ym0, ¢)
s(r,0,p) ~ Z Z L when r — 400 (3)

qg=0 m=—/4¢
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Spherical harmonics expansions

Interpolant of the source in a domain D, (notation:s, := s|p,) :

Ng—1

INSq(f 9,@ S‘ P Sqﬁm (9790)
=0 m=—4¢

Search for a numerical solution under the form

Ny—1
Ug(6,0,0) = Y S Gqem (&) Y70, )
=0 m=—/¢

Shorthand notation: wue(&) := Ugem(§).
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Eq. (1) becomes an ODE system:

e In the nucleus (r = af) :

d*ue 2 [dus  du L+ 1) T dus a2

e In the shells (r = a& + 3):

B’ d?u. B dus :
(6+5) Tam v 6+ 2) G = €+ Dus = a6 + 559

e In the external domain (r~ ' = a(£ — 1)) :

d*ue L(0+1) dle ~ Sgem(&)
de"@—1?(“‘”“”‘”6_”d5“0‘Vﬂ@—lﬁ
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Resolution by means of a Chebyshev tau method

Ny—1
e In the nucleus :  u4(&) = Z Uqemi T2i(&) for £ even
i=0

Nyp—2

ue(§) = Y ligemi Toit1(€) for £ odd
1=0

Ny —1

e In the shells and external domain : ue(§) = Ugemili(€)
i=0

Linear combinations — (5 bands)
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Patching method

e In the nucleus : 1 (rf)

e In the shells : 2 (¢ and r—(+1)

e In the external domain : 1 (r—(¢+1)

Total 1 14+2(N —2) +1 =2\ —2

continuity of w and its first radial derivative accross the N’ — 1
boundaries between the domains D, = 2N — 2 conditions
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Behavior of the numerical error

Source with a . decaying as r":

e evanescent error (error < exp(—N,.)) if the source does not contain any spherical
harmonics of index ¢ > k — 3

—2(k—2)

e error decreasing as NV otherwise

[Grandclément, Bonazzola, Gourgoulhon & Marck, J. Comp. Phys. 170, 231 (2001)]
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Extension to vector Poisson-type equations

—

I ,
Minimal distortion equation for the shift vector: AS + §V(V -B)=295

Error

-14

10 -

-16

5 10 15 20 25 30 35
Number of Chebyshev coefficients

Error on the z component of the solution of the minimal distortion equation with a non-compact source
[Grandclément, Bonazzola, Gourgoulhon & Marck, J. Comp. Phys. 170, 231 (2001)]

10
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Application to the Cauchy data for 3+1 numerical relativity

Quasi-equilibrium sequences of orbiting binary black holes and neutrons stars
Baryon density (y=0)

Initial data within the

framework: a set of two scalar and one vectorial
elliptic equations (conformal factor W, lapse
function N and shift vector 3).

— (M/R = 0.16 and
M/R = 0.18, EOS ~ = 2.5)
[Taniguchi & Gourgoulhon, PRD 68, 124025 (2003)]

<

[Grandclément, Gourgoulhon, Bonazzola, PRD 65, 044021 (2002)]
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Resolution of tensorial wave equations:

spacetime dynamics
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Scalar wave equation with nonreflecting boundary conditions

Consider the wave equation

Ou(t,r,0,¢) = s(t,r.0,p) (4)
with the radiating boundary condition

i (57 + 37) ) =0 )

Solve (4) in a finite ball D of radius R with some boundary conditions which
approximate (5) when R — oc.

Decompose D in N spherical subdomains D, with Dy = nucleus and the other domains
= shells

Finite-differencing in time: second-order implicit Crank-Nicolson scheme.

Space part: patching with Chebyshev tau
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Non reflecting BC up to / = 2

Method of Bayliss & Turkel [Comm.

Boundary condition

Blu

BQ’U,

Bgu

Pure Appl. Math. 33, 707 (1980)]:

Ou  Ou  u
ot Or r

o 0 3
- (8?5 ar * ) Bru
8 o0 5

: Bgulr:R = 0.
= ensures that spherical harmonics with £ =0, £ =1 and ¢ = 2 are perfectly outgoing.
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Comparison with Sommerfeld boundary condition

Test on a3D case

0.01

0.001

Sommerfeld BC

0.0001

Square root of the fraction of remaining energy €

—X % % %

IIXIII' | IIIIIII| 1 1

B 2 domains: % ]
. S /s i
98 pointsinr
le06E 17 pointsin © E
B 16 pointsin ¢ ]
1le-07 = =
- | 1 1 1 | | | | | | 1 1 1 | | | | | | 1 1 1 |
0.1 0.01 0.001
Time step

[Novak & Bonazzola, J. Comp. Phys. 197, 186 (2004)]

ICOSAHOM 2004 (Brown University, Providence, USA, 21-25 June 2004)

22


http://dx.doi.org/10.1016/j.jcp.2003.11.027

Tensorial wave equation

Tensorial wave equations L1h"” = """ occurs in general relativity in various cases:

e in (4-dimensional tensor)
e in the of linearized gravity (3-dimensional tensor)
e in the within the 341 formalism (3-dimensional tensor) [Bonazzola,

Gourgoulhon, Grandclément & Novak, gr-qc/0307082]
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3+1 spacetime evolution in Dirac gauge

Conformal decomposition of the metric ;; of the spacelike hypersurfaces >; of the 341
formalism of general relativity (cf. S.A. Teukolsky's talk):

3 = W 4 )
where % is a flat metric on X, h" a symmetric tensor and ¥ a scalar field defined by
1/12
det iy
|
det fz'j

The iIs expressed as a condition on h": | D;h" =0

where D; denotes the covariant derivative with respect to f;;.
— Ricci tensor of space metric 7;; becomes an elliptic operator for h"

—> the dynamical Einstein equations become a for h*
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Resolution of the tensor wave equation

Rewrite the evolution equation for h*7 as

Split A¥ into its trace

0°hY
ot?

_ éhij — gu

h:= f;;h" | and its traceless-transverse (TT) part:

h = h — % (h f¥ — D'D?®) |, with AP = h.

The TT part of the wave equation is

O2 RV _ g
oz~ Ah =a"
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Taking advantage of spherical components

In spherical components, the TT tensor wave equation is reduced to two scalar wave
equations:

oz BN
02
2 BH=

Thanks to its TT character, all the components of h% can be deduced from x and p
quasi-algebraically. For instance, in a spherical orthonormal basis,

LT X

h — ﬁ

. 1/0n 1 Ou . ox X
7’9 — - L h A — _ AN _ A
h 7“(89 sin@@gb) it el or r
- 1/ 1 On OJu

ré

& r (Siﬂ@@gb i (9(9)

ICOSAHOM 2004 (Brown University, Providence, USA, 21-25 June 2004)

26



27
Example: evolution of a vaccum spacetime

Pure gravitational wave spacetime

same as [Baumgarte & Shapiro, PRD 59, 024007 (1998)], namely a Teukolsky wave
(=2, m=2 x=10""zyexp(—r?) and u = 0, momentarily static: K;; =0
Constraint equations solved within the conformal thin sandwich framework

fully constrained scheme based on Dirac gauge and maximal slicing [Bonazzola,
Gourgoulhon, Grandclément & Novak, gr-qc/0307082]

Evolution of the scalar curvature R of the
hypersurface >2; in the plane z = 0

Evolution of h%? in the plane z = 0
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Test of the code: conservation of the ADM mass
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1e-09

T T IIIIIII
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ADM mass
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Number of coefficients in each domain: N, =17, Ny =9, N, = 8
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Test of the code: conservation of the ADM mass (zoom)

—— 6domains Rext =8 dt=0.01
L L T T 1 __  7domains R~ 10 dt=0.01
— 6domains Rext =8 dt=0.005

3.537e-08 —

3.536e-08

—

'v,“',,, (l 4"‘\14“ | '””\’ \ '\" | W“

ADNM mass

3.535e-08

3.534e-08 — —

timet
For dt = 51073, the ADM is conserved within a relative error lower than 102,

ICOSAHOM 2004 (Brown University, Providence, USA, 21-25 June 2004)



	General features of spectral methods developed in Meudon
	Resolution of elliptic equations: the initial value problem of general relativity
	Resolution of tensorial wave equations: spacetime dynamics

