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Introduction

A brief history of special relativity

1898 : H. Poincaré : simultaneity must result from some convention

1900 : H. Poincaré : synchronization of clocks by exchange of light signals

1905 : A. Einstein : funding article based on 2 axioms, both related to inertial
observers: (i) the relavitity principle, (ii) the constancy of the velocity of light

1905 : H. Poincaré : mathematical use of time as a fourth dimension

1907 : A. Einstein : first mention of an accelerated observer (uniform
acceleration)

1908 : H. Minkowsky : 4-dimensional spacetime, generic accelerated observer

1909 : M. Born : detailed study of uniformly accelerated motion

1909 : P. Ehrenfest : paradox on the circumference of a disk set to rotation

1911 : A. Einstein, P. Langevin : round-trip motion and differential aging
(=⇒ twin paradox)

1911 : M. Laue : prediction of the Sagnac effect within special relativity

1956 : J. L. Synge : fully geometrical exposure of special relativity
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Introduction

Standard exposition of special relativity

Standard textbook presentations of special relativity are based on inertial
observers.

For these privileged observers, there exists a global 3+1 decomposition of
spacetime, i.e. a split between some time and some 3-dimensional Euclidean space
This could make people comfortable to think in a “Newtonian way”.

Special relativity differs then from Newtonian physics only in the manner one
moves from one inertial observer to another one :

Lorentz transformations ↔ Galilean transformations
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Introduction

Some drawback of this approach: the twin paradox

In most textbooks the twin paradox is
presented by means of a reference inertial
observer and his twin who is “piecewise
inertial”, yielding the result

T ′ = T

√
1− V 2

c2
≤ T

This requires some infinite acceleration
episods.

A (very) skeptic physicist may say that the
infinite acceleration spoils the explanation.

A more satisfactory presentation would
require an accelerated observer.
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Introduction

Other arguments for considering accelerated observers

The real world is made of accelerated / rotating observers.

Well known relativistic effects arise for accelerated observers: Thomas
precession, Sagnac effect.

Explaining the above effects by relying only on inertial observers is tricky;
it seems logically more appropriate to introduce generic (accelerated)
observers first, considering inertial observers as a special subcase.

Often students learning general relativity discover notions like Fermi-Walker
transport or Rindler horizon which have nothing to do with spacetime
curvature and actually pertain to the realm of special relativity.
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Accelerated observers in special relativity

The good framework: Minkowsky spacetime

When limiting the discussion to inertial observers, one can stick to a 3+1 point of
view and avoid to refer to Minkowsky spacetime
On the contrary, the appropriate framework for introducing accelerated observers
is Minkowsky spacetime, that is the quadruplet (E , g, I+, ε) where

E is a 4-dimensional affine space on R (associate vector space : E)

g is the metric tensor, i.e. a bilinear form on E that is symmetric,
non-degenerate and has signature (−,+,+,+)
I+ is one of the two sheets of g’s null cone, definiting the time orientation
of spacetime

ε is the Levi-Civita alternating tensor, i.e. a quadrilinear form on E that is
antisymmetric and results in ±1 when applied to any vector basis which is
orthonormal with respect to g
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Accelerated observers in special relativity

The null cone and vector gender

E: space of vectors on spacetime (4-vectors)

Metric tensor:
g : E × E −→ R

(~u, ~v) 7−→ g(~u, ~v) =: ~u · ~v

A vector ~v ∈ E is

spacelike iff ~v · ~v > 0
timelike iff ~v · ~v < 0
null iff ~v · ~v = 0
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Accelerated observers in special relativity

Worldlines and the metric tensor

Physical interpretation of the metric tensor 1:

Proper time along a (massive) particle worldline = length
given by the metric tensor:

dτ =
1
c

√
−g(d~x, d~x)

4-velocity ~u = unit timelike future-directed tangent to
the worldline :

~u :=
1
c

d~x

dτ
, g(~u, ~u) = −1

Physical interpretation of the metric tensor 2:

The worldline of massless particles (e.g. photons) are null
lines of g (i.e. straight lines with a null tangent vector)
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Accelerated observers in special relativity

Einstein-Poincaré simultaneity

Observer O of worldline L0

A event on L0, B distant event

Using only proper times measured by O and a round-trip light
signal:

Einstein-Poincaré definition of simultaneity

B is simultaneous with A ⇐⇒ t =
1
2

(t1 + t2)

t: proper time of A
t1 (resp. t2): proper time of signal emission (resp. reception)

Geometrical characterization

If B is “closed” to O’s worldline,

B is simultaneous with A ⇐⇒ ~u(A) ·
−−→
AB = 0
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Accelerated observers in special relativity

Local rest space of an observer

Observer O: worldline L0, 4-velocity ~u, proper time t

Given an event A ∈ L0 of
proper time t,

hypersurface of
simultaneity of A for O:
set Σu(t) of all events
simultaneous to A
according to O
local rest space of O:
hyperplane Eu(t) tangent
to Σu(t) at A

According to the geometrical characterization of Einstein-Poincaré simultaneity:

Eu(t) is the spacelike hyperplane orthogonal to ~u(t)

Notation: Eu(t) = 3-dimensional vector space associated with the affine space
Eu(t); Eu(t) is a subspace of E
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Accelerated observers in special relativity

Local frame of an observer

An observer is defined not only by its wordline, but also by an orthonormal basis
(~e1(t), ~e2(t), ~e3(t)) of its local rest space Eu(t) at each instant t

(~eα(t)) = (~u(t), ~e1(t), ~e2(t), ~e3(t)) is then an orthonormal basis of E: it is O’s
local frame.
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Accelerated observers in special relativity

Coordinates associated with an observer

Observer O :

proper time t

local frame (~eα(t))

M ∈ E “close” to O’s worldline L0

Coordinates (t, x1, x2, x3) of M with
respect to O:

t defined by

M ∈ Eu(t)

(x1, x2, x3) defined by
−−−−→
O(t)M = xi ~ei(t)

Misner, Thorne & Wheeler’s generalization (1973) of coordinates introduced by
Synge (1956) (called by him Fermi coordinates)
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Accelerated observers in special relativity

Reference space of observer O

3-dim. Euclidean space RO with mapping
ϕ : E −→ RO

M(t, xi) 7−→ ~x = xi~ei

Eric Gourgoulhon (LUTH) Special relativity and accelerated observers Observatoire de Paris, 14 June 2010 16 / 41



Accelerated observers in special relativity

Variation of the local frame (1/2)

Expand d~eα/dt on the basis (~eα):
d~eα
dt

= Ωβα ~eβ

Introduce Ω endomorphism of E whose matrix in the (~eα) basis is (Ωαβ). Then

d~eα
dt

= Ω(~eα)

From the property ~eα · ~eβ = ηαβ and dηαβ/dt = 0 one gets immediately

Ω(~eα) · ~eβ = −~eα ·Ω(~eβ)

=⇒ the bilinear form Ω defined by ∀(~v, ~w) ∈ E2, Ω(~v, ~w) := ~v ·Ω( ~w) is
antisymmetric, i.e. Ω is a 2-form.

=⇒ ∃ a unique 1-form a and a unique vector ~ω such that

Ω = cu⊗ a− ca⊗ u− ε(~u, ~ω, ., .) , a · ~u = 0, ~ω · ~u = 0

This is similar to the electric / magnetic decomposition of the electromagnetic
field tensor F with respect to an observer:

F = u⊗E −E ⊗ u+ ε(~u, c ~B, ., .), E · ~u = 0, ~B · ~u = 0

Eric Gourgoulhon (LUTH) Special relativity and accelerated observers Observatoire de Paris, 14 June 2010 17 / 41



Accelerated observers in special relativity

Variation of the local frame (1/2)

Expand d~eα/dt on the basis (~eα):
d~eα
dt

= Ωβα ~eβ

Introduce Ω endomorphism of E whose matrix in the (~eα) basis is (Ωαβ). Then

d~eα
dt

= Ω(~eα)

From the property ~eα · ~eβ = ηαβ and dηαβ/dt = 0 one gets immediately

Ω(~eα) · ~eβ = −~eα ·Ω(~eβ)

=⇒ the bilinear form Ω defined by ∀(~v, ~w) ∈ E2, Ω(~v, ~w) := ~v ·Ω( ~w) is
antisymmetric, i.e. Ω is a 2-form.

=⇒ ∃ a unique 1-form a and a unique vector ~ω such that

Ω = cu⊗ a− ca⊗ u− ε(~u, ~ω, ., .) , a · ~u = 0, ~ω · ~u = 0

This is similar to the electric / magnetic decomposition of the electromagnetic
field tensor F with respect to an observer:

F = u⊗E −E ⊗ u+ ε(~u, c ~B, ., .), E · ~u = 0, ~B · ~u = 0

Eric Gourgoulhon (LUTH) Special relativity and accelerated observers Observatoire de Paris, 14 June 2010 17 / 41



Accelerated observers in special relativity

Variation of the local frame (2/2)

Accordingly

d~eα
dt

= c(~a · ~eα) ~u− c(~u · ~eα) ~a︸ ︷︷ ︸
Fermi-Walker

+ ~ω×u ~eα︸ ︷︷ ︸
spatial rotation

(1)

with ~v×u ~w := ~ε(~u, ~v, ~w, . )

Since ~a · ~u = 0, ~u · ~u = −1 and ~ω×u ~u = 0, applying (1) to ~e0 = ~u yields

d~u

dt
= c ~a

~a is thus the 4-acceleration of observer O
The vector ~ω is called the 4-rotation of observer O

As for the 4-velocity, the 4-acceleration and the 4-rotation are absolute quantities

O inertial observer ⇐⇒ ~a = 0 and ~ω = 0 ⇐⇒ d~eα
dt

= 0
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Accelerated observers in special relativity

Non-globlality of the local frame

The local frame of observer O is valid within a range
r � a−1 = ‖~a‖−1

g = (~a · ~a)−1/2

a = γ/c2 with γ acceleration of O relative to a tangent inertial observer

γ = 10 m s−2 =⇒ c2/γ ' 9× 1015 m ' 1 light-year !
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Kinematics

Lorentz factor

Observer O :
worldline L
4-velocity ~u
4-acceleration ~a
4-rotation ~ω
proper time t
local rest space Eu(t)

Massive particle P :
worldline L ′

4-velocity ~u′

proper time t′

Lorentz factor of P with respect to O: Γ :=
dt

dt′

One can show

Γ = −
~u · ~u′

1 + ~a ·
−−→
OM
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Kinematics

Relative velocity

Monitoring the motion of particle P within O’s local coordinates (t, xi):

−−−−−−→
O(t)M(t) = xi(t) ~ei(t)

The velocity of P relative to O is

~V (t) :=
dxi

dt
~ei(t)

By construction ~V (t) ∈ Eu(t): ~u · ~V = 0

The 4-velocity of P is expressible in terms of Γ and ~V as

~u′ = Γ
[
(1 + ~a ·

−−→
OM) ~u+

1
c

(
~V + ~ω×u

−−→
OM

)]
(2)

The normalization relation ~u′ · ~u′ = −1 is then equivalent to

Γ =
[
(1 + ~a ·

−−→
OM)2 − 1

c2

(
~V + ~ω×u

−−→
OM

)
·
(
~V + ~ω×u

−−→
OM

)]−1/2

(3)
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Kinematics

Relative acceleration

The acceleration of P relative to O is

~γ(t) :=
d2xi

dt2
~ei(t)

By construction ~γ(t) ∈ Eu(t): ~u · ~γ = 0

The 4-acceleration of P reads

~a′ =
Γ2

c2

{
~γ + ~ω×u

(
~ω×u

−−→
OM

)
+ 2~ω×u

~V +
d~ω

dt
×u
−−→
OM

+c2(1 + ~a ·
−−→
OM) ~a+

1
Γ
dΓ
dt

(
~V + ~ω×u

−−→
OM

)
+c

[
2~a ·

(
~V + ~ω×u

−−→
OM

)
+
d~a

dt
·
−−→
OM +

1
Γ
dΓ
dt

(1 + ~a ·
−−→
OM)

]
~u

}
.
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Kinematics

Special case of an inertial observer

If O is inertial, ~a = 0, ~ω = 0, and we recover well known formulæ :

~u′ = Γ
(
~u+

1
c
~V

)

Γ =
(

1− 1
c2
~V · ~V

)−1/2

~a′ =
Γ2

c2

[
~γ +

Γ2

c2
(~γ · ~V )

(
~V + c~u

)]
~a′ =

1
c2
~γ (~V = 0)
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Physics in an accelerated frame

Uniformly accelerated observer

Definition: the observer O is uniformly accelerated iff
its worldline stays in a plane Π ⊂ E
the norm of its 4-acceleration is constant a := ‖~a‖g =

√
~a · ~a = const

its 4-rotation vanishes : ~ω = 0
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a x
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0
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1.5

-1.5

-1.0

-0.5

a
A

∆
1

O

u∆
2

Worldline in terms of the coordinates
(ct∗, x∗, y∗, z∗) associated with an
inertial observer O∗:

ct∗ = a−1 sinh(act)
x∗ = a−1 [cosh(act)− 1]
y∗ = 0
z∗ = 0.

(ax∗ + 1)2 − (act∗)2 = 1

~u(t) = cosh(act) ~e ∗0 + sinh(act) ~e ∗1
~a(t) = a [sinh(act) ~e ∗0 + cosh(act) ~e ∗1 ]
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Physics in an accelerated frame

Coordinates associated with the accelerated observer

-2 -1 0 1 2 3 4
a x

*
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t * t=0

t=0.5(ac)
-1

t=-0.5 (ac) -1

t=
(ac)

-1

t=-(ac) -1

t=
1.5

(a
c)

-1
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x=
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a

x=
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a

x=
3/

a

x=
0

∆
2 a

A

∆
1

O

Relation between the coordinates
(t, x, y, z) associated with O and the
inertial coordinates (t∗, x∗, y∗, z∗):

ct∗ = (x+ a−1) sinh(act)
x∗ = (x+ a−1) cosh(act)− a−1

y∗ = y
z∗ = z.

with x > −a−1

The coordinates (t, x, y, z) are called
Rindler coordinates
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Physics in an accelerated frame

Time dilation at rest
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Observer O′ at rest with respect to O,
located at coord. (x, y, z) = (x0, 0, 0)

=⇒ ~V = 0

(3) =⇒ Γ =
[
1 + ~a(t) ·

−−−−−−−→
O(t)O′(t′)

]−1

(2) =⇒ ~u′(t′) = ~u(t)

=⇒ the local rest spaces of O and O′

coincide: Eu′(t′) = Eu(t)

~a(t) = a ~e1(t) and
−−−−−−−→
O(t)O′(t′) = x0~e1(t)

⇒ Γ = (1 + ax0)−1 & dt′ = (1 + ax0) dt

Since x0 = const, this relation can be integrated:

t′ = (1 + ax0) t

Analogous to Einstein effect in general relativity
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Physics in an accelerated frame

Photon trajectories
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Null geodesics in terms of inertial
coordinates:

ct∗ = ±(x∗ − b), b ∈ R

in terms of O’s coordinates:

ct = ±a−1 ln
(

1 + ax

1 + ab

)

x = −a−1 : Rindler horizon
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Physics in an accelerated frame

Redshift

Reception by O of a photon emitted by O′ at t′ = 0

If ~p is the photon 4-momentum, the energy
measured by O is

Erec = −c ~p · ~u(trec)

with

~p =
Eem

c
(~u′(0) + ~n′) =

Eem

c
(~e ∗0 − ~e ∗1 )

~u(trec) = cosh(actrec) ~e ∗0 + sinh(actrec) ~e ∗1
ctrec = a−1 ln(1 + axem)

=⇒ Erec = Eem(1 + axem)

=⇒ spectral shift z =
1

1 + axem
− 1

{
z > 0 for xem < 0
z < 0 for xem > 0
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Physics in an accelerated frame

Thomas precession

O∗ = inertial observer ; proper time t∗; (local) frame (~e ∗α)

O = accelerated observer without rotation; proper time t; local frame (~eα(t))

St : the boost from ~e ∗0 to ~e0(t) :

~e0(t) = St(~e ∗0 )

Let

~εα(t∗) := S−1
t (~eα(t))

⇐⇒ ~eα(t) = St(~εα(t∗))

~ε0 = ~e ∗0

(~εi) = triad in O∗’s rest space which is “quasi-parallel” to the triad (~ei) of O’s
local rest frame.
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Physics in an accelerated frame

Thomas precession

Evolution of O’s local rest frame:

~eα(t+ dt) = Λ(~eα)

According to (1) with ~ω = 0, Λ(~eα) = ~eα + c dt[(~a · ~eα) ~u− (~u · ~eα) ~a]

Λ is an infinitesimal boost

Hence
~eα(t+ dt) = Λ ◦ St(~εα(t∗))

Now in general, the composition of the boosts Λ and St is a boost times a
rotation — Thomas rotation:

Λ ◦ St = S′ ◦R

In the present case, R(~e ∗0 ) = ~e ∗0 , so that necessarily S′ = St+dt. Hence

~eα(t+ dt) = St+dt ◦R(~εα(t∗))

=⇒ ~εα(t∗ + dt∗) = R(~εα(t∗))
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Physics in an accelerated frame

Thomas precession

Thus
d~εi
dt∗

= ~ωT ×e∗
0
~εi

The following expression can be established for the rotation vector:

~ωT =
Γ2

c2(1 + Γ)
~γ ×e∗

0
~V

with
~V = velocity of O with respect to O∗
~γ = acceleration of O with respect to O∗
Γ = Lorentz factor of O with respect to O∗

Remark: if O is a uniformly accelerated observer, ~V and ~γ are parallel, so that
~ωT = 0
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Physics in a rotating frame
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Physics in a rotating frame

Uniformly rotating observer

Observer O in uniform rotation:

~a = 0 and ~ω = const

Local frame of O :

~e0(t) = ~e ∗0
~e1(t) = cosωt ~e ∗1 + sinωt ~e ∗2
~e2(t) = − sinωt ~e ∗1 + cosωt ~e ∗2
~e3(t) = ~e ∗3 = ω−1 ~ω

with (~e ∗α) reference frame of inertial observer O∗
Coordinate system of O : (t, x, y, z) such that x∗ = x cosωt− y sinωt

y∗ = x sinωt+ y cosωt
z∗ = z
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Physics in a rotating frame

Corotating observer

Observer O′ at rest with respect to O, i.e. at
fixed values of x = r cosϕ and y = r cosϕ
(z = 0)

Worldline in term of inertial coordinates: x∗(t) = r cos(ωt+ ϕ)
y∗(t) = r sin(ωt+ ϕ)
z∗(t) = 0.

Velocity of O′ w.r.t. O∗:
~V = rω ~n, with ~n := − sinϕ ~e1 + cosϕ ~e2

4-acceleration of O′ :

~a′ =
Γ2

c2
rω2 ~e ′2, ~e ′2 = − cosϕ ~e1 − sinϕ ~e2
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Physics in a rotating frame

The problem of clock synchronization

1-parameter family of corotating observers O′(λ)

Moving from O′(λ) to O′(λ+dλ)

A(λ) : event on O′(λ)’s worldline

A(λ+dλ) : event on O′(λ+dλ)’s worldline

simultaneous to A(λ) for O′(λ):

~u′(λ) ·
−−−−−−−−→
A(λ)A(λ+dλ) = 0 (4)

with
−−−−−−−−→
A(λ)A(λ+dλ) = c dt ~u+ d~̀+ dt ~V

d~̀ := dxi ~ei(t), separation between
O′(λ) and O′(λ+dλ) from the point of view
of O

Expanding (4) yields dt = Γ2
~V · d~̀
c2

Eric Gourgoulhon (LUTH) Special relativity and accelerated observers Observatoire de Paris, 14 June 2010 37 / 41



Physics in a rotating frame

The problem of clock synchronization

Integrating on a closed contour

Synchronization helix

Desynchronization lapse:

∆t′desync =
1

c2Γ(0)

∮
C

Γ2 ~V · d~̀
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Physics in a rotating frame

Sagnac effect

Two signals of same velocity w.r.t. O

After a round trip, discrepancy between the two arrival
times (t′: proper time of emitter O′):

∆t′ := t′+ − t′− = 2∆t′desync

=⇒ ∆t′ =
2

c2Γ(0)

∮
C

Γ2 ~V · d~̀ Sagnac delay
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Physics in a rotating frame

Sagnac experiment

Phase shift:

∆φ =
4πf
c2Γ(0)

∮
C

Γ2 ~V · d~̀

Slow rotation limit (rω � c):

∆φ =
8πf
c2

~ω · ~A

Application: gyrometers
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Physics in a rotating frame
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