Pictures of the interior of a Kerr black hole

Éric Gourgoulhon

Laboratoire Univers et Théories (LUTH) CNRS / Observatoire de Paris / Université de Paris Université Paris Sciences et Lettres 92190 Meudon, France

Team Relativité et Objets Compacts, LUTH 14 April 2020

What we learn at school (1/2)

Kerr metric, expressed in **Boyer-Lindquist coordinates** (t, r, θ, φ) :

$$ds^{2} = -\left(1 - \frac{2mr}{\rho^{2}}\right) dt^{2} - \frac{4amr\sin^{2}\theta}{\rho^{2}} dt d\varphi + \frac{\rho^{2}}{\Delta} dr^{2}$$
$$+\rho^{2}d\theta^{2} + \left(r^{2} + a^{2} + \frac{2a^{2}mr\sin^{2}\theta}{\rho^{2}}\right)\sin^{2}\theta d\varphi^{2},$$

 $\begin{array}{l} m: \mbox{ mass; } a=J/m \mbox{ reduced angular momentum} \\ \rho^2:=r^2+a^2\cos^2\theta, \quad \Delta:=r^2-2mr+a^2=(r-r_-)(r-r_+) \\ r_\pm:=m\pm\sqrt{m^2-a^2} \end{array}$

- $a = 0 \implies$ reduces to Schwarzschild metric
- black hole $\iff 0 \le a \le m$, naked singularity $\iff a > m$
- $\Delta = 0$: coordinate singularity (of Boyer-Lindquist coordinates) coincides with 2 horizons: $\mathcal{H} (r = r_+)$ and $\mathcal{H}_{in} (r = r_-)$
- $\rho = 0$: curvature singularity $\rho = 0 \iff r = 0$ and $\theta = \pi/2$: it is a ring, not a point — Ah bon?

Kerr metric, expressed in Kerr-Schild coordinates (\tilde{t}, x, y, z) :

$$ds^{2} = -d\tilde{t}^{2} + dx^{2} + dy^{2} + dz^{2} + \frac{2mr^{3}}{r^{4} + a^{2}z^{2}} \left(d\tilde{t} + \frac{rx + ay}{r^{2} + a^{2}} dx + \frac{ry - ax}{r^{2} + a^{2}} dy + \frac{z}{r} dz \right)^{2}$$

with r = r(x, y, z) such that $\frac{x^2 + y^2}{r^2 + a^2} + \frac{z^2}{r^2} = 1$

- $g_{\alpha\beta} = f_{\alpha\beta} + 2Hk_{\alpha}k_{\beta}$ with $f_{\alpha\beta} =$ Minkowski metric, $H := mr^3/(r^4 + a^2z^2)$ and null vector $k^{\alpha} = \left(1, -\frac{rx + ay}{r^2 + a^2}, -\frac{ry - ax}{r^2 + a^2}, -\frac{z}{r}\right)$
- \bullet Kerr-Schild coordinates are regular at ${\cal H}$ and ${\cal H}_{\rm in}$
- curvature singularity: z = 0 and $x^2 + y^2 = a^2$ (looks indeed like a ring)

Spacetime: pair (\mathcal{M}, g) , where \mathcal{M} is a smooth manifold and g a Lorentzian metric on \mathcal{M}

Spacetime manifold:

Boyer-Lindquist coordinates (t, r, θ, φ) are *not* spherical-type coordinates on \mathbb{R}^4 They are rather coordinates on the Cartesian product

More precisely, the Kerr spacetime manifold is

$$\mathscr{M} = \mathbb{R}^2 \times \mathbb{S}^2 \setminus \mathscr{R}$$

with

$$\mathscr{R} = \left\{ p \in \mathbb{R}^2 \times \mathbb{S}^2, \quad r(p) = 0 \text{ and } \theta(p) = \frac{\pi}{2} \right\}$$

 $\text{Hence on } \mathscr{M}\text{, } t \in (-\infty,+\infty)\text{, } \overline{r \in (-\infty,+\infty)}\text{, } \theta \in [0,\pi]\text{, } \varphi \in [0,2\pi)\text{.}$

The $\mathbb{R}^2 \times \mathbb{S}^2$ manifold

the ring singularity is the equator $(\theta = \pi/2)$ of that sphere

The $\mathbb{R}^2 \times \mathbb{S}^2$ manifold

View of a meridional slice $t={\rm const}$ and $\varphi=0$ or π of Kerr spacetime in O'Neill coordinates for a/m=0.90

• in grey: the ergoregion: Killing vector $\frac{\partial}{\partial t}$ is spacelike

• in yellow: the Carter time machine: Killing vector $\frac{\partial}{\partial \varphi}$ is timelike

The metric induced by g on the subset r = 0 is

$$ds^{2}|_{r=0} = -dt^{2} + a^{2} \left(\cos^{2}\theta \,d\theta^{2} + \sin^{2}\theta \,d\varphi^{2}\right)$$

This is a flat metric, as the change of coordinates $X = a \sin \theta \cos \varphi$, $Y = a \sin \theta \sin \varphi$ reveals: $ds^2 |_{r=0} = -dt^2 + dX^2 + dY^2$

For a > 0, the subset t = const, r = 0 of Kerr spacetime \mathscr{M} is made of 2 connected components: the Northern and Southern (open) hemispheres of the sphere t = const, r = 0 of $\mathbb{R}^2 \times \mathbb{S}^2$, which are actually two flat open disks of metric radius a. The equator of that sphere ($\theta = \pi/2$) would correspond to the curvature singularity and is excluded from \mathscr{M} .

A B A B A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

7/16

Kerr coordinates

Kerr coordinates $(v, r, \theta, \tilde{\varphi})$ are the coordinates in which Roy Kerr obtained his solution to Einstein equation (1963); they are related to Boyer-Lindquist coordinates (t, r, θ, φ) by

$$\begin{aligned} v &= t + r + \frac{m}{\sqrt{m^2 - a^2}} \left(r_+ \ln \left| \frac{r - r_+}{2m} \right| - r_- \ln \left| \frac{r - r_-}{2m} \right| \right) \\ \tilde{\varphi} &= \varphi + \frac{a}{2\sqrt{m^2 - a^2}} \ln \left| \frac{r - r_+}{r - r_-} \right| \end{aligned}$$

Kerr metric in Kerr coordinates:

$$ds^{2} = -\left(1 - \frac{2mr}{\rho^{2}}\right) dv^{2} + 2dv dr - \frac{4amr\sin^{2}\theta}{\rho^{2}} dv d\tilde{\varphi}$$
$$-2a\sin^{2}\theta dr d\tilde{\varphi} + \rho^{2}d\theta^{2} + \left(r^{2} + a^{2} + \frac{2a^{2}mr\sin^{2}\theta}{\rho^{2}}\right)\sin^{2}\theta d\tilde{\varphi}^{2}$$

- $\bullet\,$ Kerr coordinates reduce to Eddington-Finkelstein coord. when a=0
- $\bullet\,$ They are regular on both Killing horizons ${\cal H}$ and ${\cal H}_{\rm in}$
- They are such that the curves $(v, \theta, \tilde{\varphi}) = \text{const}$ are the ingoing principal null geodesics of Kerr spacetime

Éric Gourgoulhon (LUTH)

Principal null geodesics

Ingoing (dashed) and outgoing (solid) principal null geodesics of Kerr spacetime with a/m = 0.90 viewed in coordinates (\tilde{t}, r) related to Kerr coordinates by $\tilde{t} = v - r$.

From Kerr coordinates to Kerr-Schild ones

Kerr-Schild coordinates (\tilde{t}, x, y, z) have been introduced in 1963 by Roy Kerr in the very same paper announcing the discovery of Kerr metric, via the following transformation from Kerr coordinates $(v, r, \theta, \tilde{\varphi})$:

$$\begin{split} \tilde{t} &= v - r \\ x &= (r\cos\tilde{\varphi} - a\sin\tilde{\varphi})\sin\theta \\ y &= (r\sin\tilde{\varphi} + a\cos\tilde{\varphi})\sin\theta \\ z &= r\cos\theta \end{split}$$

The null vector \mathbf{k} entering in the Kerr-Schild form of the metric $(g = f + 2H\underline{k} \otimes \underline{k})$ is then nothing but the vector $k = -\frac{\partial}{\partial m}$ tangent to the ingoing principal null geodesics.

Kerr-Schild coordinates, with $(\tilde{t}, x, y, z) \in \mathbb{R}^4$, cover only the part $r \ge 0$ of Kerr spacetime \mathcal{M} . Another Kerr-Schild patch is required to cover the part r < 0. Moreover Kerr-Schild coordinates are singular at r = 0: the points of Kerr coordinates $(v, 0, \theta, \tilde{\varphi})$ and $(v, 0, \pi - \theta, \tilde{\varphi})$ have the same Kerr-Schild coordinates $(\tilde{t}, x, y, z) = (v, -a\sin\theta\sin\tilde{\varphi}, a\sin\theta\cos\theta, 0).$

Meridional slice viewed in Kerr-Schild coordinates

Surface $\tilde{t} = \text{const}$, $\tilde{\varphi} \in \{0, \pi\}$ and $r \ge 0$ of the a/m = 0.90 Kerr spacetime depicted in terms of the Kerr-Schild coordinates (x, y, z). Red lines are curves r = const, while the green ones are curves $\theta = \text{const}$, which can be thought of as the traces of the ingoing principal null geodesics. The thick black curve marks \mathcal{H} and the thick blue curve \mathcal{H}_{in} . The thick red segment along the y-axis corresponds to r = 0.

See the SageMath notebook https: //nbviewer.jupyter.org/github/ egourgoulhon/BHLectures/blob/ master/sage/Kerr_Schild.ipynb for an interactive 3D view.

Immersion of a full meridional slice in Euclidean space

Immersion of the full $\tilde{t} = \text{const}$ and $\tilde{\varphi} \in \{0, \pi\}$ surface of the a/m = 0.90 Kerr spacetime in the Euclidean space \mathbb{R}^3 , using Kerr-Schild coordinates (x, y, z) for the $r \ge 0$ part (drawn in grey) and Kerr-Schild coordinates (x', y', z') for the $r \le 0$ part (drawn in pink).

See the SageMath notebook https: //nbviewer.jupyter.org/github/ egourgoulhon/BHLectures/blob/ master/sage/Kerr_Schild.ipynb for an interactive 3D view.

Carter-Penrose diagram of Kerr spacetime

Conformal diagram of the Kerr spacetime (\mathcal{M}, g) , with $\mathcal{M} = \mathbb{R}^2 \times \mathbb{S}^2 \setminus \mathcal{R}$

- dashed green lines: ingoing principal null geodesics
- solid green lines: outgoing principal null geodesics
- dotted red curves: hypersurfaces r = const

The outgoing principal null geodesics are not complete (they end at some finite value of their affine parameter $r) \Longrightarrow$ the spacetime can be extended

Maximal analytic extension of Kerr spacetime

Conformal diagram of maximal analytic extension of Kerr spacetime

- dotted red curves: hypersurfaces r = const
- black or light brown dots: bifurcation spheres of bifurcate Killing horizons

Éric Gourgoulhon (LUTH)

ROC, 14 April 2020 14 / 16

The inner horizon as a Cauchy horizon

Partial Cauchy surface Σ and its future Cauchy development $D^+(\Sigma)$ (hatched)

 \mathcal{H}_C : Cauchy horizon

Lecture notes with more details and figures, as well as the Inkscape and SageMath sources of the figures shown here, can be found at

https://luth.obspm.fr/~luthier/gourgoulhon/bh16/