Pictures of the interior of a Kerr black hole

Éric Gourgoulhon

Laboratoire Univers et Théories (LUTH)
CNRS / Observatoire de Paris / Université de Paris
Université Paris Sciences et Lettres
92190 Meudon, France

Team Relativité et Objets Compacts, LUTH
14 April 2020

What we learn at school (1/2)

Kerr metric, expressed in Boyer-Lindquist coordinates (t, r, θ, φ) :

$$
\begin{aligned}
\mathrm{d} s^{2}= & -\left(1-\frac{2 m r}{\rho^{2}}\right) \mathrm{d} t^{2}-\frac{4 a m r \sin ^{2} \theta}{\rho^{2}} \mathrm{~d} t \mathrm{~d} \varphi+\frac{\rho^{2}}{\Delta} \mathrm{~d} r^{2} \\
& +\rho^{2} \mathrm{~d} \theta^{2}+\left(r^{2}+a^{2}+\frac{2 a^{2} m r \sin ^{2} \theta}{\rho^{2}}\right) \sin ^{2} \theta \mathrm{~d} \varphi^{2}
\end{aligned}
$$

m : mass; $\quad a=J / m$ reduced angular momentum
$\rho^{2}:=r^{2}+a^{2} \cos ^{2} \theta, \quad \Delta:=r^{2}-2 m r+a^{2}=\left(r-r_{-}\right)\left(r-r_{+}\right)$
$r_{ \pm}:=m \pm \sqrt{m^{2}-a^{2}}$

- $a=0 \Longrightarrow$ reduces to Schwarzschild metric
- black hole $\Longleftrightarrow 0 \leq a \leq m$, naked singularity $\Longleftrightarrow a>m$
- $\Delta=0$: coordinate singularity (of Boyer-Lindquist coordinates) coincides with 2 horizons: $\mathcal{H}\left(r=r_{+}\right)$and $\mathcal{H}_{\text {in }}\left(r=r_{-}\right)$
- $\rho=0$: curvature singularity $\rho=0 \Longleftrightarrow r=0$ and $\theta=\pi / 2$: it is a ring, not a point - Ah bon?

What we learn at school (2/2)

Kerr metric, expressed in Kerr-Schild coordinates (\tilde{t}, x, y, z) :

$$
\begin{aligned}
\mathrm{d} s^{2}= & -\mathrm{d} \tilde{t}^{2}+\mathrm{d} x^{2}+\mathrm{d} y^{2}+\mathrm{d} z^{2} \\
& +\frac{2 m r^{3}}{r^{4}+a^{2} z^{2}}\left(\mathrm{~d} \tilde{t}+\frac{r x+a y}{r^{2}+a^{2}} \mathrm{~d} x+\frac{r y-a x}{r^{2}+a^{2}} \mathrm{~d} y+\frac{z}{r} \mathrm{~d} z\right)^{2}
\end{aligned}
$$

with $r=r(x, y, z)$ such that $\frac{x^{2}+y^{2}}{r^{2}+a^{2}}+\frac{z^{2}}{r^{2}}=1$

- $g_{\alpha \beta}=f_{\alpha \beta}+2 H k_{\alpha} k_{\beta}$ with $f_{\alpha \beta}=$ Minkowski metric, $H:=m r^{3} /\left(r^{4}+a^{2} z^{2}\right)$ and null vector $k^{\alpha}=\left(1,-\frac{r x+a y}{r^{2}+a^{2}},-\frac{r y-a x}{r^{2}+a^{2}},-\frac{z}{r}\right)$
- Kerr-Schild coordinates are regular at \mathcal{H} and $\mathcal{H}_{\text {in }}$
- curvature singularity: $z=0$ and $x^{2}+y^{2}=a^{2}$ (looks indeed like a ring)

A metric is not a spacetime

Spacetime: pair (\mathscr{M}, g), where \mathscr{M} is a smooth manifold and g a Lorentzian metric on \mathscr{M}

Spacetime manifold:
Boyer-Lindquist coordinates (t, r, θ, φ) are not spherical-type coordinates on \mathbb{R}^{4} They are rather coordinates on the Cartesian product

More precisely, the Kerr spacetime manifold is

$$
\mathscr{M}=\mathbb{R}^{2} \times \mathbb{S}^{2} \backslash \mathscr{R}
$$

with

$$
\mathscr{R}=\left\{p \in \mathbb{R}^{2} \times \mathbb{S}^{2}, \quad r(p)=0 \text { and } \theta(p)=\frac{\pi}{2}\right\}
$$

Hence on $\mathscr{M}, t \in(-\infty,+\infty), r \in(-\infty,+\infty), \theta \in[0, \pi], \varphi \in[0,2 \pi)$.

The $\mathbb{R}^{2} \times \mathbb{S}^{2}$ manifold

View of a slice $t=$ const of Kerr spacetime in O'Neill coordinates (R, θ, φ), which are related to Boyer-Lindquist coordinates by $R=\mathrm{e}^{r}$
NB: the subset $r=0$ is a 2 -sphere, as for any constant value of r the ring singularity is the equator $(\theta=\pi / 2)$ of that sphere

The $\mathbb{R}^{2} \times \mathbb{S}^{2}$ manifold

View of a meridional slice $t=$ const and $\varphi=0$ or π of Kerr spacetime in O'Neill coordinates for $a / m=0.90$

- in grey: the ergoregion: Killing vector $\frac{\partial}{\partial t}$ is spacelike
- in yellow: the Carter time machine: Killing vector $\frac{\partial}{\partial \varphi}$ is timelike

The subset $r=0$

The metric induced by \boldsymbol{g} on the subset $r=0$ is

$$
\left.\mathrm{d} s^{2}\right|_{r=0}=-\mathrm{d} t^{2}+a^{2}\left(\cos ^{2} \theta \mathrm{~d} \theta^{2}+\sin ^{2} \theta \mathrm{~d} \varphi^{2}\right)
$$

This is a flat metric, as the change of coordinates $X=a \sin \theta \cos \varphi$, $Y=a \sin \theta \sin \varphi$ reveals: $\left.\mathrm{d} s^{2}\right|_{r=0}=-\mathrm{d} t^{2}+\mathrm{d} X^{2}+\mathrm{d} Y^{2}$

For $a>0$, the subset $t=$ const, $r=0$ of Kerr spacetime \mathscr{M} is made of 2 connected components: the Northern and Southern (open) hemispheres of the sphere $t=$ const, $r=0$ of $\mathbb{R}^{2} \times \mathbb{S}^{2}$, which are actually two flat open disks of metric radius a. The equator of that sphere $(\theta=\pi / 2)$ would correspond to the curvature singularity and is excluded from \mathscr{M}.

Kerr coordinates

Kerr coordinates $(v, r, \theta, \tilde{\varphi})$ are the coordinates in which Roy Kerr obtained his solution to Einstein equation (1963); they are related to Boyer-Lindquist coordinates (t, r, θ, φ) by
$v=t+r+\frac{m}{\sqrt{m^{2}-a^{2}}}\left(r_{+} \ln \left|\frac{r-r_{+}}{2 m}\right|-r_{-} \ln \left|\frac{r-r_{-}}{2 m}\right|\right)$
$\tilde{\varphi}=\varphi+\frac{a}{2 \sqrt{m^{2}-a^{2}}} \ln \left|\frac{r-r_{+}}{r-r_{-}}\right|$
Kerr metric in Kerr coordinates:

$$
\begin{aligned}
\mathrm{d} s^{2}= & -\left(1-\frac{2 m r}{\rho^{2}}\right) \mathrm{d} v^{2}+2 \mathrm{~d} v \mathrm{~d} r-\frac{4 a m r \sin ^{2} \theta}{\rho^{2}} \mathrm{~d} v \mathrm{~d} \tilde{\varphi} \\
& -2 a \sin ^{2} \theta \mathrm{~d} r \mathrm{~d} \tilde{\varphi}+\rho^{2} \mathrm{~d} \theta^{2}+\left(r^{2}+a^{2}+\frac{2 a^{2} m r \sin ^{2} \theta}{\rho^{2}}\right) \sin ^{2} \theta \mathrm{~d} \tilde{\varphi}^{2}
\end{aligned}
$$

- Kerr coordinates reduce to Eddington-Finkelstein coord. when $a=0$
- They are regular on both Killing horizons \mathcal{H} and $\mathcal{H}_{\text {in }}$
- They are such that the curves $(v, \theta, \tilde{\varphi})=$ const are the ingoing principal null geodesics of Kerr spacetime

Principal null geodesics

Ingoing (dashed) and outgoing (solid) principal null geodesics of Kerr spacetime with $a / m=0.90$ viewed in coordinates (\tilde{t}, r) related to Kerr coordinates by $\tilde{t}=v-r$.

From Kerr coordinates to Kerr-Schild ones

Kerr-Schild coordinates (\tilde{t}, x, y, z) have been introduced in 1963 by Roy Kerr in the very same paper announcing the discovery of Kerr metric, via the following transformation from Kerr coordinates $(v, r, \theta, \tilde{\varphi})$:

$$
\begin{aligned}
\tilde{t} & =v-r \\
x & =(r \cos \tilde{\varphi}-a \sin \tilde{\varphi}) \sin \theta \\
y & =(r \sin \tilde{\varphi}+a \cos \tilde{\varphi}) \sin \theta \\
z & =r \cos \theta
\end{aligned}
$$

The null vector k entering in the Kerr-Schild form of the metric $(g=f+2 H \underline{\boldsymbol{k}} \otimes \underline{\boldsymbol{k}})$ is then nothing but the vector $k=-\frac{\partial}{\partial r}$ tangent to the ingoing principal null geodesics.

Kerr-Schild coordinates, with $(\tilde{t}, x, y, z) \in \mathbb{R}^{4}$, cover only the part $r \geq 0$ of Kerr spacetime \mathscr{M}. Another Kerr-Schild patch is required to cover the part $r \leq 0$. Moreover Kerr-Schild coordinates are singular at $r=0$: the points of Kerr coordinates $(v, 0, \theta, \tilde{\varphi})$ and $(v, 0, \pi-\theta, \tilde{\varphi})$ have the same Kerr-Schild coordinates $(\tilde{t}, x, y, z)=(v,-a \sin \theta \sin \tilde{\varphi}, a \sin \theta \cos \theta, 0)$.

Meridional slice viewed in Kerr-Schild coordinates

Surface $\tilde{t}=$ const, $\tilde{\varphi} \in\{0, \pi\}$ and $r \geq 0$ of the $a / m=0.90$ Kerr spacetime depicted in terms of the Kerr-Schild coordinates (x, y, z). Red lines are curves $r=$ const, while the green ones are curves $\theta=$ const, which can be thought of as the traces of the ingoing principal null geodesics. The thick black curve marks \mathcal{H} and the thick blue curve $\mathcal{H}_{\mathrm{in}}$. The thick red segment along the y-axis corresponds to $r=0$.

See the SageMath notebook https: //nbviewer.jupyter.org/github/ egourgoulhon/BHLectures/blob/ master/sage/Kerr_Schild.ipynb for an interactive 3D view.

Immersion of a full meridional slice in Euclidean space

Immersion of the full $\tilde{t}=$ const and $\tilde{\varphi} \in\{0, \pi\}$ surface of the $a / m=0.90$ Kerr spacetime in the Euclidean space \mathbb{R}^{3}, using Kerr-Schild coordinates (x, y, z) for the $r \geq 0$ part (drawn in grey) and Kerr-Schild coordinates ($x^{\prime}, y^{\prime}, z^{\prime}$) for the $r \leq 0$ part (drawn in pink).

See the SageMath notebook https: //nbviewer.jupyter.org/github/ egourgoulhon/BHLectures/blob/ master/sage/Kerr_Schild.ipynb for an interactive 3D view.

Carter-Penrose diagram of Kerr spacetime

Conformal diagram of the Kerr spacetime $(\mathscr{M}, \boldsymbol{g})$, with $\mathscr{M}=\mathbb{R}^{2} \times \mathbb{S}^{2} \backslash \mathscr{R}$

- dashed green lines: ingoing principal null geodesics
- solid green lines: outgoing principal null geodesics
- dotted red curves: hypersurfaces $r=$ const

The outgoing principal null geodesics are not complete (they end at some finite value of their affine parameter $r) \Longrightarrow$ the spacetime can be extended

Maximal analytic extension of Kerr spacetime

Conformal diagram of maximal analytic extension of Kerr spacetime

- dotted red curves: hypersurfaces $r=$ const
- black or light brown dots: bifurcation spheres of bifurcate Killing horizons

The inner horizon as a Cauchy horizon

Partial Cauchy surface Σ and its future Cauchy development $D^{+}(\Sigma)$ (hatched)
\mathcal{H}_{C} : Cauchy horizon

More figures?

Lecture notes with more details and figures, as well as the Inkscape and SageMath sources of the figures shown here, can be found at
https://luth.obspm.fr/~luthier/gourgoulhon/bh16/

