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Introduction

Classical definition of a black hole

[from Booth, gr-qc/0508107]

black hole [e.g. Wald (1984)]:

B := M − J−(I +)

M = asymptotically flat manifold

I + = future null infinity

J−(I +) = causal past of I +

event horizon: H := J̇−(I +)
(boundary of J−(I +))

H smooth =⇒ H null hypersurface
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Introduction

This is a highly non-local definition !

The determination of the boundary of J−(I +) requires the knowledge of the
entire future null infinity. Moreover this is not locally linked with the notion of
strong gravitational field:

[Ashtekar & Krishnan, LRR 7, 10 (2004)]

Example of event horizon in a flat region of
spacetime:
Vaidya metric, describing incoming radiation
from infinity:

ds2 = −
(

1− 2m(v)

r

)
dv2 + 2dv dr + r2(dθ2 +

sin2 θdϕ2)
with m(v) = 0 for v < 0

dm/dv > 0 for 0 ≤ v ≤ v0

m(v) = M0 for v > v0
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Local approaches to black holes

Trapped surfaces

Local concepts characterizing very strong gravitational fields:

trapped surfaces: introduced in 1965 by Penrose

outer trapped surfaces and related notion of apparent horizon introduced in
1973 by Hawking and Ellis.
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Local approaches to black holes

Closed spacelike surfaces

S : closed (i.e. compact without boundary) spacelike 2-dimensional surface
embedded in spacetime (M , g)
S spacelike ⇐⇒ metric q induced by g is positive definite
q not degenerate =⇒ orthogonal decomposition of the tangent space at any
p ∈ M :

Tp(M ) = Tp(S)⊕ Tp(S)⊥

q: induced metric on S, components: qαβ

~q: orthogonal projector onto S, components: qα
β
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Local approaches to black holes

Projection operator ~q∗

A : tensor of covariance type (m,n)
~q∗A : tensor of same covariance type, defined by

(~q∗A)α1...αm

β1...βn
:= qα1

µ1
. . . qαm

µm
qν1

β1
. . . qνn

βn
Aµ1...µm

ν1...νn

Remark: for a vector: ~q∗v = ~q(v)
for a 1-form, ~q∗ω = ω ◦ ~q

Definition: a tensor A is tangent to S iff ~q∗A = A.
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Local approaches to black holes

Expansion and shear along normal vectors

Let v be a vector field on M , defined at least at S and everywhere normal to S.
NB: v is not assumed to be null

Deformation tensor of S along v: Θ(v) := ~q∗∇v or Θ
(v)
αβ := ∇νvµ qµ

αqν
β

v normal to a 2-surface (S) =⇒ Θ(v) is a symmetric bilinear form

Prop: Θ(v) =
1

2
~q∗Lv q

Decomposition into traceless part (shear σ(v)) and trace part (expansion θ(v) ):

Θ(v) = σ(v) +
1

2
θ(v) q with θ(v) := qµνΘ(v)

µν = Lv ln
√

q, q := det qab

Prop: Lv
Sε = θ(v) Sε with Sε surface element of (S, q) : Sε =

√
q dx2 ∧ dx3

=⇒ hence the name expansion
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Local approaches to black holes

Null frames normal to S and trapping of light rays

∃ two future-directed null directions
orthogonal to S, generated by a pair
linearly independent future-directed null
vectors (`,k):
` · ` = 0, k · k = 0, ` · k =: −eσ

S is trapped ⇐⇒ θ(k) ≤ 0 and θ(`) ≤ 0
S is marginally trapped ⇐⇒ θ(k) ≤ 0 and θ(`) = 0 (or vice-versa)

S is outer trapped ⇐⇒ ` is outgoing1 and θ(`) ≤ 0
S is marginally outer trapped (MOTS) ⇐⇒ ` is outgoing and θ(`) = 0

1requires assumption of asymptotic flatness
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Local approaches to black holes

Apparent horizon

Σ: spacelike hypersurface extending to spatial infinity (Cauchy surface)

outer trapped region of Σ : Ω = set of points p ∈ Σ through which there is a
outer trapped surface S lying in Σ

apparent horizon in Σ: A = connected component of the boundary of Ω

Prop. [Hawking & Ellis (1973)]: A smooth =⇒ A is a MOTS

NB [Eardley, PRD 57, 2299 (1998)] : A is not necessarily smooth
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Local approaches to black holes

Connection with singularities and black holes

Prop. [Penrose (1965)]: provided the weak energy condition holds,
∃ a trapped surface S =⇒ ∃ a singularity in (M , g) (in the form of a future
inextendible null geodesic)

Prop. [Hawking & Ellis (1973)]: provided the cosmic censorship conjecture holds,
any apparent horizon A is contained in a black hole
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Local approaches to black holes

Local definitions of “black holes”

A hypersurface H of (M , g) is said to be

a future outer trapping horizon (FOTH) [Hayward, PRD 49, 6467 (1994)] iff
(i) H foliated by marginally trapped 2-surfaces (θ(k) < 0 and θ(`) = 0)
(ii) Lk θ(`) < 0 (assuming H is member of a dual-null foliation)

a dynamical horizon [Ashtekar & Krishnan, PRL 89 261101 (2002)] iff
(i) H is foliated by marginally trapped 2-surfaces
(ii) H is spacelike

a non-expanding horizon [Há́iček (1973)] iff
(i) H is null (null normal `)
(ii) H has the R× S2 topology
(iii) θ(`) = 0
(iv) the null dominant energy condition holds at H
an isolated horizon [Ashtekar, Beetle & Fairhurst, CQG 16, L1 (1999)] iff
(i) H is a non-expanding horizon
(ii) H’s full geometry is not evolving along the null generators: [L` , ∇̂] = 0

BH in equilibrium: NEH, IH, BH out of equilibrium: DH, generic BH: FOTH
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Black hole viscosity

Concept of black hole viscosity

Hartle (1973): introduced the concept of black hole viscosity when
studying the response of the event horizon to external perturbations

Damour (1979): 2-dimensional Navier-Stokes like equation for the event
horizon =⇒ shear viscosity and bulk viscosity

Thorne and Price (1986): membrane paradigm for black holes
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Black hole viscosity

Shall we restrict the analysis to the event horizon ?

Can we extend the concept of viscosity to the local characterizations of black hole
recently introduced, i.e. future outer trapping horizons and dynamical horizons ?

NB: event horizon = null hypersurface
future outer trapping horizon = null or spacelike hypersurface
dynamical horizon = spacelike hypersurface

Eric Gourgoulhon (LUTH, Meudon) Damour-Navier-Stokes equation Meudon, 7 October 2005 17 / 42



Geometry of hypersurface foliations by spacelike 2-surfaces

Outline

1 Introduction

2 Local approaches to black holes

3 Black hole viscosity

4 Geometry of hypersurface foliations by spacelike 2-surfaces

5 The generalized Damour-Navier-Stokes equation

6 Application to angular momentum flux law

Eric Gourgoulhon (LUTH, Meudon) Damour-Navier-Stokes equation Meudon, 7 October 2005 18 / 42



Geometry of hypersurface foliations by spacelike 2-surfaces

Foliation of a hypersurface by spacelike 2-surfaces

hypersurface H = submanifold of
spacetime (M , g) of codimension 1

H can be

 spacelike
null
timelike

H =
⋃
t∈R

St

St = spacelike 2-surface

⇐= 3+1 perspective

intrinsic viewpoint adopted here (i.e. not
relying on extra-structure such as a 3+1
foliation)
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Geometry of hypersurface foliations by spacelike 2-surfaces

Evolution vector

Vector field h on H defined by

(i) h is tangent to H
(ii) h is orthogonal to St

(iii) Lh t = hµ∂µt = 〈dt, h〉 = 1

NB: (iii) =⇒ the 2-surfaces St are Lie-dragged
by h
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Geometry of hypersurface foliations by spacelike 2-surfaces

Lie derivatives along h

Since the 2-surfaces St are Lie-dragged by h, so are their tangent vectors:

∀v ∈ T (St), Lh v ∈ T (St)

i.e. Lh = internal operator on T (St)

Extension to 1-forms in T ∗(St):

∀v ∈ T (St), 〈Lh ω,v〉 := Lh 〈ω,v〉 − 〈ω,Lh v〉.

Extension to any tensor A tangent to St by tensor products
Definition:

SLh A := ~q∗Lh A = ~q∗Lh ~q∗A
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Geometry of hypersurface foliations by spacelike 2-surfaces

Norm of h and type of H

Definition: C :=
1

2
h · h

H is spacelike ⇐⇒ C > 0 ⇐⇒ h is spacelike
H is null ⇐⇒ C = 0 ⇐⇒ h is null
H is timelike ⇐⇒ C < 0 ⇐⇒ h is timelike.
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Geometry of hypersurface foliations by spacelike 2-surfaces

Frames normal to St

Two natural types of choice for a vector basis of
Tp(St)

⊥ :

1 an orthonormal basis (n, s) (n = timelike, s
= spacelike):
n · n = −1, s · s = 1, n · s = 0

2 a pair linearly independent future-directed
null vectors (`,k):
` · ` = 0, k · k = 0, ` · k =: −eσ

Degrees of freedom:

1 boost :

{
n′ = cosh η n + sinh η s
s′ = sinh η n + cosh η s

, η ∈ R

2 rescaling :

{
`′ = λ `, λ > 0
k′ = µk, µ > 0

Orthogonal projector: ~q = 1 + 〈n, .〉n− 〈s, .〉 s = 1 + e−σ〈k, .〉 ` + e−σ〈`, .〉k
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Geometry of hypersurface foliations by spacelike 2-surfaces

Example of normal frames

H = event horizon of Schwarzschild
black hole
St = slice of constant
Eddington-Finkelstein time
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Geometry of hypersurface foliations by spacelike 2-surfaces

Second fundamental tensor of St

Tensor K of type (1, 2) relating the covariant derivative of a vector tangent to St

taken by the spacetime connection ∇ to that taken by the connection D in St

compatible with the induced metric q:

∀(u,v) ∈ T (St)
2, ∇uv = Duv + K(u,v)

Prop:
Kα

βγ = ∇µqα
ν qµ

βqν
γ

Kα
βγ = nα Θ

(n)
βγ − sα Θ

(s)
βγ = e−σ

(
kα Θ

(`)
βγ + `α Θ

(k)
βγ

)
Remark: for a hypersurface of normal n and extrinsic curvature K,
Kα

βγ = −nαKβγ
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Geometry of hypersurface foliations by spacelike 2-surfaces

Normal fundamental forms

Extrinsic geometry of St not entirely specified by K (contrary to the hypersurface
case)

K involves only the deformation tensors Θ(.) of the normals to St =⇒ K encodes
only the part of the variation of St’s normals which is parallel to St

Variation of the two normals with respect to each other: encoded by the normal
fundamental forms (also called external rotation coefficients or connection on
the normal bundle, or if H is null, Há́iček 1-form):

1 Ω(n) := s ·∇~q n or Ω(n)
α := sµ∇νnµ qν

α

Ω(s) := n ·∇~q s

2 Ω(`) :=
1

k · `
k ·∇~q ` or Ω(`)

α :=
1

kρ`ρ
kµ∇ν`µ qν

α

Ω(k) :=
1

k · `
` ·∇~q k
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Geometry of hypersurface foliations by spacelike 2-surfaces

Basic properties of the normal fundamental forms

From the definition: Ω(s) = −Ω(n) and Ω(k) = −Ω(`) + Dσ

Relation between the (n, s)-type and the (`,k)-type:
Ω(`) = Ω(n) [` = n + s] and Ω(k) = −Ω(n) [k = n− s]

The normal fundamental forms are not unique

(contrary to the second fundamental tensor K)
Dependence of the normal frame

1 (n, s) 7→ (n′, s′) =⇒ Ω(n′) = Ω(n) + Dη

2 (`,k) 7→ (`′,k′) =⇒ Ω(`′) = Ω(`) + D lnλ
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Geometry of hypersurface foliations by spacelike 2-surfaces

“Surface-gravity” 1-forms

If the vector fields (`,k) are extended away from St, define the 1-form

κ(`) :=
1

k · `
k ·∇p ` or κ(`)

α :=
1

kρ`ρ
kµ∇ν`µ pν

α

where p is the orthogonal projector complementary to ~q: 1 = ~q + p.

NB: Since p is a projector in a direction transverse to St, the 1-form κ(`) is not
intrinsic to the 2-surface St: it depends on the choice of ` away from St

If ` is extended along one of the two families of light rays emanating radially from
St, then ` is pre-geodesic: ∇` ` = ν(`) `, with the inaffinity parameter (surface

gravity if ` = null Killing vector of Kerr spacetime) given by the 1-form κ(`)

applied to `:
ν(`) = 〈κ(`), `〉
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Geometry of hypersurface foliations by spacelike 2-surfaces

Normal null frame associated with the evolution vector

The foliation (St)t∈R entirely fixes the
ambiguities in the choice of the null normal
frame (`,k), via the evolution vector h:
there exists a unique normal null frame (`,k)
such that

h = `− Ck and ` · k = −1
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The generalized Damour-Navier-Stokes equation

Navier-Stokes equation in Newtonian fluid dynamics

ρ

(
∂vi

∂t
+ vj∇jv

i

)
= −∇iP + µ∆vi +

(
ζ +

µ

3

)
∇i(∇jv

j) + f i

or, in terms of fluid momentum density πi := ρvi,

∂πi

∂t
+ vj∇jπi + θπi = −∇iP + 2µ∇jσij + ζ∇iθ + fi

where θ is the fluid expansion:
θ := ∇jv

j

and σij the velocity shear tensor:

σij :=
1

2
(∇ivj +∇jvi)−

1

3
θ δij

P is the pressure, µ the shear viscosity, ζ the bulk viscosity and fi the density of
external forces
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The generalized Damour-Navier-Stokes equation

Original Damour-Navier-Stokes equation

Hyp: H = null hypersurface (particular case: black hole event horizon)
Then h = ` (C = 0) reminder

Damour (1979) has derived from Einstein equation the relation

SL` Ω(`) + θ(`)Ω(`) = Dν(`) −D · ~σ(`) +
1

2
Dθ(`) + 8π~q∗T · `

or equivalently
SL` π + θ(`)π = −DP + 2µD · ~σ(`) + ζDθ(`) + f

with π := − 1

8π
Ω(`) momentum surface density

P :=
ν(`)

8π
pressure

µ :=
1

16π
shear viscosity

ζ := − 1

16π
bulk viscosity

f := −~q∗T · ` external force surface density (T = stress-energy tensor)
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The generalized Damour-Navier-Stokes equation

Original Damour-Navier-Stokes equation (con’t)

Introducing a coordinate system (t, x1, x2, x3) such that

t is compatible with `: L` t = 1

H is defined by x1 = const, so that xa = (x2, x3) are coordinates spanning St

then

` =
∂

∂t
+ V

with V tangent to St: velocity of H’s null generators with respect to the
coordinates xa

[Damour 1978].
Then

θ(`) = DaV a +
∂

∂t
ln
√

q q := det qab

σ
(`)
ab =

1

2
(DaVb +DbVa)− 1

2
θ(`) qab +

1

2

∂qab

∂t

compare
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The generalized Damour-Navier-Stokes equation

Generalization to the non-null case

Starting remark: in the null case, ` plays two different roles:

evolution vector along H (e.g. term SL` )

normal to H (e.g. term ~q∗T · `)

When H is no longer null, these two roles have to be taken by two different
vectors:

evolution vector: obviously h reminder

vector normal to H: a natural choice is m := ` + Ck
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The generalized Damour-Navier-Stokes equation

Generalized Damour-Navier-Stokes equation

Starting point of the calculation: contracted Ricci identity applied to the vector
m and projected onto St:

(∇µ∇νmµ −∇ν∇µmµ) qν
α = Rµνmµqν

α

Final result:

SLh Ω(`) + θ(h) Ω(`) = D〈κ(`),h〉 −D · ~σ(m) +
1

2
Dθ(m) − θ(k)DC + 8π~q∗T ·m

Ω(`) : normal fundamental form of St associated with null normal ` reminder

θ(h), θ(m) and θ(k): expansion scalars of St along the vectors h, m and k
respectively reminder

D : covariant derivative within (St, q)

κ(`) : “surface-gravity” 1-form associated with the null vector ` reminder

σ(m) : shear tensor of St along the vector m reminder

C : half the scalar square of h reminder
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The generalized Damour-Navier-Stokes equation

Null limit

In the null limit,
h = m = ` and C = 0

and we recover the original Damour-Navier-Stokes equation:

SL` Ω(`) + θ(`)Ω(`) = Dν(`) −D · ~σ(`) +
1

2
Dθ(`) + 8π~q∗T · `
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The generalized Damour-Navier-Stokes equation

Behavior under a change of normal fundamental form

` 7→ `′ = λ` =⇒ Ω(`′) = Ω(`) + D lnλ and κ(`′) = κ(`) + ∇p lnλ

=⇒ generalized Damour-Navier-Stokes equation:

SLh Ω(`′) + θ(h) Ω(`′) = D〈κ(`′),h〉 −D · ~σ(m) +
1

2
Dθ(m) + θ(`)D lnλ

−θ(k) (DC + CD lnλ) + 8π~q∗T ·m

Choice: `′ = ˜̀ = null geodesic vector along the light rays emanating radially from
St (d ˜̀= 0), then DC + CD lnλ = 0 and the equation reduces to

SLh Ω( ˜̀) + θ(h) Ω( ˜̀) = D〈κ( ˜̀),h〉 −D · ~σ(m) +
1

2
Dθ(m) + θ(`)D lnλ + 8π~q∗T ·m
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The generalized Damour-Navier-Stokes equation

Application to future trapping horizons

Definition (Hayward 1994) : H is a future trapping horizon iff θ(`) = 0 and
θ(k) < 0.
The generalized Damour-Navier-Stokes equation reduces then to

SLh Ω( ˜̀) + θ(h) Ω( ˜̀) = D〈κ( ˜̀),h〉 −D · ~σ(m) +
1

2
Dθ(m) + 8π~q∗T ·m

NB: It has exactly the same structure than Damour’s original equation reminder :
apart from substitutions of ` by either h or m, it does not contain any extra term
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Application to angular momentum flux law

Generalized angular momentum

Definition [Booth & Fairhurst, gr-qc/0505049)]: Let ϕ be a vector field on H which

is tangent to St

has closed orbits

has vanishing divergence with respect to the induced metric: D ·ϕ = 0

The generalized angular momentum associated with ϕ is then defined by

J(ϕ) := − 1

8π

∮
St

〈Ω(`),ϕ〉 Sε,

Remark 1: does not depend upon the choice of null vector `, thanks to the
divergence-free property of ϕ
Remark 2:

coincides with Ashtekar & Krishnan’s definition for a dynamical horizon

coincides with Brown-York angular momentum if H is timelike and ϕ a
Killing vector
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Application to angular momentum flux law

Angular momentum flux law

Under the supplementary hypothesis that ϕ is transported along the evolution
vector h : Lh ϕ = 0, the generalized Damour-Navier-Stokes equation leads to

d

dt
J(ϕ) = −

∮
St

T (m,ϕ) Sε− 1

16π

∮
St

[
~~σ(m) : Lϕ q − 2θ(k)ϕ ·DC

]
Sε

Two interesting limiting cases:

H = null hypersurface : C = 0 and m = ` :

d

dt
J(ϕ) = −

∮
St

T (`,ϕ)Sε− 1

16π

∮
St

~~σ(`) : Lϕ q Sε

i.e. Eq. (6.134) of the Membrane Paradigm book (Thorne, Price &
MacDonald 1986)

H = future trapping horizon :

d

dt
J(ϕ) = −

∮
St

T (m,ϕ)Sε− 1

16π

∮
St

~~σ(m) : Lϕ q Sε
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