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A short review of 3-+1 general relativity

3-+1 decomposition of spacetime

Foliation of spacetime by a family of spacelike hypersurfaces (X;),. ; on each
hypersurface, pick a coordinate system (z);c(1,23) =

(") uefo,1,2,33 = (t,2', 22, 2®) = coordinate system on spacetime

n : future directed unit normal to ¥; :

n = —Ndt, N : lapse function

e, = 0/0t : time vector of the natural
basis associated with the coordinates ()

N : lapse function
3 : shift vector

}ethJrﬁ

Geometry of the hypersurfaces ¥;:

— induced metricy =g+ n®n

— extrinsic curvature : K = *Eﬂn‘)’

G dz* dz¥ = —N? dt? + ;; (da* + B'dt) (dx? + 37 dt)
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A short review of 3-+1 general relativity

Choice of coordinates within the 3+1 formalism

Choice of the lapse function N <= choice of the slicing (X¢)

Choice of the shift vector 3 <= choice of the spatial coordinates (z")
on each hypersurface ¥

A well-spread choice of slicing: maximal slicing: K .=tr K =0
[Lichnerowicz 1944]
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A short review of 3-+1 general relativity

3-+1 decomposition of Einstein equation

Orthogonal projection of Einstein equation onto ¥; and along the normal to ¥; :
@ Hamiltonian constraint: R+ K?— Kl;jKij = lonk
@ Momentum constraint : D;K"Y — D'K = 8rnJ"
@ Dynamical equations :
agtij —LpKij =
—D;D;N + N [Ri; — 2Ky, K*, + KKj + 4n((S — E)vs; — 25;)]

E:=T(n,n) =T, n'n", J =—y"T,n" Sj=v" Y Ty S = S,
D; : covariant derivative associated with v, R;; : Ricci tensor of D;, R := Rf
Oy
ot

Kinematical relation between v and K: + DB + DIt =2NKY

Resolution of Einstein equation = Cauchy problem

Eric Gourgoulhon (LUTH, Meudon) Numerical relativity
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A short review of 3-+1 general relativity

Free vs. constrained evolution in 341 numerical relativity

Einstein equations split into
. . 0
dynamical equations aKij =

Hamiltonian constraint R + K2 — Kin"’j = 16nF
momentum constraint D;K,” — D, K = 8nJ;

@ 2-D computations(80’s and 90’s):
e partially constrained schemes: Bardeen & Piran (1983), Stark & Piran (1985),
Evans (1986)
e fully constrained schemes: Evans (1989), Shapiro & Teukolsky (1992),
Abrahams et al. (1994)
@ 3-D computations (from mid 90’s): Almost all based on free evolution
schemes: BSSN, symmetric hyperbolic formulations, etc...
= problem: exponential growth of constraint violating modes

“Standard issue” 1 :

The constraints usually involve elliptic equations and 3-D elliptic solvers are
CPU-time expensive !
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A short review of 3-+1 general relativity

Cartesian vs. spherical coordinates in 3+1 numerical

relativity

o 1-D and 2-D computations: massive usage of spherical coordinates (r, 6, )

@ 3-D computations: almost all based on Cartesian coordinates (x,y, z),
although spherical coordinates are better suited to study objects with
spherical topology (black holes, neutron stars). Two exceptions:

— Nakamura et al. (1987): evolution of pure gravitational wave spacetimes in
spherical coordinates (but with Cartesian components of tensor fields)

— Stark (1989): attempt to compute 3D stellar collapse in spherical
coordinates

“Standard issue” 2 :
Spherical coordinates are singular at » =0 and 6 =0 or 7 !

Kyoto, 27 July 2005 11 /34
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A short review of 3+1 general relativity
“Standard issues” 1 and 2 can be overcome

“Standard issues” 1 and 2 are neither mathematical nor physical

they are technical ones
— they can be overcome with appropriate techniques

Spectral methods allow for

@ an automatic treatment of the singularities of spherical coordinates (issue 2)

o fast 3-D elliptic solvers in spherical coordinates: 3-D Poisson equation
reduced to a system of 1-D algebraic equations with banded matrices
[Grandclément, Bonazzola, Gourgoulhon & Marck, J. Comp. Phys. 170, 231 (2001)] (iSSUG 1)
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A constrained scheme for 341 numerical relativity

A new scheme for 34+1 numerical relativity

Constrained scheme built upon maximal slicing and Dirac gauge

[Bonazzola, Gourgoulhon, Grandclément & Novak, PRD 70, 104007 (2004)]
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A constrained scheme for 341 numerical relativity

Conformal metric and dynamics of the gravitational field

Dynamical degrees of freedom of the gravitational field:

York (1972) : they are carried by the conformal “metric”
g =7 1 with v := dety;;

4i; = tensor density of weight —2/3

To work with tensor fields only, introduce an extra structure on X;: a flat metric

Ofi; - .
f such that % =0 and v;; ~ f;; at spatial infinity (asymptotic flatness)
o ) o N2 ,
Define 7;; := W *~,; or v;; = W*5,; with W := (%) , fi=det fi;

¥ij is invariant under any conformal transformation of v;; and verifies det¥;; = f

Notations: 5"+ inverse conformal metric : 5;;, 5% = 5,7

D; : covariant derivative associated with 7;;, D' := 57 D;
D; : covariant derivative associated with f;;, D" := f"“D;
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A constrained scheme for 341 numerical relativity
Dirac gauge: definition

Conformal decomposition of the metric 7;; of the spacelike hypersurfaces >;:

Yij =: U, with FY = f9 4 Y

where f;; is a flat metric on X, K"/ a symmetric tensor and V a scalar field
1/12
) det ~, .
defined by V := L
det fi;
Dirac gauge (Dirac, 1959) = divergence-free condition on %*:

D5 = Djh" =0

where D; denotes the covariant derivative with respect to the flat metric f;;.
Compare

e minimal distortion (Smarr & York 1978) : D; (95" /ot) =0
e pseudo-minimal distortion (Nakamura 1994) : D’ (05" /0t) =0

Notice: Dirac gauge <= BSSN connection functions vanish: " = 0
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A constrained scheme for 341 numerical relativity

Dirac gauge: motivation

Expressing the Ricci tensor of conformal metric as a second order operator:
In terms of the covariant derivative D; associated with the flat metric f:

F5 R = = (AN DDk — 3D HI — 57D HY) + Q(H, D)

N -

with [’ = Djh” = ny""j =AM, = —’NYk'l(ﬁ oo )

and Q(%, D¥) is quadratic in first order derivatives Dh
Dirac gauge: H' = 0 = Ricci tensor becomes an elliptic operator for h*
Similar property as harmonic coordinates for the 4-dimensional Ricci tensor:

1

g 0
4Ra Eg;w S Jap + quadratic terms
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A constrained scheme for 341 numerical relativity
Dirac gauge: discussion

@ introduced by Dirac (1959) in order to fix the coordinates in some
Hamiltonian formulation of general relativity; originally defined for Cartesian

9
coordinates only: 907 (71/3 ﬂ,/”) =0

but trivially extended by us to more general type of coordinates (e.g.
spherical) thanks to the introduction of the flat metric f;;:

D; ((v/ 1)) =0
o first discussed in the context of numerical relativity by Smarr & York (1978),
as a candidate for a radiation gauge, but dlsregarded for not being covariant

under coordinate transformation () — () in the hypersurface ¥,
contrary to the minimal distortion gauge proposed by them

o fully specifies (up to some boundary conditions) the coordinates in each
hypersurface X, including the initial one = allows for the search for
stationary solutions
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A constrained scheme for 341 numerical relativity

Dirac gauge: discussion (con't)

o leads asymptotically to transverse-traceless (TT) coordinates (same as
minimal distortion gauge). Both gauges are analogous to Coulomb gauge in
electrodynamics

@ turns the Ricci tensor of conformal metric %;; into an elliptic operator for h%/
—> the dynamical Einstein equations become a wave equation for h*’

o results in a vector elliptic equation for the shift vector 3*
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A constrained scheme for 341 numerical relativity
Maximal slicing + Dirac gauge

Our choice of coordinates to solve numerically the Cauchy problem:
@ choice of ¥; foliation: maximal slicing: K :=tr K =0

e choice of (x') coordinates within ¥;: Dirac gauge: D;h" =

Note: the Cauchy problem has been shown to be locally strongly well posed for a
similar coordinate system, namely constant mean curvature (K = t) and spatial
harmonic coordinates (Dj [('y/f)l/2 7’7} = 0)

[Andersson & Moncrief, Ann. Henri Poincaré 4, 1 (2003)]
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A constrained scheme for 3+1 numerical relativity

3-+1 Einstein equations in maximal slicing + Dirac gauge

[Bonazzola, Gourgoulhon, Grandclément & Novak, PRD 70, 104007 (2004)]
e 5 elliptic equations (4 constraints + K = 0 condition) (A := D, D"):

AN = V*N [47(E + S) + Ay A¥] — W¥'D DN — 2Dy InWw D¥N

A(V?N) = VN (4775 + iAMA“> — W™Dy Dy(W2N)

TR B
2 N(Ra“Dk,hUD% — ST DDA

42D, In W D¥ In w) £ 2D, InW D"’N] .

AR+ 3D (D;A7) = 24YD;N +167NVJ — 12N AYD; In W

—2A" NA* — MDDy 3t — gh""Dleﬁ‘
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A constrained scheme for 341 numerical relativity

3+1 equations in maximal slicing + Dirac gauge (cont'd)

@ 2 scalar wave equations for two scalar potentials x and p :

82
o2 +Ax =5,
82
a;; +Ap=>5,

The remaining 3 degrees of freedom are fixed by the Dirac gauge:

From the two potentials x and i, construct a TT tensor 1/ according to the
formulas (components with respect to a spherical f-orthonormal frame)

X o L(% Lo\ g 1( 1 on o
M=t h (ae s.noa¢>>' M= \Gnaos T o6 ) O

with Agyn = —0x/0r — x/r
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A constrained scheme for 341 numerical relativity
Numerical implementation

Numerical code based on the C++ library LORENE
(http://wuw.lorene.obspm.fr) with the following main features:

e multidomain spectral methods based on spherical coordinates (r, 6, ), with
compactified external domain (= spatial infinity included in the
computational domain for elliptic equations)

o very efficient outgoing-wave boundary conditions, ensuring that all modes
with spherical harmonics indices / = 0, { = 1 and ¢ = 2 are perfectly outgoing
[Novak & Bonazzola, J. Comp. Phys. 197, 186 (2004)]

(recall: Sommerfeld boundary condition works only for ¢ = 0, which is too
low for gravitational waves)
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A constrained scheme for 341 numerical relativity

Results on a pure gravitational wave spacetime

Initial data: similar to [Baumgarte & Shapiro, PRD 59, 024007 (1998)], namely a
momentarily static (05" /0t = 0) Teukolsky wave £ =2, m = 2:

, 2

= X0, ~ ) 6in20 sin 2
0) = T exp( 7“2) sin“ 6 sin 2¢ with yo — 103
0

) = 0 °

x(
1(

Preparation of the initial data by means of the conformal thin sandwich procedure

t
t

s

Evolution of A% in the plane 6§ = Z

Kyoto, 27 July 2005
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A constrained scheme for 3+1 numerical relativity

Test: conservation of the ADM mass

— 6domains R_ =8 dt=0.01
LA B T T "=~ 7domains R =10 dt=001

3.537e-08 - 6domains R, =8 dt=0.005

3.536e-08

ADM mass

3.535e-08

3.534e-08—

Ll M B | .
0 1 2 3 4
time t/ T,

Number of coefficients in each domain: N, =17, Ny =9, N, =8
For dt = 5107 3ry, the ADM mass is conserved within a relative error lower than
1074

Kyoto, 27 July 2005
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A constrained scheme for 341 numerical relativity

Late time evolution of the ADM mass

— G6domains R

le-07

t

— — 7 domains R
ext

le-08

T
-
sl

, le-09

le-10

ADM mass

le-11

1l

le-12

7 8 9 10 11 12 13 14
timet/ro

S oy
—
[38]
W
I~
W
(=)}

At t > 107q, the wave has completely left the computation domain
—> Minkowski spacetime
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A constrained scheme for 341 numerical relativity
Long term stability

0.0001

le-06

= 1e-08
=]
le-10F 3
le-12 i —:
E \ L L \ | L \ L L | L L \ L | \ L \ \ ?
le-145 100 200 300 300
timet/ I,

Nothing happens until the run is switched off at ¢ = 400 !
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A constrained scheme for 341 numerical relativity

Summary

@ Dirac gauge + maximal slicing reduces the Einstein equations into a system
of
— two scalar elliptic equations (including the Hamiltonian constraint)
— one vector elliptic equations (the momentum constraint)
— two scalar wave equations (evolving the two dynamical degrees of freedom
of the gravitational field)

@ The usage of spherical coordinates and spherical components of tensor fields
is crucial in reducing the dynamical Einstein equations to two scalar wave
equations

@ The unimodular character of the conformal metric (det#,;; = det f;;) is
ensured in our scheme

@ First numerical results show that Dirac gauge + maximal slicing seems a
promising choice for stable evolutions of 341 Einstein equations and
gravitational wave extraction

@ It remains to be tested on black hole spacetimes !
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Constraining the nuclear matter EOS from GW observations

Our current poor knowledge of nuclear matter EOS

2.4
AkmalPR

2.2
2 SQSBO0__ GlendNH3
18

—. 16

2@ BPALI2 J

P )

0.8

0.6

0.4

M
oo :
L L 2
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Constraining the nuclear matter EOS from GW observations

Constraining the nuclear matter EOS from GW

observations of binary coalescence

Methods based on the merger or post-merger signal:
@ Measure of the radius from the shape of the GW spectrum in a coalescing
BH-NS system [Saijo & Nakamura, PRL 85, 2665 (2000)]

o Constraining the EOS softness from the post-merger signal in binary NS
coalescence (prompt black formation vs. supramassive NS remnant)
[Shibata, Taniguchi & Uryu, PRD 71, 084021 (2005)] [Shibata, PRL 94, 201101 (2005)]

Kyoto, 27 July 2005
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Constraining the nuclear matter EOS from GW observations

Constraining the nuclear matter EOS from GW

observations of the inspiral phase

Evolutionary sequences of irrotational binary NS:

-0.025 B
= Akmal et al. 1998 EOS
= BPALI2 EOS
=== GlendNH3 EOS
o = = 3PN non resum. irrot. (Blanchet 2002) | 4
= 003 f
=
>
= L ]
;
=
a
A
= 0035 -
S
004 ) Ll L e
600 800 1000 1200
fow [H2]

[Bejger, Gondek-Rosiriska, Gourgoulhon, Haensel, Taniguchi & Zdunik, A&A 431, 297 (2005)]
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Constraining the nuclear matter EOS from GW observations

Constraining the nuclear matter EOS from GW

observations of the inspiral phase

GW energy spectrum

? 8 \
=
=
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\
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[Bejger, Gondek-Rosiriska, Gourgoulhon, Haensel, Taniguchi & Zdunik, A&A 431, 297 (2005)]
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Constraining the nuclear matter EOS from GW observations

Determining the nuclear matter EOS from GW

observations

Evolutionary sequences of irrotational binary strange stars:

-0.025 /T T T T T T r —
SQSB56
—— SQSB60
r SQSB40 1
~— GlendNH3
— BPALI2
L — AkmalPR |
0.03 + 3PN (Blanchet 2002)
=
g
ot
-0.035 < -
F > 4
~
N
N -
-0.04— s
1 . | . | . 1 e .
600 800 1000 1200 1400
£y [Hz]

[Limousin, Gondek-Rosifiska & Gourgoulhon, PRD 71, 064012 (2005)]
[Gondek-Rosiriska, Bejger, Bulik, Gourgoulhon, Haensel, Limousin & Zdunik, preprint: gr-qc/0412010)]
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