New theoretical perspectives on black holes

Eric Gourgoulhon

Laboratoire de l'Univers et de ses Théories (LUTH) CNRS / Observatoire de Paris F-92195 Meudon, France

eric.gourgoulhon@obspm.fr

http://www.luth.obspm.fr/~luthier/gourgoulhon/

based on a collaboration with José Luis Jaramillo

Seminar **Departamento de Gravitación y Teoría de Campos** Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México

Mexico, 5 December 2006

- Review of "classical" black holes
- 2 New approaches to black holes
- 3 Geometry of hypersurface foliations by spacelike 2-surfaces
- A Navier-Stokes-like equation
- 5 Area evolution and energy equation

Outline

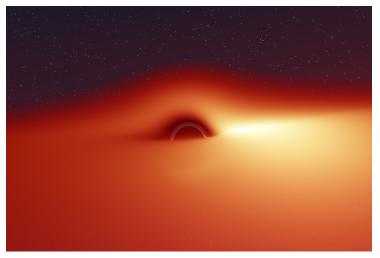
1 Review of "classical" black holes

- 2 New approaches to black holes
- 3 Geometry of hypersurface foliations by spacelike 2-surfaces
- 4 Navier-Stokes-like equation
- 5 Area evolution and energy equation

A B A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

What is a black hole ?

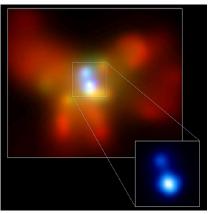
... for the astrophysicist: a very deep gravitational potential well



[J.A. Marck, CQG 13, 393 (1996)]

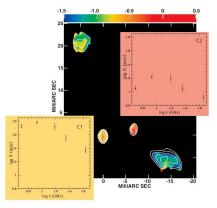
What is a black hole ?

... for the astrophysicist: a very deep gravitational potential well



Binary BH in galaxy NGC 6240 d = 1.4 kpc

[Komossa et al., ApJ 582, L15 (2003)]

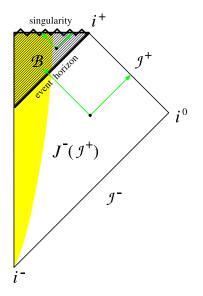


Binary BH in radio galaxy 0402+379 d = 7.3 pc

[Rodriguez et al., ApJ in press, astro-ph/0604042]

Eric Gourgoulhon (LUTH)

What is a black hole ?



... for the mathematical physicist:

$$\mathcal{B} := \mathscr{M} - J^{-}(\mathscr{I}^{+})$$

i.e. the region of spacetime where light rays cannot escape to infinity

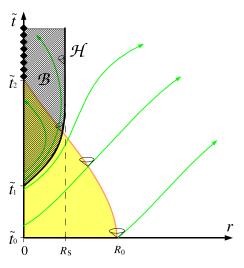
- $\mathcal{M} = asymptotically flat manifold$
- $\mathscr{I}^+ = future null infinity$

•
$$J^-(\mathscr{I}^+)=\mathsf{causal}$$
 past of \mathscr{I}^+

event horizon: $\mathcal{H} := \dot{J}^{-}(\mathscr{I}^{+})$ (boundary of $J^{-}(\mathscr{I}^{+})$)

 $\mathcal{H} \text{ smooth} \Longrightarrow \mathcal{H} \text{ null hypersurface}$

What is a black hole ?



... for the mathematical physicist:

 $\mathcal{B} := \mathscr{M} - J^{-}(\mathscr{I}^{+})$

i.e. the region of spacetime where light rays cannot escape to infinity

- $\mathcal{M} = asymptotically flat manifold$
- $\mathscr{I}^+ = future null infinity$

•
$$J^-(\mathscr{I}^+)=\mathsf{causal}$$
 past of \mathscr{I}^+

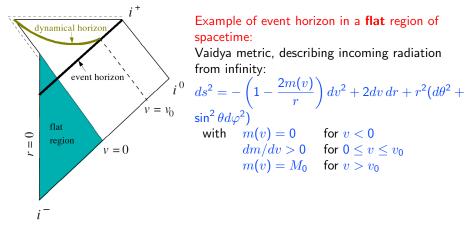
event horizon: $\mathcal{H} := \dot{J}^-(\mathscr{I}^+)$ (boundary of $J^-(\mathscr{I}^+)$)

 $\mathcal H \mbox{ smooth} \Longrightarrow \mathcal H \mbox{ null hypersurface}$

Image: A math a math

This is a highly non-local definition !

The determination of the boundary of $J^{-}(\mathscr{I}^{+})$ requires the knowledge of the entire future null infinity. Moreover this is not locally linked with the notion of strong gravitational field:

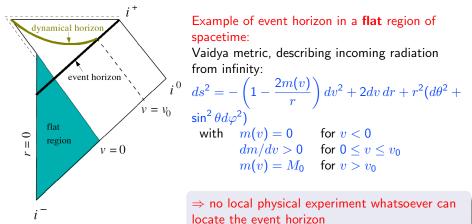


[Ashtekar & Krishnan, LRR 7, 10 (2004)]

Image: A math a math

This is a highly non-local definition !

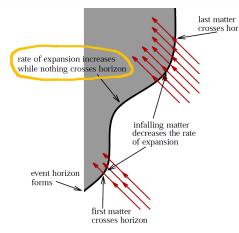
The determination of the boundary of $J^{-}(\mathscr{I}^{+})$ requires the knowledge of the entire future null infinity. Moreover this is not locally linked with the notion of strong gravitational field:



[Ashtekar & Krishnan, LRR 7, 10 (2004)]

A B > A B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A

Another non-local feature: teleological nature of event horizons

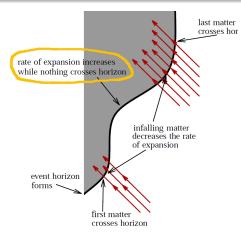


[Booth, Can. J. Phys. 83, 1073 (2005)]

The classical black hole boundary, i.e. the event horizon, responds in advance to what will happen in the future.

A B > A
 A
 B > A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Another non-local feature: teleological nature of event horizons



The classical black hole boundary, i.e. the event horizon, responds in advance to what will happen in the future.

[Booth, Can. J. Phys. 83, 1073 (2005)]

To deal with black holes as physical objects, a local definition would be desirable

Outline

Review of "classical" black holes

2 New approaches to black holes

- 3 Geometry of hypersurface foliations by spacelike 2-surfaces
- 4 A Navier-Stokes-like equation
- 5 Area evolution and energy equation

A B A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Local characterizations of black holes

Recently a **new paradigm** appeared in the theoretical approach of black holes: instead of *event horizons*, black holes are described by

- trapping horizons (Hayward 1994)
- isolated horizons (Ashtekar et al. 1999)
- dynamical horizons (Ashtekar and Krishnan 2002)

All these concepts are **local** and are based on the notion of trapped surfaces

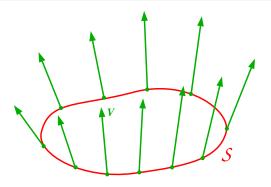
Motivations: quantum gravity, numerical relativity

What is a trapped surface ? 1/ Expansion of a surface along a normal vector field

 Consider a spacelike 2-surface S (induced metric: q)

A B > A
 A
 B > A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

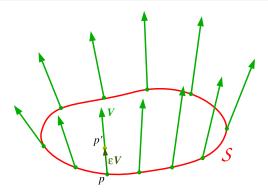
What is a trapped surface ? 1/ Expansion of a surface along a normal vector field



- Consider a spacelike 2-surface S (induced metric: q)
- Take a vector field v defined on S and normal to S at each point

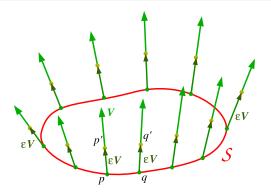
A B > A
 A
 B > A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

What is a trapped surface ? 1/ Expansion of a surface along a normal vector field



- Consider a spacelike 2-surface S (induced metric: q)
- Take a vector field v defined on S and normal to S at each point
- ε being a small parameter, displace the point p by the vector εv to the point p'

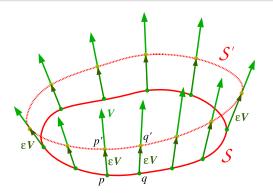
What is a trapped surface ? 1/ Expansion of a surface along a normal vector field



- Consider a spacelike 2-surface S (induced metric: q)
- Take a vector field v defined on S and normal to S at each point
- ε being a small parameter, displace the point p by the vector εv to the point p'

 Do the same for each point in S, keeping the value of ε fixed

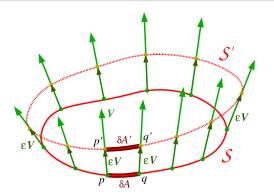
What is a trapped surface ? 1/ Expansion of a surface along a normal vector field



- Consider a spacelike 2-surface S (induced metric: q)
- Take a vector field v defined on S and normal to S at each point
- ε being a small parameter, displace the point p by the vector εv to the point p'
- Do the same for each point in *S*, keeping the value of ε fixed
- This defines a new surface S' (Lie dragging)

A D > A A

What is a trapped surface ? 1/ Expansion of a surface along a normal vector field



- Consider a spacelike 2-surface S (induced metric: q)
- 2 Take a vector field v defined on \mathcal{S} and normal to \mathcal{S} at each point
- $\bigcirc \varepsilon$ being a small parameter, displace the point p by the vector εv to the point p'
- O the same for each point in \mathcal{S} , keeping the value of ε fixed
- This defines a new surface S'(Lie dragging)

At each point, the expansion of S along v is defined from the relative change in $\theta^{(\boldsymbol{v})} := \lim_{\varepsilon \to 0} \frac{1}{\varepsilon} \frac{\delta A' - \delta A}{\delta A} = \mathcal{L}_{\boldsymbol{v}} \ln \sqrt{q} = q^{\mu \nu} \nabla_{\mu} v_{\nu}$

the area element δA :

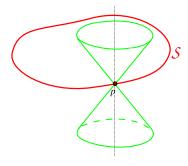
What is a trapped surface ? 2/ The definition

 $\mathcal{S}:$ closed (i.e. compact without boundary) spacelike 2-dimensional surface embedded in spacetime (\mathscr{M},g)

A B A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

What is a trapped surface ? ²/ The definition</sup>

 $\mathcal S$: closed (i.e. compact without boundary) spacelike 2-dimensional surface embedded in spacetime $(\mathscr M,g)$

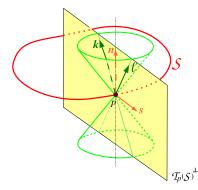


Being spacelike, ${\mathcal S}$ lies outside the light cone

A B > A
 A
 B > A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

What is a trapped surface ? ²/ The definition</sup>

 $\mathcal S$: closed (i.e. compact without boundary) spacelike 2-dimensional surface embedded in spacetime $(\mathscr M,g)$



Being spacelike, ${\mathcal S}$ lies outside the light cone

 \exists two future-directed null directions orthogonal to S:

 ℓ = outgoing, expansion $\theta^{(\ell)}$

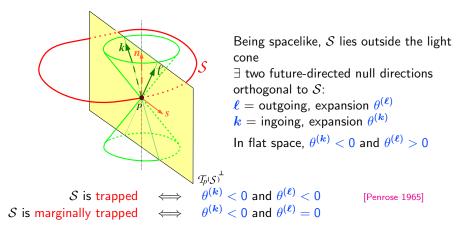
$$m{k}=$$
 ingoing, expansion $heta^{(m{k})}$

In flat space, $heta^{(m{k})} < 0$ and $heta^{(m{\ell})} > 0$

A B > A
 A
 B > A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

What is a trapped surface ? ²/ The definition</sup>

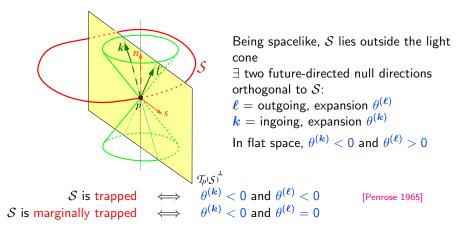
 $\mathcal S$: closed (i.e. compact without boundary) spacelike 2-dimensional surface embedded in spacetime $(\mathscr M,g)$



A B A B
 A B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

What is a trapped surface ? ²/ The definition</sup>

 $\mathcal S$: closed (i.e. compact without boundary) spacelike 2-dimensional surface embedded in spacetime $(\mathscr M,g)$



trapped surface = **local** concept characterizing very strong gravitational fields

Eric Gourgoulhon (LUTH)

Link with apparent horizons

A closed spacelike 2-surface S is said to be outer trapped (resp. marginally outer trapped (MOTS)) iff [Hawking & Ellis 1973]

- the notions of *interior* and *exterior* of S can be defined (for instance spacetime asymptotically flat) ⇒ ℓ is chosen to be the *outgoing* null normal and k to be the *ingoing* one
- $\theta^{(\ell)} < 0$ (resp. $\theta^{(\ell)} = 0$)

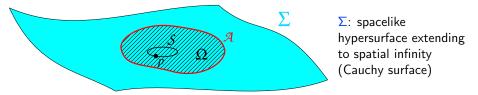
Image: A math a math

Link with apparent horizons

A closed spacelike 2-surface S is said to be outer trapped (resp. marginally outer trapped (MOTS)) iff [Hawking & Ellis 1973]

the notions of *interior* and *exterior* of S can be defined (for instance spacetime asymptotically flat) ⇒ ℓ is chosen to be the *outgoing* null normal and k to be the *ingoing* one

•
$$\theta^{(\ell)} < 0$$
 (resp. $\theta^{(\ell)} = 0$)



outer trapped region of Σ : Ω = set of points $p \in \Sigma$ through which there is a outer trapped surface S lying in Σ

apparent horizon in $\Sigma : \ \mathcal{A} = \text{connected component of the boundary of } \Omega$

Proposition [Hawking & Ellis 1973]: \mathcal{A} smooth $\Longrightarrow \mathcal{A}$ is a MOTS

A B > A B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Connection with singularities and black holes

Proposition [Penrose (1965)]:

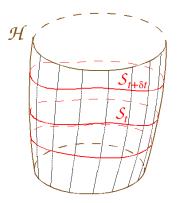
provided that the weak energy condition holds, \exists a trapped surface $S \implies \exists$ a singularity in (\mathcal{M}, g) (in the form of a future inextendible null geodesic)

Proposition [Hawking & Ellis (1973)]: provided that the cosmic censorship conjecture holds, \exists a trapped surface $S \implies \exists$ a black hole \mathcal{B} and $S \subset \mathcal{B}$

Image: A math a math

Local definitions of "black holes"

A hypersurface \mathcal{H} of (\mathcal{M}, g) is said to be



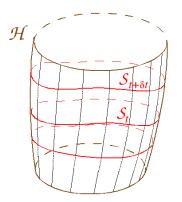
a future outer trapping horizon (FOTH) iff

(i) \mathcal{H} foliated by marginally trapped 2-surfaces ($\theta^{(k)} < 0$ and $\theta^{(\ell)} = 0$) (ii) $\mathcal{L}_{k} \theta^{(\ell)} < 0$ (locally outermost trapped surf.)

[Hayward, PRD 49, 6467 (1994)]

Local definitions of "black holes"

A hypersurface $\mathcal H$ of $(\mathscr M, \boldsymbol g)$ is said to be



a future outer trapping horizon (FOTH) iff

 (i) *H* foliated by marginally trapped 2-surfaces
 (θ^(k) < 0 and θ^(ℓ) = 0)
 (ii) *L_k* θ^(ℓ) < 0 (locally outermost trapped surf.)

 [Hayward, PRD 49, 6467 (1994)]

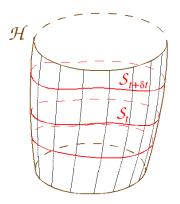
• a dynamical horizon (DH) iff

(i) ${\cal H}$ foliated by marginally trapped 2-surfaces (ii) ${\cal H}$ spacelike

[Ashtekar & Krishnan, PRL 89 261101 (2002)]

Local definitions of "black holes"

A hypersurface $\mathcal H$ of $(\mathscr M, \boldsymbol g)$ is said to be



a future outer trapping horizon (FOTH) iff

 (i) *H* foliated by marginally trapped 2-surfaces
 (θ^(k) < 0 and θ^(ℓ) = 0)
 (ii) *L_k* θ^(ℓ) < 0 (locally outermost trapped surf.)

 [Hayward, PRD 49, 6467 (1994)]

• a dynamical horizon (DH) iff

(i) ${\cal H}$ foliated by marginally trapped 2-surfaces (ii) ${\cal H}$ spacelike

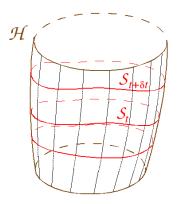
A B A B
 A B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

[Ashtekar & Krishnan, PRL 89 261101 (2002)]

- a non-expanding horizon (NEH) iff
 - (i) \mathcal{H} is null (null normal ℓ) (ii) $\theta^{(\ell)} = 0$ [Hájiček (1973)]

Local definitions of "black holes"

A hypersurface $\mathcal H$ of $(\mathscr M, \boldsymbol g)$ is said to be



a future outer trapping horizon (FOTH) iff

 (i) *H* foliated by marginally trapped 2-surfaces
 (θ^(k) < 0 and θ^(ℓ) = 0)
 (ii) *L_k* θ^(ℓ) < 0 (locally outermost trapped surf.)

 [Hayward, PRD 49, 6467 (1994)]

• a dynamical horizon (DH) iff

(i) ${\cal H}$ foliated by marginally trapped 2-surfaces (ii) ${\cal H}$ spacelike

[Ashtekar & Krishnan, PRL 89 261101 (2002)]

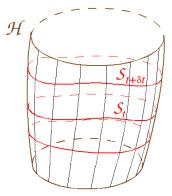
- a non-expanding horizon (NEH) iff
 - (i) \mathcal{H} is null (null normal ℓ)
 - (ii) $\theta^{(\ell)} = 0$ [Hájiček (1973)]
- an isolated horizon (IH) iff
 - (i) \mathcal{H} is a non-expanding horizon

(ii) \mathcal{H} 's full geometry is not evolving along the null generators: $[\mathcal{L}_{\ell}, \hat{\nabla}] = 0$

[Ashtekar, Beetle & Fairhurst, CQG 16, L1 (1999]]

Local definitions of "black holes"

A hypersurface $\mathcal H$ of $(\mathscr M, \boldsymbol g)$ is said to be



BH in equilibrium (e.g. Kerr) = IH BH out of equilibrium = DH generic BH = FOTH a future outer trapping horizon (FOTH) iff

 (i) *H* foliated by marginally trapped 2-surfaces
 (θ^(k) < 0 and θ^(ℓ) = 0)
 (ii) *L_k* θ^(ℓ) < 0 (locally outermost trapped surf.)

 [Hayward, PRD 49, 6467 (1994)]

• a dynamical horizon (DH) iff

(i) ${\cal H}$ foliated by marginally trapped 2-surfaces (ii) ${\cal H}$ spacelike

[Ashtekar & Krishnan, PRL 89 261101 (2002)]

- a non-expanding horizon (NEH) iff
 - (i) \mathcal{H} is null (null normal ℓ) (ii) $\theta^{(\ell)} = 0$ [Hájiček (1973)]
- an isolated horizon (IH) iff
 - (i) ${\mathcal H}$ is a non-expanding horizon
 - (ii) $\mathcal{H}'s$ full geometry is not evolving along the null generators: $[\boldsymbol{\mathcal{L}}_{\boldsymbol{\ell}}\,, \boldsymbol{\hat{\nabla}}]=0$

[Ashtekar, Beetle & Fairhurst, CQG 16, L1 (1999)]

Dynamics of these new horizons

The *trapping horizons* and *dynamical horizons* have their **own dynamics**, ruled by Einstein equations.

In particular, one can establish for them

• existence and (partial) uniqueness theorems

[Andersson, Mars & Simon, PRL 95, 111102 (2005)],

[Ashtekar & Galloway, Adv. Theor. Math. Phys. 9, 1 (2005)]

- first and second laws of black hole mechanics
 [Ashtekar & Krishnan, PRD 68, 104030 (2003)], [Hayward, PRD 70, 104027 (2004)]
- a viscous fluid bubble analogy ("membrane paradigm" as for the event horizon), leading to a Navier-Stokes-like equation and a **positive** bulk viscosity (event horizon = negative bulk viscosity)
 [Gourgoulhon, PRD 72, 104007 (2005)], [Gourgoulhon & Jaramillo, PRD 74, 087502 (2006)]

Reviews: [Ashtekar & Krishnan, Liv. Rev. Relat. 7, 10 (2004)], [Booth, Can. J. Phys. 83, 1073 (2005)], [Gourgoulhon & Jaramillo, Phys. Rep. 423, 159 (2006)]

< ロ > < 同 > < 三 > < 三

Outline

- Review of "classical" black holes
- 2 New approaches to black holes

3 Geometry of hypersurface foliations by spacelike 2-surfaces

- 4 Navier-Stokes-like equation
- 5 Area evolution and energy equation

A B > A
 A
 B > A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Geometry of hypersurface foliations by spacelike 2-surfaces

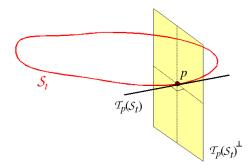
Closed spacelike surfaces

 $\mathcal S$: closed (i.e. compact without boundary) spacelike 2-dimensional surface embedded in spacetime $(\mathscr M,g)$

 ${\mathcal S}$ spacelike \iff metric q induced by g is positive definite

 ${\pmb q}$ not degenerate \Longrightarrow orthogonal decomposition of the tangent space at any $p\in \mathscr{M}$:

 $\mathcal{T}_p(\mathscr{M}) = \mathcal{T}_p(\mathcal{S}) \oplus \mathcal{T}_p(\mathcal{S})^{\perp}$



- \boldsymbol{q} : induced metric on \mathcal{S} , components: $q_{lphaeta}$
- $ec{q}$: orthogonal projector onto ${\cal S}$, components: q^{lpha}_{eta}

A D > A B > A B

Projection operator $ec{q}^*$

 $oldsymbol{A}$: tensor of covariance type (m,n)

 $ec{q}^*A$: tensor of same covariance type, defined by

 $\left(\bar{q}^*A\right)^{\alpha_1\dots\alpha_m}_{\beta_1\dots\beta_n} := q^{\alpha_1}_{\ \mu_1}\dots q^{\alpha_m}_{\ \mu_m} q^{\nu_1}_{\ \beta_1}\dots q^{\nu_n}_{\ \beta_n} A^{\mu_1\dots\mu_m}_{\ \nu_1\dots\nu_n}$

Remark: for a vector: $\vec{q}^* v = \vec{q}(v)$ for a 1-form, $\vec{q}^* \omega = \omega \circ \vec{q}$

Definition: a tensor A is tangent to S iff $\vec{q}^*A = A$.

(日) (同) (三) (三)

Expansion and shear along normal vectors

Let v be a vector field on \mathcal{M} , defined at least at S and everywhere normal to S. NB: v is not assumed to be null

Deformation tensor of S along v: $\Theta^{(v)} := \vec{q}^* \nabla \underline{v}$ or $\Theta^{(v)}_{\alpha\beta} := \nabla_{\nu} v_{\mu} q^{\mu}_{\ \alpha} q^{\nu}_{\ \beta}$

v normal to a 2-surface $(S) \Longrightarrow \Theta^{(v)}$ is a symmetric bilinear form $Prop: \Theta^{(v)} = \frac{1}{2} \bar{q}^* \mathcal{L}_v q$

Decomposition into traceless part (shear $\sigma^{(v)}$) and trace part (expansion $\theta^{(v)}$): $\Theta^{(v)} = \sigma^{(v)} + \frac{1}{2} \theta^{(v)} q \text{ with } \theta^{(v)} := q^{\mu\nu} \Theta^{(v)}_{\mu\nu} = \mathcal{L}_v \ln \sqrt{q}, q := \det q_{ab}$

Prop: $\mathcal{L}_{v} \, {}^{s} \epsilon = \theta^{(v) \, s} \epsilon$ with ${}^{s} \epsilon$ surface element of (\mathcal{S}, q) : ${}^{s} \epsilon = \sqrt{q} \, \mathbf{d} x^{2} \wedge \mathbf{d} x^{3}$ \implies hence the name *expansion*

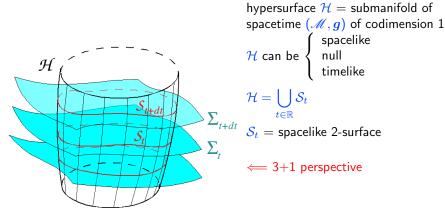
イロト 不得下 イヨト イヨト 二日

Foliation of a hypersurface by spacelike 2-surfaces



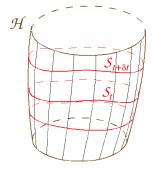
hypersurface $\mathcal{H} =$ submanifold of spacetime (\mathcal{M}, g) of codimension 1 \mathcal{H} can be $\begin{cases} \text{spacelike} \\ \text{null} \\ \text{timelike} \end{cases}$ $\mathcal{H} = \bigcup_{t \in \mathbb{R}} \mathcal{S}_t$ $\mathcal{S}_t =$ spacelike 2-surface

Foliation of a hypersurface by spacelike 2-surfaces



A B > A
 A
 B > A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

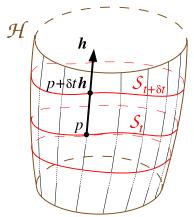
Foliation of a hypersurface by spacelike 2-surfaces



hypersurface $\mathcal{H} =$ submanifold of spacetime (\mathcal{M}, g) of codimension 1 \mathcal{H} can be $\begin{cases} \text{spacelike} \\ \text{null} \\ \text{timelike} \end{cases}$ $\mathcal{H} = \bigcup_{t \in \mathbb{R}} \mathcal{S}_t$ $\mathcal{S}_t =$ spacelike 2-surface

intrinsic viewpoint adopted here (i.e. not relying on extra-structure such as a 3+1 foliation)

Evolution vector on the horizon



Vector field h on $\mathcal H$ defined by

- (i) h is tangent to ${\cal H}$
- (ii) h is orthogonal to S_t

• (iii)
$$\mathcal{L}_{h} t = h^{\mu} \partial_{\mu} t = \langle \mathbf{d} t, \mathbf{h} \rangle = 1$$

NB: (iii) \implies the 2-surfaces S_t are Lie-dragged by h

Lie derivatives along $m{h}$

Since the 2-surfaces S_t are Lie-dragged by h, so are their tangent vectors:

 $orall oldsymbol{v} \in \mathcal{T}(\mathcal{S}_t), \; oldsymbol{\mathcal{L}}_{oldsymbol{h}} \: oldsymbol{v} \in \mathcal{T}(\mathcal{S}_t)$

i.e. \mathcal{L}_{h} = internal operator on $\mathcal{T}(\mathcal{S}_{t})$ Extension to 1-forms in $\mathcal{T}^{*}(\mathcal{S}_{t})$:

 $orall oldsymbol{v} \in \mathcal{T}(\mathcal{S}_t), \hspace{1em} \langle oldsymbol{\mathcal{L}}_{oldsymbol{h}} \, oldsymbol{\omega}, oldsymbol{v}
angle := oldsymbol{\mathcal{L}}_{oldsymbol{h}} \, \langle oldsymbol{\omega}, oldsymbol{v}
angle - \langle oldsymbol{\omega}, oldsymbol{\mathcal{L}}_{oldsymbol{h}} \, oldsymbol{v}
angle
angle.$

Extension to any tensor A tangent to S_t by tensor products Definition:

 ${}^{\mathcal{S}}\!\mathcal{L}_h\,A := ar{q}^*\mathcal{L}_h\,A = ar{q}^*\mathcal{L}_h\,ar{q}^*A$

Norm of h and type of $\mathcal H$

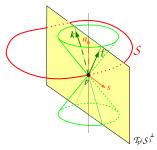
Definition:
$$C := \frac{1}{2} h \cdot h$$

 \mathcal{H} is spacelike $\iff C > 0 \iff h$ is spacelike
 \mathcal{H} is null $\iff C = 0 \iff h$ is null
 \mathcal{H} is timelike $\iff C < 0 \iff h$ is timelike.

2

・ロト ・回ト ・ヨト ・

Frames normal to \mathcal{S}_t



Two natural types of choice for a vector basis of $\mathcal{T}_p(\mathcal{S}_t)^\perp$:

• an orthonormal basis (n, s) (n = timelike, s = spacelike):

 $n \cdot n = -1, \quad s \cdot s = 1, \quad n \cdot s = 0$

 a pair linearly independent future-directed null vectors (*l*, *k*):

< ロ > < 同 > < 三 > < 三

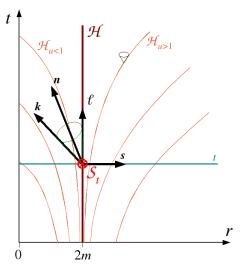
$$\boldsymbol{\ell} \cdot \boldsymbol{\ell} = \boldsymbol{0}, \quad \boldsymbol{k} \cdot \boldsymbol{k} = \boldsymbol{0}, \quad \boldsymbol{\ell} \cdot \boldsymbol{k} =: -e^{\sigma}$$

Degrees of freedom:

a boost: $\begin{cases} n' = \cosh \eta \, n + \sinh \eta \, s \\ s' = \sinh \eta \, n + \cosh \eta \, s \end{cases}, \quad \eta \in \mathbb{R}$ **a** rescaling: $\begin{cases} \ell' = \lambda \, \ell, \quad \lambda > 0 \\ k' = \mu \, k, \quad \mu > 0 \end{cases}$

Orthogonal projector: $\vec{q} = \mathbf{1} + \langle \underline{n}, . \rangle \, n - \langle \underline{s}, . \rangle \, s = \mathbf{1} + e^{-\sigma} \langle \underline{k}, . \rangle \, \boldsymbol{\ell} + e^{-\sigma} \langle \underline{\ell}, . \rangle \, \boldsymbol{k}$

Example of normal frames



 $\mathcal{H} =$ event horizon of Schwarzschild black hole $\mathcal{S}_t =$ slice of constant Eddington-Finkelstein time

Second fundamental tensor of S_t

Tensor \mathcal{K} of type (1,2) relating the covariant derivative of a vector tangent to S_t taken by the spacetime connection ∇ to that taken by the connection \mathcal{D} in S_t compatible with the induced metric q:

 $orall (oldsymbol{u},oldsymbol{v})\in \mathcal{T}(\mathcal{S}_t)^2, \quad oldsymbol{
abla}_{oldsymbol{u}}oldsymbol{v}=oldsymbol{\mathcal{D}}_{oldsymbol{u}}oldsymbol{v}+\mathcal{K}(oldsymbol{u},oldsymbol{v})$

Prop:

$$\begin{split} \mathcal{K}^{\alpha}_{\ \beta\gamma} &= \nabla_{\mu} q^{\alpha}_{\ \nu} \ q^{\mu}_{\ \beta} q^{\nu}_{\ \gamma} \\ \mathcal{K}^{\alpha}_{\ \beta\gamma} &= n^{\alpha} \Theta^{(\boldsymbol{n})}_{\beta\gamma} - s^{\alpha} \Theta^{(\boldsymbol{s})}_{\beta\gamma} = e^{-\sigma} \left(k^{\alpha} \Theta^{(\boldsymbol{\ell})}_{\beta\gamma} + \ell^{\alpha} \Theta^{(\boldsymbol{k})}_{\beta\gamma} \right) \\ Remark: \text{ for a hypersurface of normal } \boldsymbol{n} \text{ and extrinsic curvature } \boldsymbol{K}, \\ \mathcal{K}^{\alpha}_{\ \beta\gamma} &= -n^{\alpha} K_{\beta\gamma} \end{split}$$

Normal fundamental forms

Extrinsic geometry of \mathcal{S}_t not entirely specified by \mathcal{K} (contrary to the hypersurface case)

 \mathcal{K} involves only the deformation tensors $\Theta^{(.)}$ of the normals to $\mathcal{S}_t \Longrightarrow \mathcal{K}$ encodes only the part of the variation of \mathcal{S}_t 's normals which is parallel to \mathcal{S}_t

Variation of the two normals with respect to each other: encoded by the **normal fundamental forms** (also called *external rotation coefficients* or *connection on the normal bundle*, or if \mathcal{H} is null, *Hájíček 1-form*):

$$\begin{aligned} & \mathbf{\Omega}^{(n)} := s \cdot \nabla_{\vec{q}} \, n \\ & \mathbf{\Omega}^{(s)} := n \cdot \nabla_{\vec{q}} \, s \end{aligned} \quad \text{or} \quad \Omega^{(n)}_{\alpha} := s_{\mu} \nabla_{\nu} n^{\mu} \, q^{\nu}{}_{\alpha} \\ & \mathbf{\Omega}^{(s)} := n \cdot \nabla_{\vec{q}} \, s \end{aligned} \\ & \mathbf{\Omega}^{(\ell)} := \frac{1}{k \cdot \ell} \, k \cdot \nabla_{\vec{q}} \, \ell \end{aligned} \quad \text{or} \quad \Omega^{(\ell)}_{\alpha} := \frac{1}{k_{\rho} \ell^{\rho}} k_{\mu} \nabla_{\nu} \ell^{\mu} \, q^{\nu}{}_{\alpha} \\ & \mathbf{\Omega}^{(k)} := \frac{1}{k \cdot \ell} \, \ell \cdot \nabla_{\vec{q}} \, k \end{aligned}$$

Basic properties of the normal fundamental forms

From the definition: $\Omega^{(s)} = -\Omega^{(n)}$ and $\Omega^{(k)} = -\Omega^{(\ell)} + \mathcal{D}\sigma$

Relation between the (n, s)-type and the (ℓ, k) -type: $\Omega^{(\ell)} = \Omega^{(n)}$ $[\ell = n + s]$ and $\Omega^{(k)} = -\Omega^{(n)}$ [k = n - s]

The normal fundamental forms are not unique

(contrary to the second fundamental tensor \mathcal{K}) Dependence of the normal frame

$$\textcircled{0}(n,s)\mapsto (n',s')\Longrightarrow \boxed{\Omega^{(n')}=\Omega^{(n)}+\mathcal{D}\eta}$$

$$(\ell, k) \mapsto (\ell', k') \Longrightarrow \Omega^{(\ell')} = \Omega^{(\ell)} + \mathcal{D} \ln \lambda$$

"Surface-gravity" 1-forms

If the vector fields (ℓ,k) are extended away from \mathcal{S}_t , define the 1-form

$$\boldsymbol{\kappa}^{(\boldsymbol{\ell})} := \frac{1}{\boldsymbol{k} \cdot \boldsymbol{\ell}} \, \boldsymbol{k} \cdot \boldsymbol{\nabla}_{\boldsymbol{p}} \, \boldsymbol{\ell} \quad \text{ or } \, \kappa_{\alpha}^{(\boldsymbol{\ell})} := \frac{1}{k_{\rho} \ell^{\rho}} k_{\mu} \nabla_{\nu} \ell^{\mu} \, p^{\nu}{}_{\alpha}$$

where p is the orthogonal projector complementary to $ec{q}$: $1 = ec{q} + p$.

NB: Since p is a projector in a direction transverse to S_t , the 1-form $\kappa^{(\ell)}$ is not intrinsic to the 2-surface S_t : it depends on the choice of ℓ away from S_t

"Surface-gravity" 1-forms

If the vector fields (ℓ,k) are extended away from \mathcal{S}_t , define the 1-form

$$\boldsymbol{\kappa}^{(\boldsymbol{\ell})} := \frac{1}{\boldsymbol{k} \cdot \boldsymbol{\ell}} \, \boldsymbol{k} \cdot \boldsymbol{\nabla}_{\boldsymbol{p}} \, \boldsymbol{\ell} \qquad \text{or } \kappa_{\alpha}^{(\boldsymbol{\ell})} := \frac{1}{k_{\rho} \ell^{\rho}} k_{\mu} \nabla_{\nu} \ell^{\mu} \, p^{\nu}{}_{\alpha}$$

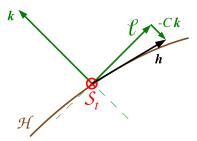
where p is the orthogonal projector complementary to $ec{q}$: $1 = ec{q} + p$.

NB: Since p is a projector in a direction transverse to S_t , the 1-form $\kappa^{(\ell)}$ is not intrinsic to the 2-surface S_t : it depends on the choice of ℓ away from S_t

If ℓ is extended along one of the two families of light rays emanating radially from S_t , then ℓ is pre-geodesic: $\nabla_{\ell} \ell = \nu_{(\ell)} \ell$, with the *inaffinity parameter* (*surface gravity* if ℓ = null Killing vector of Kerr spacetime) given by the 1-form $\kappa^{(\ell)}$ applied to ℓ :

 $u_{(\ell)} = \langle \kappa^{(\ell)}, \ell \rangle$

Normal null frame associated with the evolution vector



The foliation $(S_t)_{t \in \mathbb{R}}$ entirely fixes the ambiguities in the choice of the null normal frame (ℓ, k) , via the evolution vector h: there exists a unique normal null frame (ℓ, k) such that

$$h = \ell - Ck$$
 and $\ell \cdot k = -1$

Outline

- Review of "classical" black holes
- 2 New approaches to black holes
- 3 Geometry of hypersurface foliations by spacelike 2-surfaces
- A Navier-Stokes-like equation
 - 5 Area evolution and energy equation

A B > A
 A
 B > A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Concept of black hole viscosity

- Hartle and Hawking (1972, 1973): introduced the concept of **black hole viscosity** when studying the response of the *event horizon* to external perturbations
- Damour (1979): 2-dimensional Navier-Stokes like equation for the event horizon ⇒ shear viscosity and bulk viscosity
- Thorne and Price (1986): membrane paradigm for black holes

Concept of black hole viscosity

- Hartle and Hawking (1972, 1973): introduced the concept of **black hole viscosity** when studying the response of the *event horizon* to external perturbations
- Damour (1979): 2-dimensional **Navier-Stokes** like equation for the event horizon \implies shear viscosity and bulk viscosity
- Thorne and Price (1986): membrane paradigm for black holes

Shall we restrict the analysis to the event horizon ?

Can we extend the concept of viscosity to the local characterizations of black hole recently introduced, i.e. future outer trapping horizons and dynamical horizons ?

NB: *event horizon* = null hypersurface *future outer trapping horizon* = null or spacelike hypersurface *dynamical horizon* = spacelike hypersurface

A D > A B > A B >

Navier-Stokes equation in Newtonian fluid dynamics

$$\rho\left(\frac{\partial v^i}{\partial t} + v^j \nabla_j v^i\right) = -\nabla^i P + \mu \Delta v^i + \left(\zeta + \frac{\mu}{3}\right) \nabla^i (\nabla_j v^j) + f^i$$

or, in terms of fluid momentum density $\pi_i := \rho v_i$,

$$\frac{\partial \pi_i}{\partial t} + v^j \nabla_j \pi_i + \theta \pi_i = -\nabla_i P + 2\mu \nabla^j \sigma_{ij} + \zeta \nabla_i \theta + f_i$$

where θ is the fluid expansion:

$$\theta := \nabla_j v^j$$

and σ_{ij} the velocity shear tensor:

$$\sigma_{ij} := \frac{1}{2} \left(\nabla_i v_j + \nabla_j v_i \right) - \frac{1}{3} \theta \, \delta_{ij}$$

P is the pressure, μ the shear viscosity, ζ the bulk viscosity and f_i the density of external forces

Original Damour-Navier-Stokes equation

Hyp: \mathcal{H} = null hypersurface (particular case: black hole **event horizon**) Then $h = \ell$ (C = 0) reminder Damour (1979) has derived from Einstein equation the relation $\mathcal{L}^{S}\mathcal{L}_{\ell} \, \mathbf{\Omega}^{(\ell)} + \theta^{(\ell)} \mathbf{\Omega}^{(\ell)} = \mathcal{D} \nu_{(\ell)} - \mathcal{D} \cdot \vec{\sigma}^{(\ell)} + rac{1}{2} \mathcal{D} \theta^{(\ell)} + 8\pi \vec{q}^{*} T \cdot \ell$ or equivalently ${}^{\mathcal{S}}\mathcal{L}_{\boldsymbol{\ell}} \, \boldsymbol{\pi} + \theta^{(\boldsymbol{\ell})} \overline{\boldsymbol{\pi}} = -\mathcal{D}P + 2\mu \mathcal{D} \cdot \vec{\boldsymbol{\sigma}}^{(\boldsymbol{\ell})} + \zeta \mathcal{D}\theta^{(\boldsymbol{\ell})} + \boldsymbol{f}$ $\pi := -\frac{1}{2\pi} \Omega^{(\ell)}$ momentum surface density with $P := \frac{\nu_{(\ell)}}{8\pi}$ pressure $\mu := \frac{1}{16\pi}$ shear viscosity $\zeta := -\frac{1}{16\pi}$ bulk viscosity $f := -\vec{q}^*T \cdot \ell$ external force surface density (T = stress-energy tensor)

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Original Damour-Navier-Stokes equation (con't)

Introducing a coordinate system (t, x^1, x^2, x^3) such that

• t is compatible with ℓ : $\mathcal{L}_{\ell} t = 1$

• \mathcal{H} is defined by $x^1 = \text{const}$, so that $x^a = (x^2, x^3)$ are coordinates spanning \mathcal{S}_t then

$$\boldsymbol{\ell} = rac{\partial}{\partial t} + \boldsymbol{V}$$

with V tangent to S_t : velocity of \mathcal{H} 's null generators with respect to the coordinates x^a [Damour, PRD 18, 3598 (1978)]. Then

$$\begin{split} \theta^{(\ell)} &= \mathcal{D}_a V^a + \frac{\partial}{\partial t} \ln \sqrt{q} \qquad q := \det q_{ab} \\ \sigma^{(\ell)}_{ab} &= \frac{1}{2} \left(\mathcal{D}_a V_b + \mathcal{D}_b V_a \right) - \frac{1}{2} \theta^{(\ell)} q_{ab} + \frac{1}{2} \frac{\partial q_{ab}}{\partial t} \end{split}$$

Negative bulk viscosity of event horizons

From the Damour-Navier-Stokes equation, $\zeta = -\frac{1}{16\pi} < 0$

This negative value would yield to a *dilation or contraction instability* in an ordinary fluid

It is in agreement with the tendency of a null hypersurface to continually contract or expand

The event horizon is stabilized by the teleological condition imposing its expansion to vanish in the far future (equilibrium state reached)

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

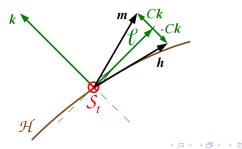
Generalization to the non-null case

Starting remark: in the null case, ℓ plays two different roles:

- evolution vector along \mathcal{H} (e.g. term ${}^{\mathcal{S}}\mathcal{L}_{\ell}$)
- ullet normal to \mathcal{H} (e.g. term $ec{q}^*T\cdot \ell)$

When ${\mathcal H}$ is no longer null, these two roles have to be taken by two different vectors:

- evolution vector: obviously h reminder
- vector normal to \mathcal{H} : a natural choice is $egin{array}{c} m{m} := m{\ell} + Cm{k} \end{array}$



Generalized Damour-Navier-Stokes equation

Starting point of the calculation: contracted Ricci identity applied to the vector m and projected onto S_t :

$$\left(\nabla_{\mu}\nabla_{\nu}m^{\mu} - \nabla_{\nu}\nabla_{\mu}m^{\mu}\right)q^{\nu}{}_{\alpha} = R_{\mu\nu}m^{\mu}q^{\nu}{}_{\alpha}$$

Final result:

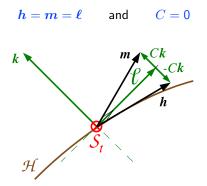
$${}^{\mathcal{S}}\mathcal{L}_{\boldsymbol{h}}\,\boldsymbol{\Omega}^{(\boldsymbol{\ell})} + \theta^{(\boldsymbol{h})}\,\boldsymbol{\Omega}^{(\boldsymbol{\ell})} = \boldsymbol{\mathcal{D}}\langle\boldsymbol{\kappa}^{(\boldsymbol{\ell})},\boldsymbol{h}\rangle - \boldsymbol{\mathcal{D}}\cdot\vec{\boldsymbol{\sigma}}^{(\boldsymbol{m})} + \frac{1}{2}\boldsymbol{\mathcal{D}}\theta^{(\boldsymbol{m})} - \theta^{(\boldsymbol{k})}\boldsymbol{\mathcal{D}}C + 8\pi\vec{\boldsymbol{q}}^{*}\boldsymbol{T}\cdot\boldsymbol{m}$$

- Ω^(ℓ): normal fundamental form of S_t associated with null normal ℓ
 θ^(h), θ^(m) and θ^(k): expansion scalars of S_t along the vectors h, m and k respectively
- \mathcal{D} : covariant derivative within (\mathcal{S}_t, q)
- $\kappa^{(\ell)}$: "surface-gravity" 1-form associated with the null vector ℓ (reminder
- $\sigma^{(m)}$: shear tensor of \mathcal{S}_t along the vector m (reminder
- C : half the scalar square of h (reminder

(a)

Null limit

In the null limit,



and we recover the original Damour-Navier-Stokes equation:

$${}^{\mathcal{S}}\mathcal{L}_{\ell}\,\boldsymbol{\Omega}^{(\ell)} + \theta^{(\ell)}\boldsymbol{\Omega}^{(\ell)} = \mathcal{D}\nu_{(\ell)} - \mathcal{D}\cdot\vec{\boldsymbol{\sigma}}^{(\ell)} + \frac{1}{2}\mathcal{D}\theta^{(\ell)} + 8\pi\vec{q}^{*}\boldsymbol{T}\cdot\boldsymbol{\ell}$$

Case of future trapping horizons

Definition [Hayward, PRD 49, 6467 (1994)] : \mathcal{H} is a future trapping horizon iff $\theta^{(\ell)} = 0$ and $\theta^{(k)} < 0$.

The generalized Damour-Navier-Stokes equation reduces then to

 ${}^{\mathcal{S}}\mathcal{L}_{h}\,\boldsymbol{\Omega}^{(\ell)} + \theta^{(h)}\,\boldsymbol{\Omega}^{(\ell)} = \boldsymbol{\mathcal{D}}\langle \boldsymbol{\kappa}^{(\ell)}, h \rangle - \boldsymbol{\mathcal{D}} \cdot \vec{\boldsymbol{\sigma}}^{(m)} - \frac{1}{2}\boldsymbol{\mathcal{D}}\theta^{(h)} - \theta^{(k)}\boldsymbol{\mathcal{D}}C + 8\pi \vec{\boldsymbol{q}}^{*}\boldsymbol{T} \cdot \boldsymbol{m}$

NB: Notice the change of sign in the $-\frac{1}{2}\mathcal{D}\theta^{(h)}$ term with respect to the original Damour-Navier-Stokes equation \checkmark

Viscous fluid form

$$\begin{split} & S\mathcal{L}_{h} \pi + \theta^{(h)} \pi = -\mathcal{D}P + \frac{1}{8\pi} \mathcal{D} \cdot \vec{\sigma}^{(m)} + \zeta \mathcal{D}\theta^{(h)} + f \end{split}$$
with $\pi := -\frac{1}{8\pi} \Omega^{(\ell)}$ momentum surface density
 $P := \frac{\kappa}{8\pi}$ pressure
 $\frac{1}{8\pi} \sigma^{(m)}$ shear stress tensor
 $\zeta := \frac{1}{16\pi}$ bulk viscosity
 $f := -\vec{q}^{*}T \cdot m + \frac{\theta^{(k)}}{8\pi} \mathcal{D}C$ external force surface density
Similar to the Damour-Navier-Stokes equation for an event horizon \blacktriangleleft predict,
except for
• no Newtonian-fluid relation between *stress* and *strain*: $\sigma^{(m)} \neq 2\mu\sigma^{(h)}$
• positive bulk viscosity

This positive value of bulk viscosity shows that FOTHs and DHs behave as "ordinary" physical objects, in perfect agreement with their local nature

Generalized angular momentum

Definition [Booth & Fairhurst, CQG 22, 4545 (2005)]: Let φ be a vector field on $\mathcal H$ which

- ullet is tangent to \mathcal{S}_t
- has closed orbits
- has vanishing divergence with respect to the induced metric: $\mathcal{D}\cdot arphi=0$

For dynamical horizons, $\theta^{(h)} \neq 0$ and there is a unique choice of φ as the generator (conveniently normalized) of the curves of constant $\theta^{(h)}$ [Hayward, PRD 74, 104013 (2006)]

The generalized angular momentum associated with arphi is then defined by

$$J(\boldsymbol{\varphi}) := -rac{1}{8\pi} \oint_{\mathcal{S}_t} \langle \boldsymbol{\Omega}^{(\boldsymbol{\ell})}, \boldsymbol{\varphi} \rangle^{\,s} \boldsymbol{\epsilon},$$

Remark 1: does not depend upon the choice of null vector ℓ , thanks to the divergence-free property of φ *Remark 2:*

- coincides with Ashtekar & Krishnan's definition for a dynamical horizon
- \bullet coincides with Brown-York angular momentum if ${\mathcal H}$ is timelike and φ a Killing vector

(a)

Angular momentum flux law

Under the supplementary hypothesis that φ is transported along the evolution vector h: $\mathcal{L}_h \varphi = 0$, the generalized Damour-Navier-Stokes equation leads to

$$\frac{d}{dt}J(\boldsymbol{\varphi}) = -\oint_{\mathcal{S}_t} \boldsymbol{T}(\boldsymbol{m},\boldsymbol{\varphi})^{s} \boldsymbol{\epsilon} - \frac{1}{16\pi} \oint_{\mathcal{S}_t} \left[\vec{\boldsymbol{\sigma}}^{(\boldsymbol{m})} : \mathcal{L}_{\boldsymbol{\varphi}} \boldsymbol{q} - 2\theta^{(\boldsymbol{k})} \boldsymbol{\varphi} \cdot \boldsymbol{\mathcal{D}}C\right]^{s} \boldsymbol{\epsilon}$$

[Gourgoulhon, PRD 72, 104007 (2005)]

Angular momentum flux law

Under the supplementary hypothesis that φ is transported along the evolution vector h: $\mathcal{L}_h \varphi = 0$, the generalized Damour-Navier-Stokes equation leads to

$$\frac{d}{dt}J(\boldsymbol{\varphi}) = -\oint_{\mathcal{S}_t} \boldsymbol{T}(\boldsymbol{m},\boldsymbol{\varphi})^{s} \boldsymbol{\epsilon} - \frac{1}{16\pi} \oint_{\mathcal{S}_t} \left[\vec{\boldsymbol{\sigma}}^{(\boldsymbol{m})} : \mathcal{L}_{\boldsymbol{\varphi}} \boldsymbol{q} - 2\theta^{(\boldsymbol{k})} \boldsymbol{\varphi} \cdot \boldsymbol{\mathcal{D}}C\right]^{s} \boldsymbol{\epsilon}$$

[Gourgoulhon, PRD 72, 104007 (2005)]

Two interesting limiting cases:

Angular momentum flux law

Under the supplementary hypothesis that φ is transported along the evolution vector h : $\mathcal{L}_h \varphi = 0$, the generalized Damour-Navier-Stokes equation leads to

$$\frac{d}{dt}J(\boldsymbol{\varphi}) = -\oint_{\mathcal{S}_t} \boldsymbol{T}(\boldsymbol{m},\boldsymbol{\varphi})^{s} \boldsymbol{\epsilon} - \frac{1}{16\pi} \oint_{\mathcal{S}_t} \left[\vec{\boldsymbol{\sigma}}^{(\boldsymbol{m})} : \boldsymbol{\mathcal{L}}_{\boldsymbol{\varphi}} \boldsymbol{q} - 2\theta^{(\boldsymbol{k})} \boldsymbol{\varphi} \cdot \boldsymbol{\mathcal{D}}C\right]^{s} \boldsymbol{\epsilon}$$

[Gourgoulhon, PRD 72, 104007 (2005)]

Two interesting limiting cases:

• $\mathcal{H} = \text{null hypersurface}$: C = 0 and $m = \ell$:

$$\frac{d}{dt}J(\boldsymbol{\varphi}) = -\oint_{\mathcal{S}_t} \boldsymbol{T}(\boldsymbol{\ell},\boldsymbol{\varphi})^{\boldsymbol{s}}\boldsymbol{\epsilon} - \frac{1}{16\pi}\oint_{\mathcal{S}_t} \vec{\boldsymbol{\sigma}}^{(\boldsymbol{\ell})} \colon \boldsymbol{\mathcal{L}}_{\boldsymbol{\varphi}} \boldsymbol{q}^{\boldsymbol{s}}\boldsymbol{\epsilon}$$

i.e. Eq. (6.134) of the *Membrane Paradigm* book (Thorne, Price & MacDonald 1986)

Angular momentum flux law

Under the supplementary hypothesis that φ is transported along the evolution vector h : $\mathcal{L}_h \varphi = 0$, the generalized Damour-Navier-Stokes equation leads to

$$\frac{d}{dt}J(\boldsymbol{\varphi}) = -\oint_{\mathcal{S}_t} \boldsymbol{T}(\boldsymbol{m},\boldsymbol{\varphi})^{s} \boldsymbol{\epsilon} - \frac{1}{16\pi} \oint_{\mathcal{S}_t} \left[\vec{\boldsymbol{\sigma}}^{(\boldsymbol{m})} : \boldsymbol{\mathcal{L}}_{\boldsymbol{\varphi}} \boldsymbol{q} - 2\theta^{(\boldsymbol{k})} \boldsymbol{\varphi} \cdot \boldsymbol{\mathcal{D}}C\right]^{s} \boldsymbol{\epsilon}$$

[Gourgoulhon, PRD 72, 104007 (2005)]

Two interesting limiting cases:

• $\mathcal{H} = \text{null hypersurface}$: C = 0 and $m = \ell$:

$$\frac{d}{dt}J(\boldsymbol{\varphi}) = -\oint_{\mathcal{S}_t} \boldsymbol{T}(\boldsymbol{\ell},\boldsymbol{\varphi})^{\boldsymbol{s}}\boldsymbol{\epsilon} - \frac{1}{16\pi}\oint_{\mathcal{S}_t} \vec{\boldsymbol{\sigma}}^{(\boldsymbol{\ell})} \colon \boldsymbol{\mathcal{L}}_{\boldsymbol{\varphi}} \boldsymbol{q}^{\boldsymbol{s}}\boldsymbol{\epsilon}$$

i.e. Eq. (6.134) of the *Membrane Paradigm* book (Thorne, Price & MacDonald 1986)

• $\mathcal{H} =$ future trapping horizon :

$$\frac{d}{dt}J(\boldsymbol{\varphi}) = -\oint_{\mathcal{S}_t} \boldsymbol{T}(\boldsymbol{m},\boldsymbol{\varphi})^s \boldsymbol{\epsilon} - \frac{1}{16\pi} \oint_{\mathcal{S}_t} \vec{\boldsymbol{\sigma}}^{(\boldsymbol{m})} \colon \mathcal{L}_{\boldsymbol{\varphi}} \boldsymbol{q}^s \boldsymbol{\epsilon}$$

Outline

- Review of "classical" black holes
- 2 New approaches to black holes
- 3 Geometry of hypersurface foliations by spacelike 2-surfaces
- 4 A Navier-Stokes-like equation
- 5 Area evolution and energy equation

A B A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Starting point

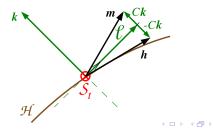
From the Einstein equation, one can derive the following evolution law for any foliated hypersurface \mathcal{H} [Gourgoulhon & Jaramillo, PRD 74, 087502 (2006)] :

$$\mathcal{L}_{h} \theta^{(m)} = \kappa \theta^{(h)} - \frac{1}{2} \theta^{(h)} \theta^{(m)} - \sigma^{(h)} : \sigma^{(m)} - 8\pi T(m, h)$$

$$+ \theta^{(k)} \mathcal{L}_{h} C + \mathcal{D} \cdot \left(2C \vec{\Omega}^{(\ell)} - \vec{\mathcal{D}}C \right)$$

where κ is the component along ℓ of the "acceleration" of h in the decomposition

$$\nabla_h h = \kappa \ell + (C\kappa - \mathcal{L}_h C)k - \mathcal{D}C$$



Two special cases

• null hypersurface (event horizon) : $h = m = \ell$ and C = 0:

$$\mathcal{L}_{\boldsymbol{\ell}} \, \theta^{(\boldsymbol{\ell})} + (\theta^{(\boldsymbol{\ell})})^2 - \kappa \, \theta^{(\boldsymbol{\ell})} = \frac{1}{2} (\theta^{(\boldsymbol{\ell})})^2 - \boldsymbol{\sigma}^{(\boldsymbol{\ell})} : \boldsymbol{\sigma}^{(\boldsymbol{\ell})} - 8\pi \boldsymbol{T}(\boldsymbol{\ell}, \boldsymbol{\ell})$$

 \rightarrow this is the null Raychaudhuri equation

• FOTH : $\theta^{(\ell)} = 0 \Rightarrow \theta^{(m)} = -\theta^{(h)}$:

$$\mathcal{L}_{h} \theta^{(h)} + (\theta^{(h)})^{2} + \kappa \theta^{(h)} = \frac{1}{2} (\theta^{(h)})^{2} + \sigma^{(h)} : \sigma^{(m)} + 8\pi T(m, h) - \theta^{(k)} \mathcal{L}_{h} C + \mathcal{D} \cdot \left(\vec{\mathcal{D}} C - 2C \vec{\Omega}^{(\ell)} \right)$$

Notice the change of signs between the two cases

Energy equation

For a event horizon, Price and Thorne (1986) have defined the surface energy density as $\varepsilon := -\frac{1}{8\pi} \theta^{(\ell)}$

By analogy, define the surface energy density of a FOTH as

$$\varepsilon := -\frac{1}{8\pi} \theta^{(\boldsymbol{m})}$$

Then the above evolution equation becomes

 $\mathcal{L}_{h} \varepsilon + (\varepsilon + P)\theta^{(h)} = \frac{1}{8\pi} \sigma^{(h)} : \sigma^{(m)} + \zeta(\theta^{(h)})^{2} - \mathcal{D} \cdot Q + \mathcal{R}$ [Gourgoulhon & Jaramillo, PRD 74, 087502 (2006)] with $P := \frac{\kappa}{8\pi}$ pressure, $\frac{1}{8\pi} \sigma^{(m)}$ shear stress tensor $\sigma^{(h)}$ shear strain tensor, $\zeta := \frac{1}{16\pi} > 0$ bulk viscosity $Q := \frac{1}{4\pi} \left[C \vec{\Omega}^{(\ell)} - \frac{1}{2} \vec{\mathcal{D}} C \right]$ heat flux $\mathcal{R} = T(m, h) - \frac{\theta^{(k)}}{8\pi} \mathcal{L}_{h} C$ external energy production rate

We recover the positiveness of the bulk viscosity for a FOTH