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Bekenstein-Oron formulation of relativistic ideal MHD

Variational principle

Bekenstein & Oron (2000)’s action for a magnetized perfect fluid with infinite
conductivity:

’ S(gaﬂa Naa 5,7, Aa) = Sgrav + Sﬂuid + SMHD

N% = nu® baryon number 4-current
s : entropy per baryon

~ : Lin vorticity function (if absent, the theory describes only potential flows)

Aq : electromagnetic 4-potential: Fi,3 = 0,45 — 0gAq

1
Seray = Ton /R\/—g d*z : Hilbert-Einstein action

Sfuia = / [—e(s,1) + VaN + xVa(sN®) + AVa(yN)] V=g d'z :

perfect fiuid action [Schutz 1970]

1
SMHD = / (167r wpF P — anagNﬁ> V/—gd*z : ideal MHD action

[Bekenstein & Oron 2000]

Lagrange multipliers: ¢, x, A, ¢©
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Bekenstein-Oron formulation of relativistic ideal MHD

Equations of motion (1/2)

@ Variation w.r.t. ¢ = baryon number con

servation :

@ Variation w.rt. x = V,(sN%) =0 = (adiabatic flow)
@ Variation w.rt N = huy, = Voo + sVax + 7V A — Faﬁq‘ﬁ

where h is the enthalpy per baryon: h :=

S

@ Variation w.r.t. ¢ = FagNﬂ =0=

(1)

F,pu” = 0/ (infinite conductivity)

o Variation w.r.t. A, = Maxwell equation

V@Faﬁ = 4

j¢ = Vg(Naqﬂ

— NPg*)

(1) and (2) = | Voj“ = 0| (conservation of electric charge)

with

()
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Bekenstein-Oron formulation of relativistic ideal MHD

Equations of motion (2/2)

Combining various equations resulting from the variational principle we get the
MHD Euler equation:

(e + P)uPVgug = —(6°, + uau®)Vap + Fapj?
which can be put in the equivalent form

3)

where T is the fluid temperature and €2 is the generalized vorticity 2-form, i.e.
the exterior derivative of the generalized momentum 1-form w :

w::therj" and

Components: w, = hu, + F,Yﬁq[’ and Q.3 = 0,wg — Jgwq

(3) is the ideal MHD generalization of the pure-hydrodynamics equation of motion
in canonical form [Synge 1937], [Lichnerowicz 1941], [Taub 1959], [Carter 1979]
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Bekenstein-Oron formulation of relativistic ideal MHD
MHD Kelvin's theorem

C(7) : closed contour dragged along by the fluid (proper time 7)

Magnetized fluid circulation around C(7): C(7) := w
C(r)
Variation of the circulation as the contour is dragged by the fluid:

dcC d [ j{
_ = w = ﬁﬁ w
dr dr c(r) c(r)

By virtue of Cartan's identity, Lz w =4 -dw +d(d - w) =4 -2 —dh
Thanks to the e.o.m. (3) we get L4 w = Tds —dh

Since C(7) is closed, 7{ dh =0

JC(r)
d
—O :?{ Tds
dr c(r)

If ' = const or s = const on C(7), then C'is conserved
Bekenstein & Oron'’s generalisation of Kelvin's theorem

Hence
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Quasistationary evolution of a magnetized binary system
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Quasistationary evolution of a magnetized binary system
Equilibrium configuration

Hypothesis:

Magnetized binary system in equilibrium on a
circular orbit

Geometrical translation:

Einstein-Maxwell spacetime (.Z, g, F') with
helical symmetry : 3 a vector field k of helical
type such that

ST

<= Vaksg+ Vgky =0 (E = Killing vector)

[ro0 @
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Quasistationary evolution of a magnetized binary system
Equilibrium configuration

Hypothesis:

Magnetized binary system in equilibrium on a
circular orbit

Geometrical translation:

Einstein-Maxwell spacetime (.Z, g, F') with
helical symmetry : 3 a vector field k of helical
type such that

ST

<= Vaksg+ Vgky =0 (E = Killing vector)
: g

(1) and (2) are approximations of actual binary spacetimes:

@ (1) does not take into account outgoing gravitational radiation
°

(2) does not allow for outgoing electromagnetic radiation

GR19, Mexico, 8 July 2010
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Quasistationary evolution of a magnetized binary system

Modeling the slow evolution of the system (inspiral)

Sequence
Q) = (A ,g(N), u(A),n(A),s(A), A(X))

of equilibrium magnetized perfect fluid spacetimes such that Q(\) and
Q(A + d\) are related by an evolution obeying Einstein-Maxwell equations, baryon
number conservation and infinite conductivity
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Quasistationary evolution of a magnetized binary system

Modeling the slow evolution of the system (inspiral)

Sequence
Q) = (A ,g(N), u(A),n(A),s(A), A(X))

of equilibrium magnetized perfect fluid spacetimes such that Q(\) and
Q(A + d\) are related by an evolution obeying Einstein-Maxwell equations, baryon
number conservation and infinite conductivity

d,
Eulerian change of a quantity f: f := %

Lagrangian displacement é’ vector joining a fluid element at some point P in
configuration Q(\) to the same fluid element in Q(\ + d\)

Lagrangian change of a quantity f : Af = (d+Lz)f
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Quasistationary evolution of a magnetized binary system
Noether charge

S : A sphere on

which the charge Famlly of Noether charges:

Q is evaluated.
1
BRI QM) = *S*j{ (VR + VoE® = VPE®) dSas
X@) o
~ with V() vector field satisfying
z 1 d ) ®Ye]
9F = 5U; B, T (V=gV*®) = 870

1 dg v
@(y = ( (x,u,gﬂz/ g(xﬂ /z,u) vﬂ di\ ( - p) (gwﬂ uauﬂ> 5/3
1 F(y d‘ 18 ] ey .Bea

V@ can be chosen to make Q(\) finite

k Killing vector = Q)(\) is independent of the choice of the 2-surface S
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Quasistationary evolution of a magnetized binary system
Variation of the Noether charge

If evolution Q(A) — Q(A + d\) perserves the baryon number, the entropy, the
magnetized fluid circulation and the magnetic flux, then, from the equations of
motion listed in Part 1,

6Q = (52040 + Padn) (4)

where
° Z is the sum over the black holes (if any)

a

@ K, is the surface gravity of BH no. a : VEE = Kok
o A, is the area of BH no. a
@ q, is the total electric charge of BH no. a
o @, is the (constant) electric potential of BH no. a:
d, = — Aaka|5ﬂ = const
Equation (4) generalizes to the single symmetry case a relation obtained
previously by [Carter 1979] in the stationary and axisymmetric case J
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Quasistationary evolution of a magnetized binary system
Generalized first law of thermodynamics

Assume the metric is asymptotically flat (Isenber-Wilson-Mathews
approximation, 2-PN approximation, waveless approximation,...)

Then k is related to two asymptotically Killing vectors t (timelike) and @
(spacelike) by

Sy

k=t+ Qp, Q = const
and one can define

@ the ADM mass M

@ the total angular momentum J

Then one can show
0Q =M —QdoJ (5)
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Quasistationary evolution of a magnetized binary system
Generalized first law of thermodynamics

Assume the metric is asymptotically flat (Isenber-Wilson-Mathews
approximation, 2-PN approximation, waveless approximation,...)

Then k is related to two asymptotically Killing vectors t (timelike) and @
(spacelike) by

Sy

k=t+Q@3,  Q=const
and one can define
@ the ADM mass M
@ the total angular momentum J
Then one can show
0Q =M —QdJ (5)

Combining (4) and (5), we get

First law of thermodynamics for a magnetized binary system

SM = Q67+ (525, + Dudas ) (6)

Generalizes the law obtained by [Friedman, Uryu & Shibata 2002] to.the MHD case
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Computing equilibrium configurations
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Computing equilibrium configurations

Irrotational magnetized binaries

Zero-temperature limit of the MHD Euler equation (3) :
W Q=0 (")
with Q :=dw and w:=hu+ F -q

Let us define a irrotational magnetized flow as a flow for which

Then there exists (locally) a scalar field ® such that
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Computing equilibrium configurations

Irrotational magnetized binaries

Zero-temperature limit of the MHD Euler equation (3) :
W Q=0 (")
with Q :=dw and w:=hu+ F -q

Let us define a irrotational magnetized flow as a flow for which

Then there exists (locally) a scalar field ® such that

Motivations for computing irrotational magnetized NS binaries:
o the MHD Euler equation (7) is automatically satisfied

@ if the NS have initial low spin, the nuclear matter viscosity is by far too low to
synchronize the spins with the orbital frequency = assuming irrotationality
all along the evolutionary sequence is a very good approximation
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Computing equilibrium configurations

Equations for irrotational magnetized binaries

The fluid 4-velocity is

o 1

h (va(p - Faﬁ(]ﬁ)

u

The normalization relation u,u® = —1 then leads to

h? = — (Vo — Fapq”) (V@ — F*Pqp)

and the baryon number conservation V,(nu®) = 0 is equivalent to

n

v i

(V2@ — Fg)| =0
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Computing equilibrium configurations

Scheme to compute irrotational magnetized binaries

Choose some EQS ¢ = e(h), p = p(h), n = n(h) and some vector field ¢
Then iteratively

@ solve "

Va |7 (V00 = F2g5)| = 0
to get ¢

@ compute the enthalpy via 7 = — (V,® — F,5¢") (V2@ — F*7qp)

© compute ¢, p and n via the EOS

@ solve the Maxwell equation (in Lorenz gauge)

VsVPAY — R“ﬁAﬂ = 47V 5(n ¢“u” — n ¢’u®)

to get A, and F,,3 = 0, A — 03A,
@ solve the Einstein equations

The magnetic field configuration is specified by ¢

Kgji Uryti, Eric Gourgoulhon & Charalampos Markakis Magnetized binaries GR19, Mexico, 8 July 2010 17 / 18



Computing equilibrium configurations

Conclusion and perspectives

o We are studying self-consistent models of magnetized NS-NS and NS-BH
systems within the hypothesis of helical symmetry

@ We are using the Bekenstein-Oron formulation of relativistic ideal MHD

@ We have derived a relation of the type 'first law of thermodynamics’
governing the slow inspiral phase

@ For irrotational binaries, we have derived some integration scheme

@ There remains to perform the numerical implementation
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