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Relativistic MHD with exterior calculus
General framework and notations

Spacetime:
e .7/ : four-dimensional orientable real manifold
@ g : Lorentzian metric on ., sign(g) = (—,+, +,+)
@ € : Levi-Civita tensor (volume element 4-form) associated with g:
for any orthonormal basis (€,),

€(€p, €1, €5,€3) = *1

Notations:
@ U vector = v linear form associated to ¥ by the metric tensor:

vi=g@,.) [w=v] [ug=gauu"]

e v vector, T' multilinear form (valence n) = ¢ - T and T - ¥ multilinear
forms (valence n — 1) defined by

v-T:=T(,.,...,.) (T -T)ayean =" Thayan_1)
T v:=T(,...,.,7) (T V)ay-can 1 =Tayan 1 pn0"]
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Relativistic MHD with exterior calculus
Maxwell equations

Electromagnetic field in .Z: 2-form F which obeys to Maxwell equations:

o dF : exterior derivative of F:: (dF)ngy = OuFpy + 03F 0 + 04 Fop
1
@ «F' : Hodge dual of F: «F,5 := éeag,wF’“’

@ xj 3-form Hodge-dual of the 1-form j associated to the electric 4-current IR

=€)
@ 1o : magnetic permeability of vacuum
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Relativistic MHD with exterior calculus

Electric and magnetic fields in the fluid frame

Fluid : congruence of worldlines = 4-velocity u

o Electric field in the fluid frame: 1-form
@ Magnetic field in the fluid frame: vector b such that

e and Eareorthogonaltoﬁ: e-u=0andb-u=0

F:gAe+e(ﬁ,5,.,.)

*F=—-unb+e(d,e,.,.)
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Relativistic MHD with exterior calculus

Perfect conductor

Fluid is a perfect conductor <— €=0 <—
From now on, we assume that the fluid is a perfect conductor (ideal MHD)
The electromagnetic field is then entirely expressible in terms of vectors @ and b:
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Relativistic MHD with exterior calculus
Alfvén's theorem

Cartan’s identity applied to the 2-form F':
LzF=u-dF +d(u-F)

Now dF = 0 (Maxwell eq.) and 4 - F' = 0 (perfect conductor)
Hence the electromagnetic field is preserved by the flow:

Application: ij{ A=0
dr c(r)

o 7 : fluid proper time

o C(1) = closed contour dragged along by the fluid

@ A : electromagnetic 4-potential : FF =dA

d d [ d [ '
Proof:—% A:—/ dA:—/ F = LiF =0
dr Je(r) dr Jsqn =~ 47 Js) Js(r) ~—~

Non-relativistic limit: magnetic flux freezing : / b-dS = const (Alfvén's
S
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Relativistic MHD with exterior calculus

Magnetic induction equation (1/2)

We have obsviously F - b = €(ii, b, .,b) = 0
In addition, £; F =b- dF +d(b- F) =0
— =
0 0
Hence
similarly to
cu=0|and | Lz F =0
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Relativistic MHD with exterior calculus

Magnetic induction equation (2/2)

From Lz F =0 and F = e(u, I;) we get

(Lge€)(d,b,.,.)+

JuS
{l\

ol &
&
S
+

™
&
D

1
o4

I
o

Now L; e = (V- d)e, hence € (ﬁ, (V-@)b+Lyb,., ) =0
This implies B B
Lib=au— (V-u)b (1)

Eric Gourgoulhon (LUTH) Relativistic MHD Nancy, 8 June 2010 10 / 42



Relativistic MHD with exterior calculus

Magnetic induction equation (2/2)

From Lz F =0 and F = e(u, I;) we get

(Lge€)(d,b,.,.)+

JuS
{l\

ol &
&
S
+

™
&
D

1
o4

I

o

Now L; e = (V- d)e, hence € (ﬁ, (V-@)b+Lyb,., ) =0
This implies B B
Lib=au— (V-u)b (1)

Similarly, the property £; F' = 0 leads to € ((V- 5)12' + Ly 4, 5, . ) =0
which implies

-,

Lpii=—Lagb=—(V-b)i+3b (2)
Comparison of (1) and (2) leads to

—.

Lib=(V-b)i— (V-a)

S
—

w
~

oo 0b L _
Non-relativistic limit: — = curl(¢ x b) (induction equation)

ot
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Relativistic MHD with exterior calculus
Some simple consequences

Wehaveu'5:0:>£ﬁg-5+g~£ﬁl;:0

Now Lz u = a with @ := V34 (fluid 4-acceleration)

andu-Lgb=(V-b)u-i—(V-@)u-b=—-V-b
v ~—
—1 0
Hence
V-b=a-b
Eric Gourgoulhon (LUTH) Relativistic MHD
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Relativistic MHD with exterior calculus
Some simple consequences

—

Wehaveu-5:0:>£ﬁg-5+g~£ﬁb:0
Now Lz u = a with @ := V34 (fluid 4-acceleration)
andu-Lgb=(V-b)u-i—(V-@)u-b=-V-b
S —~~

0

Hence

V-b=a-b

]

If we invoke baryon number conservation
- _ 1
V- (nt)=0| < V-u=——Lzn
n

the magnetic induction equation (3) leads to a simple equation for the vector 5/71, :
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Relativistic MHD with exterior calculus
Perfect fluid

From now on, we assume that the fluid is a perfect one: its energy-momentum
tensor is

T = (¢ + plu® u+pg

Simple fluid model: all thermodynamical quantities depend on
@ s: entropy density in the fluid frame,
@ n: baryon number density in the fluid frame

Oe
T := 95 temperature
Equation of state : ¢ = ¢(s,n) = 65
e . .
pi= o baryon chemical potential
n

First law of thermodynamics = p = —c + T's + un

_e+p

= enthalpy per baryon : |k =p+ TS| with S := — (entropy per
n

S
n

baryon)
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Relativistic MHD with exterior calculus

Conservation of energy-momentum

Conservation law for the total energy-momentum:

\v@ (Tﬂuid + Tem) -0 (4)

e from Maxwell equations, V- T°" = —F - j
e using the baryon number conservation, V- T can be decomposed in two
parts:
e along d: @ - V-T" = —nT4-dS
o orthogonal to @ : | L, V-T™ = n(d - d(hu) — TdS)
[Synge 1937] [Lichnerowicz 1941] [Taub 1959] [Carter 1979]

Since 4 - F - _; =0, Eq. (4) is equivalent to the system

i-dS =0 (5)

@ d(hu)—TdS = ~F . 6)
n

Eq. (6) is the MHD-Euler equation in canonical form.
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Relativistic MHD with exterior calculus

Example of application : Kelvin's theorem

C(7) : closed contour dragged along by the fluid (proper time )

Fluid circulation around C(7): C(1) := hu
JC(r)
Variation of the circulation as the contour is dragged by the fluid:
ac d
— = hu = Eﬁ(hﬂ):% ﬂ-d(hg)—i—% d(hu - u)
dr dr Je(r) c(r) c(r) o =

—1
where the last equality follows from Cartan'’s identity

Now, since C(7) is closed, 7{ dh =0
C(r)
Using the MHD-Euler equation (6), we thus get

ac :f (TdS—i— 1F-j'>
dT c(r) n

If F-j =0 (force-free MHD) and T' = const or S = const on C(7), then C'is
conserved (Kelvin's theorem)
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Stationary and axisvmmetric electromagnetic fields in general relativity
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Stationary and axisvmmetric electromagnetic fields in general relativity

Stationary and axisymmetric spacetimes

Assume that (.#,g) is endowed with two symmetries:
@ stationarity : 3 a group action of (R, +) on .# such that
o the orbits are timelike curves
e g is invariant under the (R, +) action :
if gis a generator of the group action,

g

@ axisymmetry : 3 a group action of SO(2) on .# such that
o the set of fixed points is a 2-dimensional submanifold A C .# (called the
rotation axis)
e g is invariant under the SO(2) action :
if ¢ is a generator of the group action,

@

(7) and (8) are equivalent to Killing equations:
Vals + Vil = 0and | Vaxs + Vxa =0
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Stationary and axisvmmetric electromagnetic fields in general relativity

Stationary and axisymmetric spacetimes

No generality is lost by considering that the stationary and axisymmetric actions
commute [Carter 1970] :

(A, g) is invariant under the action of the Abelian group (R, +) x SO(2), and
not only under the actions of (R, +) and SO(2) separately. It is equivalent to say
that the Killing vectors commute:
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Stationary and axisvmmetric electromagnetic fields in general relativity

Stationary and axisymmetric spacetimes

No generality is lost by considering that the stationary and axisymmetric actions
commute [Carter 1970] :

(A, g) is invariant under the action of the Abelian group (R, +) x SO(2), and
not only under the actions of (R, +) and SO(2) separately. It is equivalent to say
that the Killing vectors commute:

€.x) =0
. a 1 .2 s 0 = 0
= J coordinates (z%) = (t,z", 2%, p) on .# such that & = e and X = 90
J /P
Within them, g5 = gas(a’, %)

= t+ Fy(zt,2?)
z 1,2
. . = F(x,
Adapted coordinates are not unique: x,g 1(3“1,:1:2)
27 = Fy(at a?)
¢ = ¢+ Fl2?)
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Stationary and axisvmmetric electromagnetic fields in general relativity

Stationary and axisymmetric electromagnetic field

Assume that the electromagnetic field is both stationary and axisymmetric:
©

—

Cartan identity and Maxwell eq. => Lz F = £ dF +d(§- F) = d(§- F)
0

Hence (9) is equivalent to
d(§-F)=0 and d(x-F)=0

Poincaré lemma = 3 locally two scalar fields ® and ¥ such that

€ F=-d® and|x F=—-d¥
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Stationary and axisvmmetric electromagnetic fields in general relativity

Stationary and axisymmetric electromagnetic field

Assume that the electromagnetic field is both stationary and axisymmetric:
©

—

Cartan identity and Maxwell eq. => Lz F = £ dF +d(§- F) = d(§- F)
0

Hence (9) is equivalent to
d(§-F)=0 and d(x-F)=0

Poincaré lemma = 3 locally two scalar fields ® and ¥ such that
€ F=-d® and|x F=—-d¥

Link with the 4-potential A: one may use the gauge freedom on A to set

P=A-£=A, and V=A-x=A4,
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Stationary and axisvmmetric electromagnetic fields in general relativity

Symmetries of the scalar potentials

From the definitions of ® and W:
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Stationary and axisvmmetric electromagnetic fields in general relativity

Symmetries of the scalar potentials

From the definitions of ® and W:

oE o = >2d<1>—f (§>Z)
o Le¥=E-d¥ = —F(X.£) = F(€,X)
We haved[F(g, X)) =d[§-d¥] = LzdT — £-dd¥ = L (F-X) =0

Hence F(€,%) = const

Assuming that F' vanishes somewhere in .# (for instance at spatial infinity), we
conclude that

F(€X) =0
Then L@ =Lz ® =0]and [L; U =Lz ¥ =0

i.e. the scalar potentials ® and ¥ obey to the two spacetime symmetries
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Stationary and axisvmmetric electromagnetic fields in general relativity

Most general stationary-axisymmetric electromagnetic field

o |I:=+F(£, X)| — the only non-trivial scalar, apart from F(£, %), one can

form from F, Eand X
(&, x") is the dual basis of (5 X) in the 2-plane | IT := Vect(é, X) |
X"

xX=1
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Stationary and axisvmmetric electromagnetic fields in general relativity

Most general stationary-axisymmetric electromagnetic field

The proof
Consider the 2-form H := F —d® A &* — dU A x*

It satisfies
H(E,.)=F(£,.)—(€-dD)E" + (€7 - €)dD — (£ dV)x" + (x* - £)dT =0

Similarly H(x,.) = 0. Hence H|; =0
On T+, H|y. is a 2-form. Another 2-form on TI* is e€.X,.,.) .
Since dim I+ = 2 and e(f Xs - .)‘nL # 0, 3 a scalar field I such that

—

I -

H|;. =—¢€l&X, . )) | - Because both H and €(&,X, .,.) vanish on II, we
g 1

can extend the equality to all space:

I
H=-
g

€€, X, .,.)

Thus F' has the form (10). Taking the Hodge dual gives the form (11) for xF,
on which we readily check that [ = *F(S, X), thereby completing the proof.
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Stationary and axisvmmetric electromagnetic fields in general relativity

Example: Kerr-Newman electromagnetic field

Using Boyer-Lindquist coordinates (¢,7, 0, ), the electromagnetic field of the
Kerr-Newman solution (charged rotating black hole) is

_ po® 2 2 2 2
F = 07 & a2 coZ 0)? { [(r* — a® cos® 0) dr — a”rsin 20 d6] A dt

+ [a(a® cos® 6 — r?) sin? @ dr + ar(r® 4 a?) sin 20 do] A d(p}

Q: total electric charge, a := J/M: reduced angular momentum

For Kerr-Newman, £* = dt and x* = d¢; comparison with (10) leads to

(I):_/LOQ r , \IJ:#OQ arsin® 6 =0
4 12 4+ a2 cos? 0 47 1?2 4 a?cos? 0
Non-rotating limit (a = 0): Reissner-Nordstrom solution: ® = —%9 U=0
T
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Stationary and axisvmmetric electromagnetic fields in general relativity

Maxwell equations

First Maxwell equation: dF =0
It is automatically satisfied by the form (10) of F'

Second Maxwell equation: d xF' = po xj

It gives the electric 4-current:

- - R
Ko J :a€+bx+56(€7X,VL) (12)

with
X I .
°a:=V, (V“(b - WW\D) +— [—Xfé’( )+ W(é’(x’)}
g o g

w |4 I

—

° (&) :=HENxNdE) = "7, x,V & (circularity factor)
o C(xX):=*(ENxNdx) = €e""7,x,V X0 (circularity factor)

Remark: ; has no meridional component (i.e. je ) <= dI =0
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Stationary and axisvmmetric electromagnetic fields in general relativity

Simplification for circular spacetimes

Spacetime (.#,g) is circular <= the planes I+ are integrable in 2-surfaces

—

= ) =7(X)=0

Generalized Papapetrou theorem [Papapetrou 1966] [Kundt & Triimper 1966] [Carter 1969] :
a stationary and axisymmetric spacetime ruled by the Einstein equation is circular
iff the total energy-momemtum tensor T' obeys to

gﬂTu [QE[}XW] =0
X;LTM [ozé&BX’y] - 0

Examples:

@ circular spacetimes: Kerr-Newman, rotating star, magnetized rotating star
with either purely poloidal magnetic field or purely toroidal magnetic field

@ non-circular spacetimes: rotating star with meridional flow, magnetized
rotating star with mixed magnetic field

In what follows, we do not assume that (.#, g) is circular ]
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Stationary and axisymmetric MHD

Outline

© Stationary and axisymmetric MHD
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Stationary and axisymmetric MHD

Perfect conductor hypothesis (1/2)

with the fluid 4-velocity decomposed as

—

=M+ Qx)+w,  wellt
w is the meridional flow

uﬂ1<:>>\\/ 1+w-@
- VvV —20W — 02X
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Stationary and axisymmetric MHD

Perfect conductor hypothesis (1/2)

with the fluid 4-velocity decomposed as
d=MNE+OQx) +w, wellt
w is the meridional flow

uﬂ1<:>>\\/ 1+w-@
- VvV —20W — 02X

We have

ond (270, (o

i.e. the scalar potentials ® and ¥ are constant along the fluid lines.
Proof: L ® =4 -dd = —F(g, u) = 0 by the perfect conductor property.

Corollary: since we had already qu) =Lz ®=0and Lg\l’ =LV =0,it
follows from (13) that

w-d® = 0] and

Eric Gourgoulhon (LUTH) Relativistic MHD Nancy, 8 June 2010 26 /
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Stationary and axisymmetric MHD

Perfect conductor hypothesis (2/2)

Expressing the condition F' -« = 0 with the general form of a
stationary-axisymmetric electromagnetic field yields

I
(¢ - @)dd - <d¢>0- @e + (X @)dv - (dqfo. DX+ € X, ) =0
A AQ F 2
—e(&,X,W,.)

Hence
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Stationary and axisymmetric MHD

dV +# 0 = dim Vect(£, ¥, V¥) = 3
Consider the 1-form q := e(g X, VU, .). It obeys

—

q-§= q-Xx=0, ¢ V¥=0

=

Besides B B

Hence the 1-forms q and w must be proportional: 3 a scalar field a such that

AL (15)

A consequence of the above relation is
(&, X, wW,.) =acd¥

a =0 <= no meridional flow

Nancy, 8 June 2010 28 /
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Stationary and axisymmetric MHD

Perfect conductor relation with d¥ # 0

—

Inserting €(&, X, W,.) = ao dV into the perfect conductor relation (14) yields

d® = —wd¥ (16)
with
al
=0-—
. A
(16) implies
dwAdT =0

from which we deduce that w is a function of V:

Remark: for a pure rotating flow (a = 0), w =

Eric Gourgoulhon (LUTH) Relativistic MHD Nancy, 8 June 2010 29 /

42



Stationary and axisymmetric MHD

Expression of the electromagnetic field with AU # 0
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Stationary and axisymmetric MHD

Conservation of baryon number

Taking the Lie derivative along 4 of the relation e(g X;U,.) = acd¥ and using
Lge=(V-u)e yields
Lg(ac) —acV-u =0

Invoking the baryon number conservation

1
V. U= —*;Cﬁ n
n

leads to
LazK=0

K :=ano

K is thus constant along the fluid lines.

where
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Stationary and axisymmetric MHD

Conservation of baryon number

Taking the Lie derivative along 4 of the relation e(g X;U,.) = acd¥ and using
Lge=(V-u)e yields
Lg(ac) —acV-u =0

Invoking the baryon number conservation

1
V. U= —*;Cﬁ n
n

leads to
LazK=0

K :=ano

K is thus constant along the fluid lines.

where

Moreoever, we have

Hence dK o« dV¥ and
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Stationary and axisymmetric MHD

Comparison with previous work

Bekenstein & Oron (1978)

[Bekenstein & Oron (1978)] have shown that the quantity

F3

Ci=——
/—gnu?

is conserved along the fluid lines.

1
We h = —
e have | C

Remark: for a purely rotational fluid motion (W =0 <= ¢ =0 < K =0)

C — o0
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Stationary and axisymmetric MHD
Helical vector

Let us introduce | k = f—&—w}Z

Since in general w is not constant, k is not a Killing vector. However

o V-k=0
o for any scalar field f that obeys to spacetime symmetries, L f =0
° ’CE u=0

All these properties are readily verified.

Moreover,E-F:§~F+w)Z-F:O:
~—— ——
—do —dw
kE-F=0
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Stationary and axisymmetric MHD

A conserved quantity from the MHD-Euler equation

From now on, we make use of the MHD-Euler equation (6):

1 -
@ -d(hu) —TdS = —F - j
n

Let us apply this equality between 1-forms to the helical vector k:

@-d(hu)-k—Tk- dS_fF(E 7)
n

Now, from previously listed properties of k, k-dS =0 and F(E ;) 0.

Hence there remains .
k-d(hu) -4=0 (17)
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Stationary and axisymmetric MHD

A conserved quantity from the MHD-Euler equation

Besides, via Cartan’s identity,

k-d(hw) = L (hw) — d(hu- k) = Lg (hu) +w Ly (hw) +(hw - X)dw — d(hu- k)
N , —

Hence Eq. (17) becomes

0
Thus we conclude
LiD=0
where
D:=hu-k
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Stationary and axisymmetric MHD

Another conserved quantity from the MHD-Euler equation

Restart previous computation with ginstead of k :

MHD-Euler equation = i - d(hw) - & — T€-dS = — F(£,7)
~—— N N —
0 —d®-j

Since d® = —wdW, we get

d-d(hu)- €= j-dv

I

-€) = d(hu) - £ =d(h

Cartan ident. = & d(hu) = Lg (hw) —d(hu
N——
0
Hence
ﬁﬂ(hg~§):%f~d\ll (18)

There remains to evaluate the term ; -dW¥

Nancy, 8 June 2010 36 / 42
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Stationary and axisymmetric MHD

Another conserved quantity from the MHD-Euler equation

From the expression (12) for 4 along with the properties £ - d¥ = 0 and
X -d¥ =0, we get
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Stationary and axisymmetric MHD

Another conserved quantity from the MHD-Euler equation

From the expression (12) for 4 along with the properties £ - d¥ = 0 and
X -d¥ =0, we get

Two cases must be considered:

(ia=0 (W =0):

U=ANE+QX) = Lz (hu-&)=0.
Egs. (18) and (19) then yield

€(€,X, VU, VI) =0

from which we deduce

and
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Stationary and axisymmetric MHD

Another conserved quantity from the MHD-Euler equation

(i) a # 0 (W # 0): then Eq. (15) gives

.- 1
6( a)Z: V\I/7 ) = -w
a
and we may write (19) as
- 1 = 1 1 1
j-dv=— w-VI=— @-dl = — @ dl = — Lol
Hoao Hoao Hoao Hoao
Thus Eq. (18) becomes, using K = ano,
= w
Lithu &) =——=Lz]
(hu - §) S

Since Lzw =0 and Lz K = 0, we obtain

caE=0]

with
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Stationary and axisymmetric MHD

Another conserved quantity from the MHD-Euler equation

Similarly, using ' instead of 5 we arrive at

1 -

Lg(hu-X) = (€. X, V¥, VI)
Hono

Again we have to distinguish two cases:
(i) a=0 (W =0): then Lz (hw-xX) = 0 and we recover I = I(¥) as above

(i) a # 0 (W # 0): we obtain then

with

I
L=hu X — —— 21
uX - (21)

Remark: the conserved quantities D, F and L are not independent since

D=-F+wL
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Stationary and axisymmetric MHD
Summary

o For purely rotational fluid motion (¢ = 0): any scalar quantity which
obeys to the spacetime symmetries is conserved along the fluid lines

@ For a fluid motion with meridional components (a # 0): there exist four
scalar quantities which are constant along the fluid lines:

w, K, B, L

(D being a combination of w, E and L)

If there is no electromagnetic field, £ = —hu - gand the constancy of E along
the fluid lines is the relativistic Bernoulli theorem
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Stationary and axisymmetric MHD

Comparison with previous work

Bekenstein & Oron (1978)

The constancy of w, K, D, E and L along the fluid lines has been shown first by
[Bekenstein & Oron (1978)]

Bekenstein & Oron have provided coordinate-dependent definitions of w and K,
namely

E F:
NI S e .

F3 v —gnu?

w =

Besides, they have obtained expressions for £/ and L slightly more complicated
than (20) and (21), namely

E——(h+|b2)u~§— ! (uw-k)(b-€)

Lon poK

S

—

A )
L={(h . -k)(b-
(e 2 Y Dt By @0

It can be shown that these expressions are equivalent to (20) and (21)
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