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Relativistic MHD with exterior calculus

General framework and notations

Spacetime:

M : four-dimensional orientable real manifold
g : Lorentzian metric on M , sign(g) = (−,+,+,+)
ε : Levi-Civita tensor (volume element 4-form) associated with g:
for any orthonormal basis (~eα),

ε(~e0, ~e1, ~e2, ~e3) = ±1

Notations:
~v vector =⇒ v linear form associated to ~v by the metric tensor:

v := g(~v, .) [v = v[] [uα = gαµu
µ]

~v vector, T multilinear form (valence n) =⇒ ~v · T and T · ~v multilinear
forms (valence n− 1) defined by

~v · T := T (~v, ., . . . , .) [(~v · T )α1···αn−1 = vµTµα1···αn−1 ]
T · ~v := T (., . . . , ., ~v) [(T · ~v)α1···αn−1 = Tα1···αn−1µv

µ]
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Relativistic MHD with exterior calculus

Maxwell equations

Electromagnetic field in M : 2-form F which obeys to Maxwell equations:

dF = 0

d ?F = µ0 ?j

dF : exterior derivative of F : (dF )αβγ = ∂αFβγ + ∂βFγα + ∂γFαβ

?F : Hodge dual of F : ?Fαβ :=
1
2
εαβµνF

µν

?j 3-form Hodge-dual of the 1-form j associated to the electric 4-current ~j :

?j := ε(~j, ., ., .)
µ0 : magnetic permeability of vacuum
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Relativistic MHD with exterior calculus

Electric and magnetic fields in the fluid frame

Fluid : congruence of worldlines =⇒ 4-velocity ~u

Electric field in the fluid frame: 1-form e = F · ~u

Magnetic field in the fluid frame: vector ~b such that b = ~u · ?F

e and ~b are orthogonal to ~u : e · ~u = 0 and b · ~u = 0

F = u ∧ e+ ε(~u,~b, ., .)

?F = −u ∧ b+ ε(~u, ~e, ., .)

Eric Gourgoulhon (LUTH) Relativistic MHD Nancy, 8 June 2010 6 / 42



Relativistic MHD with exterior calculus

Perfect conductor

Fluid is a perfect conductor ⇐⇒ ~e = 0 ⇐⇒ F · ~u = 0
From now on, we assume that the fluid is a perfect conductor (ideal MHD)

The electromagnetic field is then entirely expressible in terms of vectors ~u and ~b:

F = ε(~u,~b, ., .)

?F = b ∧ u
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Relativistic MHD with exterior calculus

Alfvén’s theorem

Cartan’s identity applied to the 2-form F :

L~u F = ~u · dF + d(~u · F )

Now dF = 0 (Maxwell eq.) and ~u · F = 0 (perfect conductor)
Hence the electromagnetic field is preserved by the flow:

L~u F = 0

Application:
d

dτ

∮
C(τ)

A = 0

τ : fluid proper time

C(τ) = closed contour dragged along by the fluid

A : electromagnetic 4-potential : F = dA

Proof:
d

dτ

∮
C(τ)

A =
d

dτ

∫
S(τ)

dA︸︷︷︸
F

=
d

dτ

∫
S(τ)

F =
∫
S(τ)

L~u F︸ ︷︷ ︸
0

= 0

Non-relativistic limit: magnetic flux freezing :

∫
S
~b · d~S = const (Alfvén’s

theorem)
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Relativistic MHD with exterior calculus

Magnetic induction equation (1/2)

We have obsviously F · ~b = ε(~u,~b, .,~b) = 0

In addition, L~b F = ~b · dF︸︷︷︸
0

+d(~b · F︸ ︷︷ ︸
0

) = 0

Hence

F · ~b = 0 and L~b F = 0
similarly to

F · ~u = 0 and L~u F = 0
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Relativistic MHD with exterior calculus

Magnetic induction equation (2/2)

From L~u F = 0 and F = ε(~u,~b, ., .), we get

(L~u ε)(~u,~b, ., .) + ε(L~u ~u︸ ︷︷ ︸
0

,~b, ., .) + ε(~u,L~u ~b, ., .) = 0

Now L~u ε = (∇· ~u)ε, hence ε
(
~u, (∇· ~u)~b+ L~u ~b, ., .

)
= 0

This implies
L~u ~b = α ~u− (∇· ~u)~b (1)

Similarly, the property L~b F = 0 leads to ε
(

(∇· ~b)~u+ L~b ~u, ~b, ., .
)

= 0
which implies

L~b ~u = −L~u ~b = −(∇· ~b)~u+ β~b (2)

Comparison of (1) and (2) leads to

L~u ~b = (∇· ~b)~u− (∇· ~u)~b (3)

Non-relativistic limit:
∂~b

∂t
= curl(~v × ~b) (induction equation)
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Relativistic MHD with exterior calculus

Some simple consequences

We have u · ~b = 0 =⇒ L~u u · ~b+ u · L~u ~b = 0

Now L~u u = a with ~a := ∇~u~u (fluid 4-acceleration)

and u · L~u ~b = (∇· ~b)u · ~u︸ ︷︷ ︸
−1

−(∇· ~u)u · ~b︸︷︷︸
0

= −∇· ~b

Hence

∇· ~b = a · ~b

If we invoke baryon number conservation

∇· (n ~u) = 0 ⇐⇒ ∇· ~u = − 1
n
L~u n

the magnetic induction equation (3) leads to a simple equation for the vector ~b/n :

L~u

(
~b

n

)
=

(
a ·

~b

n

)
~u
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Relativistic MHD with exterior calculus

Perfect fluid

From now on, we assume that the fluid is a perfect one: its energy-momentum
tensor is

T fluid = (ε+ p)u⊗ u+ pg

Simple fluid model: all thermodynamical quantities depend on

s: entropy density in the fluid frame,

n: baryon number density in the fluid frame

Equation of state : ε = ε(s, n) =⇒


T :=

∂ε

∂s
temperature

µ :=
∂ε

∂n
baryon chemical potential

First law of thermodynamics =⇒ p = −ε+ Ts+ µn

=⇒ enthalpy per baryon : h =
ε+ p

n
= µ+ TS , with S :=

s

n
(entropy per

baryon)

Eric Gourgoulhon (LUTH) Relativistic MHD Nancy, 8 June 2010 12 / 42



Relativistic MHD with exterior calculus

Conservation of energy-momentum

Conservation law for the total energy-momentum:

∇· (T fluid + T em) = 0 (4)

from Maxwell equations, ∇· T em = −F · ~j
using the baryon number conservation, ∇· T fluid can be decomposed in two
parts:

along ~u: ~u ·∇· T fluid = −nT ~u · dS

orthogonal to ~u : ⊥u∇· T fluid = n(~u · d(hu)− TdS)
[Synge 1937] [Lichnerowicz 1941] [Taub 1959] [Carter 1979]

Since ~u · F · ~j = 0, Eq. (4) is equivalent to the system

~u · dS = 0 (5)

~u · d(hu)− TdS =
1
n
F · ~j (6)

Eq. (6) is the MHD-Euler equation in canonical form.
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Relativistic MHD with exterior calculus

Example of application : Kelvin’s theorem

C(τ) : closed contour dragged along by the fluid (proper time τ)

Fluid circulation around C(τ): C(τ) :=
∮
C(τ)

hu

Variation of the circulation as the contour is dragged by the fluid:

dC

dτ
=

d

dτ

∮
C(τ)

hu =
∮
C(τ)

L~u (hu) =
∮
C(τ)

~u · d(hu) +
∮
C(τ)

d(hu · ~u︸ ︷︷ ︸
−1

)

where the last equality follows from Cartan’s identity

Now, since C(τ) is closed,

∮
C(τ)

dh = 0

Using the MHD-Euler equation (6), we thus get

dC

dτ
=
∮
C(τ)

(
TdS +

1
n
F · ~j

)
If F · ~j = 0 (force-free MHD) and T = const or S = const on C(τ), then C is
conserved (Kelvin’s theorem)
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Stationary and axisymmetric electromagnetic fields in general relativity

Stationary and axisymmetric spacetimes

Assume that (M , g) is endowed with two symmetries:
1 stationarity : ∃ a group action of (R,+) on M such that

the orbits are timelike curves
g is invariant under the (R, +) action :

if ~ξ is a generator of the group action,

L~ξ g = 0 (7)

2 axisymmetry : ∃ a group action of SO(2) on M such that
the set of fixed points is a 2-dimensional submanifold ∆ ⊂M (called the
rotation axis)
g is invariant under the SO(2) action :
if ~χ is a generator of the group action,

L~χ g = 0 (8)

(7) and (8) are equivalent to Killing equations:

∇αξβ +∇βξα = 0 and ∇αχβ +∇βχα = 0
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Stationary and axisymmetric electromagnetic fields in general relativity

Stationary and axisymmetric spacetimes

No generality is lost by considering that the stationary and axisymmetric actions
commute [Carter 1970] :
(M , g) is invariant under the action of the Abelian group (R,+)× SO(2), and
not only under the actions of (R,+) and SO(2) separately. It is equivalent to say
that the Killing vectors commute:

[~ξ, ~χ] = 0

=⇒ ∃ coordinates (xα) = (t, x1, x2, ϕ) on M such that ~ξ =
∂

∂t
and ~χ =

∂

∂ϕ
Within them, gαβ = gαβ(x1, x2)

Adapted coordinates are not unique:


t′ = t+ F0(x1, x2)
x′

1 = F1(x1, x2)
x′

2 = F2(x1, x2)
ϕ′ = ϕ+ F3(x1, x2)
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Stationary and axisymmetric electromagnetic fields in general relativity

Stationary and axisymmetric electromagnetic field

Assume that the electromagnetic field is both stationary and axisymmetric:

L~ξ F = 0 and L~χ F = 0 (9)

Cartan identity and Maxwell eq. =⇒ L~ξ F = ~ξ · dF︸︷︷︸
0

+d(~ξ · F ) = d(~ξ · F )

Hence (9) is equivalent to

d(~ξ · F ) = 0 and d(~χ · F ) = 0

Poincaré lemma =⇒ ∃ locally two scalar fields Φ and Ψ such that

~ξ · F = −dΦ and ~χ · F = −dΨ

Link with the 4-potential A: one may use the gauge freedom on A to set

Φ = A · ~ξ = At and Ψ = A · ~χ = Aϕ
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Stationary and axisymmetric electromagnetic fields in general relativity

Symmetries of the scalar potentials

From the definitions of Φ and Ψ:

L~ξ Φ = ~ξ · dΦ = −F (~ξ, ~ξ) = 0

L~χΨ = ~χ · dΨ = −F (~χ, ~χ) = 0

L~χ Φ = ~χ · dΦ = −F (~ξ, ~χ)

L~ξ Ψ = ~ξ · dΨ = −F (~χ, ~ξ) = F (~ξ, ~χ)

We have d[F (~ξ, ~χ)] = d[~ξ · dΨ] = L~ξ dΨ− ~ξ · ddΨ︸︷︷︸
0

= L~ξ (F · ~χ) = 0

Hence F (~ξ, ~χ) = const

Assuming that F vanishes somewhere in M (for instance at spatial infinity), we
conclude that

F (~ξ, ~χ) = 0

Then L~ξ Φ = L~χΦ = 0 and L~ξ Ψ = L~χΨ = 0

i.e. the scalar potentials Φ and Ψ obey to the two spacetime symmetries
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Stationary and axisymmetric electromagnetic fields in general relativity

Most general stationary-axisymmetric electromagnetic field

F = dΦ ∧ ξ∗ + dΨ ∧ χ∗ +
I

σ
ε(~ξ, ~χ, ., .) (10)

?F = ε( ~∇Φ, ~ξ∗, ., .) + ε( ~∇Ψ, ~χ∗, ., .)− I

σ
ξ ∧ χ (11)

with

ξ∗ :=
1
σ

(
−X ξ +Wχ

)
, χ∗ :=

1
σ

(
W ξ + V χ

)
V := −ξ · ~ξ, W := ξ · ~χ, X := χ · ~χ
σ := V X +W 2

I := ?F (~ξ, ~χ) ← the only non-trivial scalar, apart from F (~ξ, ~χ), one can

form from F , ~ξ and ~χ

(ξ∗,χ∗) is the dual basis of (~ξ, ~χ) in the 2-plane Π := Vect(~ξ, ~χ) :

ξ∗ · ~ξ = 1, ξ∗ · ~χ = 0, χ∗ · ~ξ = 0, χ∗ · ~χ = 1
∀~v ∈ Π⊥, ξ∗ · ~v = 0 and χ∗ · ~v = 0
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Stationary and axisymmetric electromagnetic fields in general relativity

Most general stationary-axisymmetric electromagnetic field
The proof

Consider the 2-form H := F − dΦ ∧ ξ∗ − dΨ ∧ χ∗
It satisfies

H(~ξ, .) = F (~ξ, .)︸ ︷︷ ︸
−dΦ

−(~ξ · dΦ︸ ︷︷ ︸
0

)ξ∗ + (ξ∗ · ~ξ︸ ︷︷ ︸
1

)dΦ− (~ξ · dΨ︸ ︷︷ ︸
0

)χ∗ + (χ∗ · ~ξ︸ ︷︷ ︸
0

)dΨ = 0

Similarly H(~χ, .) = 0. Hence H|Π = 0

On Π⊥, H|Π⊥ is a 2-form. Another 2-form on Π⊥ is ε(~ξ, ~χ, ., .)
∣∣∣
Π⊥

Since dim Π⊥ = 2 and ε(~ξ, ~χ, ., .)
∣∣∣
Π⊥
6= 0, ∃ a scalar field I such that

H|Π⊥ =
I

σ
ε(~ξ, ~χ, ., .)

∣∣∣
Π⊥

. Because both H and ε(~ξ, ~χ, ., .) vanish on Π, we

can extend the equality to all space:

H =
I

σ
ε(~ξ, ~χ, ., .)

Thus F has the form (10). Taking the Hodge dual gives the form (11) for ?F ,

on which we readily check that I = ?F (~ξ, ~χ), thereby completing the proof.
Eric Gourgoulhon (LUTH) Relativistic MHD Nancy, 8 June 2010 21 / 42



Stationary and axisymmetric electromagnetic fields in general relativity

Example: Kerr-Newman electromagnetic field

Using Boyer-Lindquist coordinates (t, r, θ, ϕ), the electromagnetic field of the
Kerr-Newman solution (charged rotating black hole) is

F =
µ0Q

4π(r2 + a2 cos2 θ)2

{ [
(r2 − a2 cos2 θ) dr − a2r sin 2θ dθ

]
∧ dt

+
[
a(a2 cos2 θ − r2) sin2 θ dr + ar(r2 + a2) sin 2θ dθ

]
∧ dϕ

}
Q: total electric charge, a := J/M : reduced angular momentum

For Kerr-Newman, ξ∗ = dt and χ∗ = dϕ; comparison with (10) leads to

Φ = −µ0Q

4π
r

r2 + a2 cos2 θ
, Ψ =

µ0Q

4π
ar sin2 θ

r2 + a2 cos2 θ
, I = 0

Non-rotating limit (a = 0): Reissner-Nordström solution: Φ = −µ0

4π
Q

r
, Ψ = 0
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Stationary and axisymmetric electromagnetic fields in general relativity

Maxwell equations

First Maxwell equation: dF = 0

It is automatically satisfied by the form (10) of F

Second Maxwell equation: d ?F = µ0 ?j

It gives the electric 4-current:

µ0
~j = a ~ξ + b ~χ+

1
σ
~ε(~ξ, ~χ, ~∇I, .) (12)

with

a := ∇µ
(
X

σ
∇µΦ− W

σ
∇µΨ

)
+

I

σ2

[
−XC (~ξ) +WC (~χ)

]
b := −∇µ

(
W

σ
∇µΦ +

V

σ
∇µΨ

)
+

I

σ2

[
WC (~ξ) + V C (~χ)

]
C (~ξ) := ?(ξ ∧ χ ∧ dξ) = εµνρσξµχν∇ρξσ (circularity factor)

C (~χ) := ?(ξ ∧ χ ∧ dχ) = εµνρσξµχν∇ρχσ (circularity factor)

Remark: ~j has no meridional component (i.e. ~j ∈ Π) ⇐⇒ dI = 0
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Stationary and axisymmetric electromagnetic fields in general relativity

Simplification for circular spacetimes

Spacetime (M , g) is circular ⇐⇒ the planes Π⊥ are integrable in 2-surfaces

⇐⇒ C (~ξ) = C (~χ) = 0

Generalized Papapetrou theorem [Papapetrou 1966] [Kundt & Trümper 1966] [Carter 1969] :
a stationary and axisymmetric spacetime ruled by the Einstein equation is circular
iff the total energy-momemtum tensor T obeys to

ξµT [α
µ ξβχγ] = 0

χµT [α
µ ξβχγ] = 0

Examples:

circular spacetimes: Kerr-Newman, rotating star, magnetized rotating star
with either purely poloidal magnetic field or purely toroidal magnetic field

non-circular spacetimes: rotating star with meridional flow, magnetized
rotating star with mixed magnetic field

In what follows, we do not assume that (M , g) is circular
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Stationary and axisymmetric MHD

Perfect conductor hypothesis (1/2)

F · ~u = 0
with the fluid 4-velocity decomposed as

~u = λ(~ξ + Ω~χ) + ~w, ~w ∈ Π⊥

~w is the meridional flow

u · ~u = −1 ⇐⇒ λ =

√
1 +w · ~w

V − 2ΩW − Ω2X

We have
L~u Φ = 0 and L~uΨ = 0 , (13)

i.e. the scalar potentials Φ and Ψ are constant along the fluid lines.

Proof: L~uΦ = ~u · dΦ = −F (~ξ, ~u) = 0 by the perfect conductor property.

Corollary: since we had already L~ξ Φ = L~χΦ = 0 and L~ξ Ψ = L~χΨ = 0, it

follows from (13) that

~w · dΦ = 0 and ~w · dΨ = 0
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Perfect conductor hypothesis (1/2)
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Perfect conductor hypothesis (2/2)

Expressing the condition F · ~u = 0 with the general form of a
stationary-axisymmetric electromagnetic field yields

(ξ∗ · ~u︸ ︷︷ ︸
λ

)dΦ− (dΦ · ~u︸ ︷︷ ︸
0

)ξ∗ + (χ∗ · ~u︸ ︷︷ ︸
λΩ

)dΨ− (dΨ · ~u︸ ︷︷ ︸
0

)χ∗ +
I

σ
ε(~ξ, ~χ, ., ~u)︸ ︷︷ ︸
−ε(~ξ,~χ, ~w,.)

= 0

Hence

dΦ = −Ω dΨ +
I

σλ
ε(~ξ, ~χ, ~w, .) (14)
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Case dΨ 6= 0

dΨ 6= 0 =⇒ dim Vect(~ξ, ~χ, ~∇Ψ) = 3

Consider the 1-form q := ε(~ξ, ~χ, ~∇Ψ, .). It obeys

q · ~ξ = 0, q · ~χ = 0, q · ~∇Ψ = 0

Besides
w · ~ξ = 0, w · ~χ = 0, w · ~∇Ψ = 0

Hence the 1-forms q and w must be proportional: ∃ a scalar field a such that

w = a ε(~ξ, ~χ, ~∇Ψ, .) (15)

A consequence of the above relation is

ε(~ξ, ~χ, ~w, .) = aσ dΨ

a = 0 ⇐⇒ no meridional flow
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Perfect conductor relation with dΨ 6= 0

Inserting ε(~ξ, ~χ, ~w, .) = aσ dΨ into the perfect conductor relation (14) yields

dΦ = −ω dΨ (16)

with

ω := Ω− aI

λ

(16) implies
dω ∧ dΨ = 0

from which we deduce that ω is a function of Ψ:
ω = ω(Ψ)

Remark: for a pure rotating flow (a = 0), ω = Ω
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Expression of the electromagnetic field with dΨ 6= 0

F = dΨ ∧ (χ∗ − ωξ∗) +
I

σ
ε(~ξ, ~χ, ., .)

?F = ε( ~∇Ψ, ~χ∗ − ω ~ξ∗, ., .)− I

σ
ξ ∧ χ
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Conservation of baryon number

Taking the Lie derivative along ~u of the relation ε(~ξ, ~χ, ~u, .) = aσ dΨ and using
L~u ε = (∇· ~u)ε yields

L~u (aσ)− aσ∇· ~u = 0

Invoking the baryon number conservation

∇· ~u = − 1
n
L~u n

leads to
L~uK = 0

where
K := anσ

K is thus constant along the fluid lines.

Moreoever, we have

dK · ~ξ = 0, dK · ~χ = 0, dK · ~w = 0
dΨ · ~ξ = 0, dΨ · ~χ = 0, dΨ · ~w = 0

Hence dK ∝ dΨ and
K = K(Ψ)
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Comparison with previous work
Bekenstein & Oron (1978)

[Bekenstein & Oron (1978)] have shown that the quantity

C :=
F31√
−gnu2

is conserved along the fluid lines.

We have C =
1
K

Remark: for a purely rotational fluid motion ( ~w = 0 ⇐⇒ a = 0 ⇐⇒ K = 0),

C →∞
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Helical vector

Let us introduce ~k = ~ξ + ω ~χ

Since in general ω is not constant, ~k is not a Killing vector. However

∇· ~k = 0
for any scalar field f that obeys to spacetime symmetries, L~k f = 0
L~k ~u = 0

All these properties are readily verified.

Moreover, ~k · F = ~ξ · F︸ ︷︷ ︸
−dΦ

+ω ~χ · F︸ ︷︷ ︸
−dΨ

= 0:

~k · F = 0
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Stationary and axisymmetric MHD

A conserved quantity from the MHD-Euler equation

From now on, we make use of the MHD-Euler equation (6):

~u · d(hu)− TdS =
1
n
F · ~j

Let us apply this equality between 1-forms to the helical vector ~k:

~u · d(hu) · ~k − T~k · dS =
1
n
F (~k,~j)

Now, from previously listed properties of ~k, ~k · dS = 0 and F (~k,~j) = 0 .

Hence there remains
~k · d(hu) · ~u = 0 (17)
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A conserved quantity from the MHD-Euler equation

Besides, via Cartan’s identity,

~k ·d(hu) = L~k (hu)−d(hu · ~k) = L~ξ (hu)︸ ︷︷ ︸
0

+ωL~χ (hu)︸ ︷︷ ︸
0

+(hu · ~χ)dω−d(hu · ~k)

Hence Eq. (17) becomes

(hu · ~χ) ~u · dω︸ ︷︷ ︸
0

−~u · d(hu · ~k) = 0

Thus we conclude
L~uD = 0

where

D := hu · ~k
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Another conserved quantity from the MHD-Euler equation

Restart previous computation with ~ξ instead of ~k :

MHD-Euler equation =⇒ ~u · d(hu) · ~ξ − T ~ξ · dS︸ ︷︷ ︸
0

=
1
n
F (~ξ,~j)︸ ︷︷ ︸
−dΦ·~j

Since dΦ = −ω dΨ, we get

~u · d(hu) · ~ξ =
ω

n
~j · dΨ

Cartan ident. =⇒ ~ξ · d(hu) = L~ξ (hu)︸ ︷︷ ︸
0

−d(hu · ~ξ) =⇒ d(hu) · ~ξ = d(hu · ~ξ)

Hence

L~u (hu · ~ξ) =
ω

n
~j · dΨ (18)

There remains to evaluate the term ~j · dΨ
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Another conserved quantity from the MHD-Euler equation

From the expression (12) for ~j along with the properties ~ξ · dΨ = 0 and
~χ · dΨ = 0, we get

~j · dΨ =
1
µ0σ

ε(~ξ, ~χ, ~∇I, ~∇Ψ) = − 1
µ0σ

ε(~ξ, ~χ, ~∇Ψ, ~∇I) (19)

Two cases must be considered:

(i) a = 0 ( ~w = 0):

~u = λ(~ξ + Ω~χ) =⇒ L~u (hu · ~ξ) = 0.
Eqs. (18) and (19) then yield

ε(~ξ, ~χ, ~∇Ψ, ~∇I) = 0

from which we deduce
dI ∝ dΨ

and
I = I(Ψ)
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Another conserved quantity from the MHD-Euler equation

(ii) a 6= 0 ( ~w 6= 0): then Eq. (15) gives

ε(~ξ, ~χ, ~∇Ψ, .) =
1
a
w

and we may write (19) as

~j · dΨ = − 1
µ0aσ

w · ~∇I = − 1
µ0aσ

~w · dI = − 1
µ0aσ

~u · dI = − 1
µ0aσ

L~u I

Thus Eq. (18) becomes, using K = anσ,

L~u (hu · ~ξ) = − ω

µ0K
L~u I

Since L~u ω = 0 and L~uK = 0, we obtain

L~uE = 0 ,

with

E := −hu · ~ξ − ωI

µ0K
(20)
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Another conserved quantity from the MHD-Euler equation

Similarly, using ~χ instead of ~ξ, we arrive at

L~u (hu · ~χ) =
1

µ0nσ
ε(~ξ, ~χ, ~∇Ψ, ~∇I)

Again we have to distinguish two cases:

(i) a = 0 ( ~w = 0): then L~u (hu · ~χ) = 0 and we recover I = I(Ψ) as above

(ii) a 6= 0 ( ~w 6= 0): we obtain then

L~u L = 0 ,

with

L := hu · ~χ− I

µ0K
(21)

Remark: the conserved quantities D, E and L are not independent since

D = −E + ωL
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Summary

For purely rotational fluid motion (a = 0): any scalar quantity which
obeys to the spacetime symmetries is conserved along the fluid lines

For a fluid motion with meridional components (a 6= 0): there exist four
scalar quantities which are constant along the fluid lines:

ω, K, E, L

(D being a combination of ω, E and L)

If there is no electromagnetic field, E = −hu · ~ξ and the constancy of E along
the fluid lines is the relativistic Bernoulli theorem
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Comparison with previous work
Bekenstein & Oron (1978)

The constancy of ω, K, D, E and L along the fluid lines has been shown first by
[Bekenstein & Oron (1978)]

Bekenstein & Oron have provided coordinate-dependent definitions of ω and K,
namely

ω := −F01

F31
and K−1 :=

F31√
−gnu2

Besides, they have obtained expressions for E and L slightly more complicated
than (20) and (21), namely

E = −
(
h+

|b|2

µ0n

)
u · ~ξ − 1

µ0K
(u · ~k) (b · ~ξ)

L =
(
h+

|b|2

µ0n

)
u · ~χ+

1
µ0K

(u · ~k) (b · ~χ)

It can be shown that these expressions are equivalent to (20) and (21)
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