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1

Basic principles
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Solving a partial differential equation

Consider the PDE with boundary condition

Lu(x) = s(x), x ∈ U ⊂ IRd (1)

Bu(y) = 0, y ∈ ∂U, (2)

where L and B are linear differential operators.

Question: What is a numerical solution of (1)-(2) ?

Answer: It is a function ū which satisfies (2) and makes the residual

R := Lū− s

small.
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What do you mean by “small” ?

Answer in the framework of

Method of Weighted Residuals (MWR):

Search for solutions ū in a finite-dimensional sub-space PN of some Hilbert space W
(typically a L2 space).

Expansion functions = trial functions : basis of PN : (φ0, . . . , φN)

ū is expanded in terms of the trial functions: ū(x) =
N∑

n=0

ũn φn(x)

Test functions : family of functions (χ0, . . . , χN) to define the smallness of the residual
R, by means of the Hilbert space scalar product:

∀n ∈ {0, . . . , N}, (χn, R) = 0
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Various numerical methods

Classification according to the trial functions φn:

Finite difference: trial functions = overlapping local polynomials of low order

Finite element: trial functions = local smooth functions (polynomial of fixed degree
which are non-zero only on subdomains of U)

Spectral methods : trial functions = global smooth functions (example: Fourier series)
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Various spectral methods

All spectral method: trial functions (φn) = complete family (basis) of smooth global
functions

Classification according to the test functions χn:

Galerkin method: test functions = trial functions: χn = φn and each φn satisfy the
boundary condition : Bφn(y) = 0

tau method: (Lanczos 1938) test functions = (most of) trial functions: χn = φn but
the φn do not satisfy the boundary conditions; the latter are enforced by an additional
set of equations.

collocation or pseudospectral method: test functions = delta functions at special
points, called collocation points: χn = δ(x− xn).
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Solving a PDE with a Galerkin method

Let us return to Equation (1).

Since χn = φn, the smallness condition for the residual reads, for all n ∈ {0, . . . , N},

(φn, R) = 0 ⇐⇒ (φn, Lū− s) = 0

⇐⇒
(

φn, L
N∑

k=0

ũk φk

)
− (φn, s) = 0

⇐⇒
N∑

k=0

ũk (φn, Lφk)− (φn, s) = 0

⇐⇒
N∑

k=0

Lnk ũk = (φn, s) , (3)

where Lnk denotes the matrix Lnk := (φn, Lφk).

→ Solving for the linear system (3) leads to the (N + 1) coefficients ũk of ū
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Solving a PDE with a tau method

Here again χn = φn, but the φn’s do not satisfy the boundary condition: Bφn(y) 6= 0.
Let (gp) be an orthonormal basis of M + 1 < N + 1 functions on the boundary ∂U and
let us expand Bφn(y) upon it:

Bφn(y) =
M∑

p=0

bpn gp(y)

The boundary condition (2) then becomes

Bu(y) = 0 ⇐⇒
N∑

k=0

M∑
p=0

ũk bpk gp(y) = 0,

hence the M + 1 conditions:

N∑

k=0

bpk ũk = 0 0 ≤ p ≤ M
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Solving a PDE with a tau method (cont’d)

The system of linear equations for the N + 1 coefficients ũn is then taken to be the
N −M first raws of the Galerkin system (3) plus the M + 1 equations above:

N∑

k=0

Lnk ũk = (φn, s) 0 ≤ n ≤ N −M − 1

N∑

k=0

bpk ũk = 0 0 ≤ p ≤ M

The solution (ũk) of this system gives rise to a function ū =
N∑

k=0

ũk φk such that

Lū(x) = s(x) +
M∑

p=0

τp φN−M+p(x)
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Solving a PDE with a pseudospectral (collocation) method

This time: χn(x) = δ(x− xn), where the (xn) constitute the collocation points. The
smallness condition for the residual reads, for all n ∈ {0, . . . , N},

(χn, R) = 0 ⇐⇒ (δ(x− xn), R) = 0 ⇐⇒ R(xn) = 0 ⇐⇒ Lu(xn) = s(xn)

⇐⇒
N∑

k=0

Lφk (xn)ũk = s(xn) (4)

The boundary condition is imposed as in the tau method. One then drops M + 1 raws
in the linear system (4) and solve the system

N∑

k=0

Lφk(xn) ũk = s(xn) 0 ≤ n ≤ N −M − 1

N∑

k=0

bpk ũk = 0 0 ≤ p ≤ M
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What choice for the trial functions φn ?

Periodic problem : φn = trigonometric polynomials (Fourier series)

Non-periodic problem : φn = orthogonal polynomials
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2

Legendre and Chebyshev expansions
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Legendre and Chebyshev polynomials

[from Fornberg (1998)]

Families of orthogonal
polynomials on [−1, 1] :

Legendre polynomials:∫ 1

−1

Pm(x)Pn(x) dx =
2

2n + 1
δmn

Chebyshev polynomials:∫ 1

−1

Tm(x)Tn(x)
dx√

1− x2
=

π

2
(1 + δ0n) δmn

P0(x) = 1, P1(x) = x, P2(x) =
3
2
x2 − 1

2
T0(x) = 1, T1(x) = x, T2(x) = 2x2 − 1

Both Legendre and Chebyshev polynomials are a subclass of Jacobi polynomials
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Properties of Chebyshev polynomials

Definition: cos nθ = Tn(cos θ)

Recurrence relation : Tn+1(x) = 2xTn(x)− Tn−1(x)

Eigenfunctions of the singular Sturm-Liouville problem:

d

dx

(√
1− x2

dTn

dx

)
= − n2

√
1− x2

Tn(x)

Orthogonal family in the Hilbert space L2
w[−1, 1], equiped with the weight

w(x) = (1− x2)−1/2 :

(f, g) :=
∫ 1

−1

f(x) g(x)w(x) dx
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Polynomial interpolation of functions

Given a set of N + 1 nodes (xi)0≤i≤N in [−1, 1], the Lagrangian interpolation of a
function u(x) is defined by the N -th degree polynomial:

INu(x) =
N∑

i=0

u(xi)
N∏

j=0
j 6=i

(
x− xj

xi − xj

)

Cauchy theorem: there exists x0 ∈ [−1, 1] such that

u(x)− INu(x) =
1

(N + 1)!
u(N+1)(x0)

N∏

i=0

(x− xi)

Minimize u(x)− INu(x) independently of u ⇐⇒ minimize
N∏

i=0

(x− xi)
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Chebyshev interpolation of functions

Note that
N∏

i=0

(x− xi) is a polynomial of degree N + 1 of the type xN+1 + aNxN + · · ·
(leading coefficient = 1).

Characterization of Chebyshev polynomials: Among all the polynomials of degree n
with leading coefficient 1, the unique polynomial which has the smallest maximum on
[−1, 1] is the n-th Chebyshev polynomial divided by 2n−1 : Tn(x)/2n−1.

=⇒ take the nodes xi to be the N + 1 zeros of the Chebyshev polynomial TN+1(x) :

N∏

i=0

(x− xi) =
1

2N
TN+1(x)

xi = − cos
(

2i + 1
2(N + 1)

π

)
0 ≤ i ≤ N
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Spectral expansions : continuous (exact) coefficients

Case where the trial functions are orthogonal polynomials φn in L2
w[−1, 1] for some

weight w(x) (e.g. Legendre (w(x) = 1) or Chebyshev (w(x) = (1− x2)−1/2)
polynomials).

The spectral representation of any function u is its orthogonal projection on the space
of polynomials of degree ≤ N :

PN u(x) =
N∑

n=0

ũnφn(x)

where the coefficients ũn are given by the scalar product:

ũn =
1

(φn, φn)
(φn, u) with (φn, u) :=

∫ 1

−1

φn(x) u(x) w(x) dx (5)

The integral (5) cannot be computed exactly...
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Spectral expansions : discrete coefficients

The most precise way of numerically evaluating the integral (5) is given by
Gauss integration : ∫ 1

−1

f(x) w(x) dx =
N∑

i=0

wi f(xi) (6)

where the xi’s are the N + 1 zeros of the polynomial φN+1 and the coefficients wi are

the solutions of the linear system
N∑

j=0

xi
j wj =

∫ 1

−1

xi w(x) dx.

Formula (6) is exact for any polynomial f(x) of degree ≤ 2N + 1

Adaptation to include the boundaries of [−1, 1] : x0 = −1, x1, . . . , xN−1, xN = 1
⇒ Gauss-Lobatto integration : xi = zeros of the polynomial
P = φN+1 + λφN + µφN−1, with λ and µ such that P (−1) = P (1) = 0. Exact for any
polynomial f(x) of degree ≤ 2N − 1.
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Spectral expansions : discrete coefficients (con’t)

Define the discrete coefficients ûn to be the Gauss-Lobatto approximations of the
integrals (5) giving the ũn’s :

ûn :=
1

(φn, φn)

N∑

i=0

wi φn(xi) u(xi) (7)

The actual numerical representation of a function u is then the polynomial formed from
the discrete coefficients:

IN u(x) :=
N∑

n=0

ûnφn(x) ,

instead of the orthogonal projection PNu involving the ũn.

Note: if (φn) = Chebyshev polynomials, the coefficients (ûn) can be computed by
means of a FFT [i.e. in ∼ N lnN operations instead of the ∼ N2 operations of the
matrix product (7)].
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Aliasing error

Proposition: IN u(x) is the interpolating polynomial of u through the N + 1 nodes
(xi)0≤i≤N of the Gauss-Lobatto quadrature: IN u(xi) = u(xi) 0 ≤ i ≤ N

On the contrary the orthogonal projection PNu does not necessarily pass through the
points (xi).

The difference between IN u and PN u, i.e. between the coefficients ûn and ũn, is
called the aliasing error.

It can be seen as a contamination of ûn by the high frequencies ũk with k > N , when
performing the Gauss-Lobato integration (7).
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Illustrating the aliasing error: case of Fourier series

Alias of a sin(−2x) wave by a sin(6x) wave

Alias of a sin(−2x) wave by a sin(−10x)
wave
[from Canuto et al. (1998)]
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Convergence of Legendre and Chebyshev expansions

Hyp.: u sufficiently regular so that all derivatives up to some order m ≥ 1 exist.

Legendre: truncation error : ‖PN u− u‖L2 ≤ C

Nm

m∑

k=0

‖u(k)‖L2

‖PN u− u‖∞ ≤ C

Nm−1/2
V (u(m))

interpolation error : ‖IN u− u‖L2 ≤ C

Nm−1/2

m∑

k=0

‖u(k)‖L2

Chebyshev: truncation error : ‖PN u− u‖L2
w
≤ C

Nm

m∑

k=0

‖u(k)‖L2
w

‖PN u− u‖∞ ≤ C(1 + lnN)
Nm

m∑

k=0

‖u(k)‖∞

interpolation error : ‖IN u− u‖L2
w
≤ C

Nm

m∑

k=0

‖u(k)‖L2
w

‖IN u− u‖∞ ≤ C

Nm−1/2

m∑

k=0

‖u(k)‖L2
w
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Evanescent error

From the above decay rates, we conclude that for a C∞ function, the error in the
spectral expansion decays more rapidly than any power of 1/N . In practice, it is an
exponential decay.

Such a behavior is a key property of spectral methods and is called evanescent error.

(Remember that for a finite difference method of order k, the error decays only as
1/Nk).
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3

An example

... at last !
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A simple differential equation with boundary conditions

Let us consider the 1-D second-order linear (P)DE

d2u

dx2
− 4

du

dx
+ 4u = ex + C, x ∈ [−1, 1] (8)

with the Dirichlet boundary conditions

u(−1) = 0 and u(1) = 0 (9)

and where C is a constant: C = −4e/(1 + e2).

The exact solution of the system (8)-(9) is

u(x) = ex − sinh 1
sinh 2

e2x +
C

4



26

Resolution by means of a Chebyshev spectral method

Let us search for a numerical solution of (8)-(9) by means of the five first Chebyshev
polynomials: T0(x), T1(x), T2(x), T3(x) and T4(x), i.e. we adopt N = 4.

Let us first expand the source s(x) = ex + C onto the Chebyshev polynomials:

P4 s(x) =
4∑

n=0

s̃n Tn(x) and I4 s(x) =
4∑

n=0

ŝn Tn(x)

with

s̃n =
2

π(1 + δ0n)

∫ 1

−1

Tn(x)s(x)
dx√

1− x2
and ŝn =

2
π(1 + δ0n)

4∑

i=0

wiTn(xi)s(xi)

the xi’s being the 5 Gauss-Lobatto quadrature points for the weight

w(x) = (1− x2)−1/2: {xi} = {− cos(iπ/4), 0 ≤ i ≤ 4} =
{
−1,− 1√

2
, 0,

1√
2
, 1

}
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-1 -0.5 0 0.5 1
x

-1

-0.5

0

0.5

1

1.5

2
y

s(x)
I
4
 s(x)

The source and its Chebyshev interpolant

ŝ0 = −0.03004, ŝ1 = 1.130, ŝ2 = 0.2715, ŝ3 = 0.04488, ŝ4 = 0.005474
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-1 -0.5 0 0.5 1
x

-0.001

-0.0005

0

0.0005

0.001
y

P
4
 s(x) - s(x)    (truncation error)

I
4
 s(x) - s(x)   (interpolation error)

I
4
 s(x) - P

4
 s(x)    (aliasing error)

Interpolation error and aliasing error
N=4 (5 Chebyshev polynomials)

ŝn − s̃n = 2.0 10−7, 3.2 10−6, 4.5 10−5, 5.4 10−4, 1.0 10−12
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Matrix of the differential operator

The matrices of derivative operators with respect to the Chebyshev basis
(T0, T1, T2, T3, T4) are

d

dx
=




0 1 0 3 0
0 0 4 0 8
0 0 0 6 0
0 0 0 0 8
0 0 0 0 0




d2

dx2
=




0 0 4 0 32
0 0 0 24 0
0 0 0 0 48
0 0 0 0 0
0 0 0 0 0




so that the matrix of the differential operator
d2

dx2
− 4

d

dx
+ 4 Id on the r.h.s. of Eq. (8)

is

Akl =




4 −4 4 −12 32
0 4 −16 24 −32
0 0 4 −24 48
0 0 0 4 −32
0 0 0 0 4



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Resolution by means of a Galerkin method

Galerkin basis : φ0(x) := T2(x)− T0(x) = 2x2 − 2
φ1(x) := T3(x)− T1(x) = 4x3 − 4x
φ2(x) := T4(x)− T0(x) = 8x4 − 8x2

Each of the φi satisfies the boundary conditions: φi(−1) = φi(1) = 0. Note that the
φi’s are not orthogonal.

Transformation matrix Chebyshev → Galerkin: φ̃ki =




−1 0 −1
0 −1 0
1 0 0
0 1 0
0 0 1




such that φi(x) =
4∑

k=0

φ̃ki Tk(x).

Chebyshev coefficients and Galerkin coefficients: u(x) =
4∑

k=0

ũk Tk(x) =
2∑

i=0

˜̃ui φi(x)

The matrix φ̃ki relates the two sets of coefficients via the matrix product ũ = φ̃× ˜̃u
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Galerkin system

For Galerkin method, the test functions are equal to the trial functions, so that the
condition of small residual writes

(φi, Lu− s) = 0 ⇐⇒
3∑

j=0

(φi, Lφj) ˜̃uj = (φi, s)

with

(φi, Lφj) =
4∑

k=0

4∑

l=0

(φ̃kiTk, Lφ̃ljTl) =
4∑

k=0

4∑

l=0

φ̃kiφ̃lj(Tk, LTl)

=
4∑

k=0

4∑

l=0

φ̃kiφ̃lj(Tk,
4∑

m=0

AmlTm) =
4∑

k=0

4∑

l=0

φ̃kiφ̃lj

4∑
m=0

Aml(Tk, Tm)

=
4∑

k=0

4∑

l=0

φ̃kiφ̃lj
π

2
(1 + δ0k)Akl =

π

2

4∑

k=0

4∑

l=0

(1 + δ0k)φ̃kiAklφ̃lj
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Resolution of the Galerkin system

In the above expression appears the transpose matrix

Qik := t
[
(1 + δ0k)φ̃ki

]
=



−2 0 1 0 0
0 −1 0 1 0
−2 0 0 0 1




The small residual condition amounts then to solve the following linear system in
˜̃u = (˜̃u0, ˜̃u1, ˜̃u2):

Q×A× φ̃× ˜̃u = Q× s̃

with Q×A× φ̃ =




4 −8 −8
16 −16 0
0 16 −52


 and Q× s̃ =




0.331625
−1.08544
0.0655592




The solution is found to be ˜̃u0 = −0.1596, ˜̃u1 = −0.09176, ˜̃u2 = −0.02949.

The Chebyshev coefficients are obtained by taking the matrix product by φ̃ :
ũ0 = 0.1891, ũ1 = 0.09176, ũ2 = −0.1596, ũ3 = −0.09176, ũ4 = −0.02949
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-1 -0.5 0 0.5 1
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0

0.1
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 u
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Exact solution
Galerkin

Comparison with the exact solution 
N = 4

Exact solution: u(x) = ex − sinh 1
sinh 2

e2x − e

1 + e2
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Resolution by means of a tau method

Tau method : trial functions = test functions = Chebyshev polynomials T0, . . . , T4.
Enforce the boundary conditions by additional equations.
Since Tn(−1) = (−1)n and Tn(1) = 1, the boundary condition operator has the matrix

bpk =
(

1 −1 1 −1 1
1 1 1 1 1

)
(10)

The Tn’s being an orthogonal basis, the tau system is obtained by replacing the last
two rows of the matrix A by (10):




4 −4 4 −12 32
0 4 −16 24 −32
0 0 4 −24 48
1 −1 1 −1 1
1 1 1 1 1







ũ0

ũ1

ũ2

ũ3

ũ4




=




ŝ0

ŝ1

ŝ2

0
0




The solution is found to be
ũ0 = 0.1456, ũ1 = 0.07885, ũ2 = −0.1220, ũ3 = −0.07885, ũ4 = −0.02360.
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e2x − e

1 + e2



36

Resolution by means of a pseudospectral method

Pseudospectral method : trial functions = Chebyshev polynomials T0, . . . , T4 and
test functions = δ(x− xn).

The pseudospectral system is

4∑

k=0

LTk(xn) ũk = s(xn) ⇐⇒
4∑

k=0

4∑

l=0

AlkTl(xn) ũk = s(xn)

From a matrix point of view: T ×A× ũ = s, where

T nl := Tl(xn) =




1 −1 1 −1 1
1 −1/

√
2 0 1/

√
2 −1

1 0 −1 0 1
1 1/

√
2 0 −1/

√
2 −1

1 1 1 1 1



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Pseudospectral system

To take into account the boundary conditions, replace the first row of the matrix
T ×A by b0k and the last row by b1k, and end up with the system




1 −1 1 −1 1
4 −6.82843 15.3137 −26.1421 28
4 −4 0 12 −12
4 −1.17157 −7.31371 2.14214 28
1 1 1 1 1







ũ0

ũ1

ũ2

ũ3

ũ4




=




0
s(x1)
s(x2)
s(x3)

0




The solution is found to be
ũ0 = 0.1875, ũ1 = 0.08867, ũ2 = −0.1565, ũ3 = −0.08867, ũ4 = −0.03104.
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Exponential decay of the error with N

2 4 6 8 10 12 14 16 18
N = number  of Chebyshev polynomials -1 
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Not discussed here...

• Spectral methods for 3-D problems

• Time evolution

• Non-linearities

• Multi-domain spectral methods

• Weak formulation



42

4

Spectral methods in numerical relativity
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Spectral methods developed in Meudon

Pioneered by Silvano Bonazzola & Jean-Alain Marck (1986). Spectral methods within
spherical coordinates

• 1990 : 3-D wave equation

• 1993 : First 3-D computation of stellar collapse (Newtonian)

• 1994 : Accurate models of rotating stars in GR

• 1995 : Einstein-Maxwell solutions for magnetized stars

• 1996 : 3-D secular instability of rigidly rotating stars in GR
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LORENE

Langage Objet pour la RElativite NumeriquE

A library of C++ classes devoted to multi-domain spectral methods, with adaptive
spherical coordinates.

• 1997 : start of Lorene

• 1999 : Accurate models of rapidly rotating strange quark stars

• 1999 : Neutron star binaries on closed circular orbits (IWM approx. to GR)

• 2001 : Public domain (GPL), Web page: http://www.lorene.obspm.fr

• 2001 : Black hole binaries on closed circular orbits (IWM approx. to GR)

• 2002 : 3-D wave equation with non-reflecting boundary conditions

• 2002 : Maclaurin-Jacobi bifurcation point in GR

http://www.lorene.obspm.fr
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Code for producing the figures of the above illustrative example available from Lorene
CVS server (directory Lorene/Codes/Spectral),

see http://www.lorene.obspm.fr

http://www.lorene.obspm.fr


46

Spectral methods developed in other groups

• Cornell group: Black holes

• Bartnik: quasi-spherical slicing

• Carsten Gundlach: apparent horizon finder

• Jörg Frauendiener: conformal field equations

• Jena group: extremely precise models of rotating stars, cf. Marcus Ansorg’s talk
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Textbooks about spectral methods

• D. Gottlieb & S.A. Orszag : Numerical analysis of spectral methods, Society for
Industrial and Applied Mathematics, Philadelphia (1977)

• C. Canuto, M.Y. Hussaini, A. Quarteroni & T.A. Zang : Spectral methods in fluid
dynamics, Springer-Verlag, Berlin (1988)

• B. Mercier : An introduction to the numerical analysis of spectral methods, Springer-
Verlag, Berlin (1989)

• C. Bernardi & Y. Maday : Approximations spectrales de problmes aux limites
elliptiques, Springer-Verlag, Paris (1992)

• B. Fornberg : A practical guide to pseudospectral methods, Cambridge University
Press, Cambridge (1998)

• J.P. Boyd : Chebyshev and Fourier spectral methods, 2nd edition, Dover, Mineola
(2001) [web page]

http://www-personal.engin.umich.edu/~jpboyd/
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