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Basic principles



Solving a partial differential equation

Consider the PDE with boundary condition

Lu(x) = s(x), xcUcC IR
Bu(y) = 0, y € 0U,

where L and B are linear differential operators.
What is a numerical solution of (I))-(2) ?

It is a function @ which satisfies (2) and makes the residual
R:=Lu—s

small.

(1)
(2)



What do you mean by “small” ?

Answer in the framework of

Search for solutions @ in a finite-dimensional sub-space Py of some Hilbert space W
(typically a L? space).

= . basis of Py : (¢o,...,0N)
N

u is expanded in terms of the trial functions: u(x) = Z Uy, G ()
n=0

. family of functions (o, ..., xn) to define the smallness of the residual
R, by means of the Hilbert space scalar product:

Vne{0,...,N}, (xn, R)=




Various numerical methods

Classification according to the On:
trial functions = overlapping local polynomials of low order

trial functions = local smooth functions (polynomial of fixed degree
which are non-zero only on subdomains of U)

. trial functions = global smooth functions (example: Fourier series)



Various spectral methods

All spectral method: trial functions (¢,,) = complete family (basis) of smooth global
functions

Classification according to the Xn:

test functions = trial functions: x,, = ¢,, and each ¢,, satisfy the
boundary condition : B¢, (y) =0

(Lanczos 1938) test functions = (most of) trial functions: x,, = ¢,, but
the ¢,, do not satisfy the boundary conditions; the latter are enforced by an additional
set of equations.

or test functions = delta functions at special
points, called collocation points: x, = d(x — x,).



Solving a PDE with a Galerkin method

Let us return to Equation (1)
Since X, = ¢, the lsmallness conditionl for the residual reads, for all n. € {0,..., N},

(¢, R) =0 <= (¢p,Lu—3s)=0
N

N
— Z ¢n7L¢k (¢n78) =0

Ly i = (¢n,s) |, (3)

|
L

where L, denotes the matrix L, := (¢n, Log).

3] of u



Solving a PDE with a tau method

Here again x,, = ¢n, but the ¢,,'s do not satisfy the boundary condition: B¢, (y) # 0.
Let (g,) be an orthonormal basis of M + 1 < N + 1 functions on the boundary 0U and
let us expand B¢, (y) upon it:

JB¢M(y)::jE:bpngpr)

The boundary condition (2)) then becomes

N M
Bu(y) =0 <= > > by gp(y) =0,
k=0 p=0

hence the M 4+ 1 conditions:

N
prkfbkzo 0<p<M
k=0



Solving a PDE with a tau method (cont’d)

The system of linear equations for the N + 1 coefficients u,, is then taken to be the
N — M first raws of the Galerkin system (3)) plus the M + 1 equations above:

N

Y Lopix = (¢n:s) 0<n<N-M-1

k=0

N

D bprdr = 0 0<p<M

k=0
N

The solution () of this system gives rise to a function u = Z’fbk ¢ such that

k=0

Lu(x) = s(x) + Z Tp ON—M+p(T)
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Solving a PDE with a pseudospectral (collocation) method

This time: x,(x) = d(x — x,), where the (x,) constitute the collocation points. The
smallness conditionl for the residual reads, for all n € {0,..., N},

(xn,R) =0 <— (6(x—=x,),R)=0<«= R(x,) =0<«= Lu(x,) = s(x,)
= ) Lo (@n)ik = s(zn) (4)

The boundary condition is imposed as in the tau method. One then drops M + 1 raws
in the linear system (4) and solve the system

N
> Lop(xn) iy = s(zn) 0<n<N-M-1
k=0

N
prkﬂk = 0 0<p<M
k=0




What choice for the trial functions ¢,, ?

Periodic problem : ¢, = trigonometric polynomials (Fourier series)

Non-periodic problem : ¢, = orthogonal polynomials

11
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Legendre and Chebyshev expansions

12



Legendre and Chebyshev polynomials

Legendre polynomials:

1
2
P P — mn

Chebyshev polynomials:

/ (@) T() 2 =

-1 1 — 332 B
. A v
Legendre ' 5(1 + don) Omn
Chebyshev
[from Fornberg (1998)]]
Py(x) =1, Pi(x) =z, Py(x) = 5% 5 To(x) =1, Ti(z) = x, To(x) =22° — 1

Both Legendre and Chebyshev polynomials are a subclass of

13



Properties of Chebyshev polynomials

Definition: cosnf = T,,(cos6)
Recurrence relation : T}, 11 () = 22T, (x) — T,,_1(x)

Eigenfunctions of the singular Sturm-Liouville problem:

d dT; n?
—(V1-22—) = - T,
dx ( Y dr ) V1 — 22 ()

Orthogonal family in the Hilbert space L%U[—l, 1], equiped with the weight

w(z) = (1 —2%)~1/2%:

(f.9) = / @) (@) w(@) do

14
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Polynomial interpolation of functions

Given a set of N + 1 nodes (z;)o<i<n in [—1, 1], the of a
function u(x) is defined by the N-th degree polynomial:

Inu(z) = ium) ﬂ (j_—?)

i=0 7=0
JF#i

there exists xg € [—1, 1] such that
N

uN D (o) | [ (2 — )

1=0

1
(N +1)!

u(z) — Inu(x) =

N
Minimize u(x) — Inyu(x) independently of u <= minimize H(x — x;)
i=0
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Chebyshev interpolation of functions

N
Note that H(x — x;) is a polynomial of degree N + 1 of the type ™V ! + ayaz™ + - -
i=0
(leading coefficient = 1).

Among all the polynomials of degree n
with leading coefficient 1, the unique polynomial which has the smallest maximum on
[—1,1] is the n-th Chebyshev polynomial divided by 27~ : T,,(z)/2" .

— take the nodes x; to be the N + 1 zeros of the Chebyshev polynomial Ty () :

N

[[ - ) = 55 Twsa(@

21+ 1
:1:7;:—(:08<2(]i[11)7r> 0<:<N
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Spectral expansions : continuous (exact) coefficients

Case where the trial functions are orthogonal polynomials ¢,, in L2 [—1, 1] for some
weight w(z) (e.g. Legendre (w(z) = 1) or Chebyshev (w(z) = (1 — z2)~1/2)
polynomials).

The spectral representation of any function w is its orthogonal projection on the space
of polynomials of degree < N:

Py u(x Z Up O (T

where the coefficients u,, are given by the scalar product:

. 1 .
Up = (an,gbn) (&> ) with (¢, u) / P (T w(z) dz (5)



Spectral expansions : discrete coefficients

The most precise way of numerically evaluating the integral (B) is given by

[ @) s =Y wi s ©

where the x;'s are the N + 1 zeros of the polynomial ¢ 11 and the coefficients w; are
N 1

the solutions of the linear system Zx; w; = / ' w(z) d.
j=0 !
[l
Adaptation to include the boundaries of |[—1,1] : xg = —1, x1,...,2n_1, TNy = 1

x; = zeros of the polynomial
P =¢ni1+ ApN + udpn—_1, with X and i such that P(—1) = P(1) = 0. Exact for any
polynomial f(x) of degree < 2N — 1.

18



Spectral expansions : discrete coefficients (con’t)

Define the U, to be the Gauss-Lobatto approximations of the
integrals (Bl) giving the u,,'s :

1=

The actual numerical representation of a function u is then the polynomial formed from
the discrete coefficients:

~o

N
Inu(z) =) dnpn(x)

instead of the orthogonal projection Pyu involving the u,,.

Note: if (¢,,) = Chebyshev polynomials, the coefficients (,,) can be computed by
means of a FFT [i.e. in ~ N In N operations instead of the ~ N? operations of the
matrix product ([7))].

19
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Aliasing error

Proposition: Iy u(x) is the interpolating polynomial of w through the N + 1 nodes
(i)o<i<n of the Gauss-Lobatto quadrature: Iy u(x;) =u(x;) 0<i< N

On the contrary the orthogonal projection Pyu does not necessarily pass through the
points (x;).

The difference between Ix v and Py u, i.e. between the coefficients u,, and u,,, is
called the

It can be seen as a contamination of u,, by the high frequencies u; with & > N, when
performing the Gauss-Lobato integration ([7).
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lllustrating the aliasing error: case of Fourier series

Alias of a sin(—2x) wave by a sin(6x) wave

k=2
k= -10
R ;’A‘Xx"/!-"\.\“-ﬂ Alias of a sin(—2x) wave by a sin(—10x)
i,ﬂ AR ‘\ VAT wave
b f . Py I
[ [ 1\1 " \ f kr/r \ '/ 1& i [[from Canuto et al. (1998)]|
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Convergence of Legendre and Chebyshev expansions

Hyp.: u sufficiently regular so that all derivatives up to some order m > 1 exist.

Legendre: truncation error :
interpolation error :
Chebyshev: truncation error :

interpolation error :

C m
1Prvu—ullrz < 7 > Mg

k=0
| Py v — u]|oo < Nm_l/ZV(u(m))
C m
Hnvw—ullrz = =7 > Nu® e
k=0
C ™m
1Pvu—ulles < w7 [u™]| 12
k=0
C(1+InN)
1Py oo < SN SA 00
k=0
C m
N w—ullpy < 57 > Mg
k=0




Evanescent error

From the above decay rates, we conclude that for a C°® function, the error in the
spectral expansion decays more rapidly than any power of 1/N. In practice, it is an

Such a behavior is a key property of spectral methods and is called

(Remember that for a finite difference method of order k, the error decays only as
1/N®).

23



3
An example

. at last !

24
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A simple differential equation with boundary conditions

Let us consider the 1-D second-order linear (P)DE

d?u du .
oA tdu=e"+ 0, we[-1]] (8)

with the Dirichlet boundary conditions

u(—1) =0 and u(l) =0 (9)
and where C'is a constant: C' = —4e/(1 + €?).
The exact solution of the system ([8)-(9) is

sinh1l o N C
—_ e —_—
sinh 2 4

u(x) =e



Resolution by means of a Chebyshev spectral method

Let us search for a numerical solution of (8))-(9) by means of the five first Chebyshev
polynomials: Ty(x), Ti(x), Ta(x), T3(x) and Ty(x), i.e. we adopt N = 4.

Let us first expand the source s(x) = e” + C' onto the Chebyshev polynomials:

4 4
Pys(z) =) 5 Tp(z) and  Iys(z) =) 8,T,()
n=0 n=0
with
9 ! dx 9 !
~n — Tn —— An — 1L n\Lq 7
5 T 100 /_1 (x)s(x) — and 5 T+ 00 ;w Tn(xi)s(z;)

the x;'s being the 5 Gauss-Lobatto quadrature points for the weight

w(z) = (1— 22)" V2 (o} = {—cos(in/4),0 <i < 4} — {—1, —%, 0, % 1}

26



The source and its Chebyshev interpolant

2 ! ! ! ! ! ! ! ! ! ! ! ! l ! ! ! !

— s
— 1,8

Illll

1.5
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_1 | | | | I | | | | | | | | I | | | |

-1 -0.5 0 0.5
X

50 = —0.03004, 3, = 1.130, §, = 0.2715, 43 = 0.04488, &, = 0.005474

=



0.001 — P, s(x)-s(x) (truncation error) —
i — 1,8(¥) - s(X) (interpolation error) |
_ — - 1,59 -P,s(x) (diasing error) -
0.0005] y
/ |
/
- /
B /
a\ y 3 \)
/ -
[/
-0.0005 -
-0.001 ]
i ] ] ] ] | ] ] ] ] | ] ] ] ] | ] ] ] ] ]
-1 -0.5 0) 0.5 1
X

A

Sn_

Interpolation error and aliasing error
N=4 (5 Chebyshev polynomials)

§,=2.010"7, 3.2107°% 4.5107°, 5.4107%, 1.010~'?
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Matrix of the differential operator

The matrices of derivative operators with respect to the Chebyshev basis
(T07 T17 T27 T3, T4) are

(01030\ (004032\
p 00 40 8 P 000 24 0
— =100 0 6 0 —=|000 0 48
v 1 900 0 8 dr 000 0 0
\0 000 0) \0 00 0 0 )
. . . 2  d
so that the matrix of the differential operator i 45 + 41d on the r.h.s. of Eq. (8))
° (4 —4 4 —-12 32 \
0 4 —16 24 —32
Au=| 0 0 4 —24 48
0 0 0 4 =32
\0 o 0 0 4



Resolution by means of a Galerkin method

Galerkin basis :  ¢p(z) := 2(:5) — To(z) = 22° — 2
o1(x) = Ts(x) — Ty () = 4o — 4
pa(z) := Ty(z) — Ty(z) = 8z" — 8z”
Each of the ¢; satisfies the boundary conditions: ¢;(—1) = ¢;(1) = 0. Note that the
®;'s are not orthogonal.
( -1 0 -1 \

0O -1 O
Transformation matrix Chebyshev — Galerkin: ¢y; = 1 0 0
0 1 0
Lo o0 1 )
such that ¢;(z Z ki Th(x
2
Chebyshev coefficients and Galerkin coefficients: u(x Z g Ti(x) = Z U; ¢
i=0

Qn

The matrix gb;.m relates the two sets of coefficients via the matrlx product u = ¢ X

30



Galerkin system

For Galerkin method, the test functions are equal to the trial functions, so that the

condition of small residual writes

3

=0
with
44
(¢is Loj) = ZZ OriTh, Loy T) = > > bnithij (T, LT))
—01=0 k=0 1=0
4 4 4
= Z Z¢kzngl3 T, Z ApiTr) =D > brithg Y Ami(Try T
k=0 1=0 — k=0 1=0 m=0
4

T

= Zz¢kz¢l321+50k VAR = 5

k=0 [=0 =0

M

Z (14 dok) PriAri1d1
1=

31
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Resolution of the Galerkin system

In the above expression appears the transpose matrix

-2 0

Qir, =" [(1 + 501@)@51@@} = 0 -1
—2 0

o O =
o = O
_— O O

The small residual condition amounts then to solve the following linear system in
u = (/&’07 ’&1, ﬂZ):

~

Qxqubxﬁ:Qxé'

) 4 -8 -8 0.331625
withQxAx¢p=| 16 —16 0 |andQx5=| —1.08544
0 16 —52 0.0655592

The solution is found to be @y = —0.1596, 17 = —0.09176, uy = —0.02949.

The Chebyshev coefficients are obtained by taking the matrix product by c}; ;
uo = 0.1891, u; = 0.09176, uy = —0.1596, uz = —0.09176, uy = —0.02949



Comparison with the exact solution

N=4
0.5 | | | | | | | | | | | | | | | | | |
L — Exact solution -
L — Gderkin i
0.4+ -
03l -
X F |
- - i
Il - |
02k _
01k N
v | | ‘ | | | | | | | | | | | | . | |
-0.5 8 0.5
X h1l
. sin e
Exact solution: u(x) = e* — e*r —

sinh 2 1+ e?



Resolution by means of a tau method

trial functions = test functions = Chebyshev polynomials Ty, ..., T}.

Enforce the boundary conditions by additional equations.
Since T,,(—1) = (—1)" and T},(1) = 1, the [boundary condition operator] has the matrix

1 -1 1 -1 1
bp’“_(l 1 1 1 1) (10)

The T),'s being an orthogonal basis, the ffau system] is obtained by replacing the last
two rows of the matrix A by ([10):

44 4 —12 32 i 5
(o0 e S\ [a ] [
0 0 4 -—24 48 i | =] s
1 -1 1 -1 1 i 0
AT VAR

The solution is found to be
ug = 0.1456, u; = 0.07885, uy, = —0.1220, uz = —0.07885, 14 = —0.02360.
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Comparison with the exact solution

N =4
0.5 | | | | | | | | | | | | | | | | | |
L — Exact solution -
L — Gderkin i
L Tau i
0.4+ -
03l -
X F |
- - i
Il - |
02k _
01k N
L | | ‘ | | | | | | | | | | | | . | |
-0.5 8 0.5
X h1l
. sin e
Exact solution: u(x) = e* — e*r —

sinh 2 1+ e?
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Resolution by means of a pseudospectral method

trial functions = Chebyshev polynomials Tj, ..., T4 and
test functions = 6(x — x,).

The [pseudospectral system| is

4 4
ZLTk Tp) U = s(xp) (:)ZZA”CTZ Tn) U = S(n)

k=0 k=0 [=0

From a matrix point of view: T' X A X u = s, where
( 1 —1 1 —1 1 \
1 —-1/vV/2 0 1/vV2 -1

T, =T(x,) =] 1 0 —1 0 1
1 1//2 0 —-1/vV2 -1
\ 1 1 1 1 1




Pseudospectral system

To take into account the boundary conditions, replace the first row of the matrix
T x A by by and the last row by b1, and end up with the system

/ 1 —1 1 —1 1 o 0
4 —6.82843 15.3137 —26.1421 28 \ ( Ty \ ( s(x) \
4 —4 0 12 —12 INIQ = S(ZIZQ)
4 —1.17157 —7.31371 2.14214 28 U3 S(Z’g))
0

11 1 1 1 \a )\

The solution is found to be
uo = 0.1875, uy; = 0.08867, uy = —0.1565, us = —0.08867, us = —0.03104.



Comparison with the exact solution

N=4
0.5 [ [ [ [ | [ [ [ [ | [ [ [ [ [ [
_ — Exact solution .
- | — Galerkin i
. Tau i
04+ Pseudo-spectral B
__ 03[ N
X Tt |
=S i
1 I :
> 0.2} B
0.1 . N
" | | . | | | | | | | | | | | | .
-1 -0.5 § 05
. sinh 1 e
Exact solution: u(z) = e* — T

sinh 2 1+ e?




0.5

Numerical solutionswith N= 6

0.4

0.3

y = u(x)
L N AL B

0.2

0.1

T

! ! ! |

T

— Exact solution
— Galekin
Tau
Pseudo-spectral

T

T

T

O

|

| [ ] ] | ] ] ] ] | ] ] ] ] | ] ] ] ] | ] ] ] ]

.

o4
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Exponential decay of the error with NV

G—© Gaerkin
Tau
(>—) Pseudospectra

4 6 8 10 12 14 16
N = number of Chebyshev polynomials-1
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Not discussed here...

Spectral methods for 3-D problems
Time evolution

Non-linearities

Multi-domain spectral methods

Weak formulation

41
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Spectral methods in numerical relativity
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Spectral methods developed in Meudon

Pioneered by Silvano Bonazzola & Jean-Alain Marck (1986). Spectral methods within

e 1990 : 3-D wave equation

e 1993 : First 3-D computation of stellar collapse (Newtonian)
e 1994 : Accurate models of rotating stars in GR

e 1995 : Einstein-Maxwell solutions for magnetized stars

e 1996 : 3-D secular instability of rigidly rotating stars in GR
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LORENE

A library of C+-+ classes devoted to multi-domain spectral methods, with adaptive
spherical coordinates.

e 1997 :

e 19099 :

e 19099 :

e 2001 :

e 2001 :

e 2002 :

e 2002 :

start of Lorene

Accurate models of rapidly rotating strange quark stars

Neutron star binaries on closed circular orbits (IWM approx. to GR)
Public domain (GPL), Web page: http://www.lorene.obspm.fr
Black hole binaries on closed circular orbits (IWM approx. to GR)
3-D wave equation with non-reflecting boundary conditions

Maclaurin-Jacobi bifurcation point in GR


http://www.lorene.obspm.fr

Code for producing the figures of the above illustrative example available from LORENE
CVS server (directory Lorene/Codes/Spectral),

see http://www.lorene.obspm.fr
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Spectral methods developed in other groups

: Black holes
quasi-spherical slicing
apparent horizon finder
conformal field equations

extremely precise models of rotating stars, cf. Marcus Ansorg's talk
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Textbooks about spectral methods

D. Gottlieb & S.A. Orszag : Numerical analysis of spectral methods, Society for
Industrial and Applied Mathematics, Philadelphia (1977)

C. Canuto, M.Y. Hussaini, A. Quarteroni & T.A. Zang : Spectral methods in fluid
dynamics, Springer-Verlag, Berlin (1988)

B. Mercier : An introduction to the numerical analysis of spectral methods, Springer-
Verlag, Berlin (1989)

C. Bernardi & Y. Maday : Approximations spectrales de problmes aux limites
elliptiques, Springer-Verlag, Paris (1992)

B. Fornberg : A practical guide to pseudospectral methods, Cambridge University
Press, Cambridge (1998)

J.P. Boyd : Chebyshev and Fourier spectral methods, 2nd edition, Dover, Mineola
(2001) [web page]
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