Construction of initial data for 3+1 numerical relativity

Eric Gourgoulhon

Laboratoire de l'Univers et de ses Théories (LUTH) CNRS / Observatoire de Paris F-92195 Meudon, France

eric.gourgoulhon@obspm.fr

 $\verb|http://www.luth.obspm.fr/^{\sim}luthier/gourgoulhon/|$

VII Mexican School on Gravitation and Mathematical Physics

Relativistic Astrophysics and Numerical Relativity
Playa del Carmen, Quintana Roo, Mexico
26 November - 1 December 2006

Plan

The initial data problem

2 Conformal transvere-traceless method

3 Conformal thin sandwich method

Outline

1 The initial data problem

Conformal transvere-traceless method

Conformal thin sandwich method

Initial data for the Cauchy problem

In lecture 1, we have seen

3+1 decomposition \Longrightarrow Einstein equation = Cauchy problem with constraints

Initial data for the Cauchy problem

In lecture 1, we have seen

3+1 decomposition \Longrightarrow Einstein equation = Cauchy problem with constraints

Constructing initial data: ∃ two problems:

• The mathematical problem: given some hypersurface Σ_0 , find a Riemannian metric γ , a symmetric bilinear form K and some matter distribution (E, p) on Σ_0 such that the Hamiltonian and momentum constraints are satisfied:

$$R + K^2 - K_{ij}K^{ij} = 16\pi E$$
$$D_j K^j_{\ i} - D_i K = 8\pi p_i$$

NB: the matter distribution (E, p) may have some additional constraints from its own

Initial data for the Cauchy problem

In lecture 1, we have seen

3+1 decomposition \implies Einstein equation = Cauchy problem with constraints

Constructing initial data: ∃ two problems:

• The mathematical problem: given some hypersurface Σ_0 , find a Riemannian metric γ , a symmetric bilinear form K and some matter distribution (E, p) on Σ_0 such that the Hamiltonian and momentum constraints are satisfied:

$$R + K^2 - K_{ij}K^{ij} = 16\pi E$$
$$D_j K^j_{\ i} - D_i K = 8\pi p_i$$

NB: the matter distribution (E, p) may have some additional constraints from its own

• The astrophysical problem: make sure that the obtained solution to the constraint equations have something to do with the physical system that one wish to study.

A first naive approach

Notice that the constraints involve a single hypersurface Σ_0 , not a foliation $(\Sigma_t)_{t\in\mathbb{R}}$. In particular, neither the lapse function N nor the shift vector appear $\boldsymbol{\beta}$ in these equations

A first naive approach

Notice that the constraints involve a single hypersurface Σ_0 , not a foliation $(\Sigma_t)_{t\in\mathbb{R}}$. In particular, neither the lapse function N nor the shift vector appear $\boldsymbol{\beta}$ in these equations

Naive method of resolution:

- \bullet choose freely the metric $\gamma,$ thereby fixing the connection ${\bf \it D}$ and the scalar curvature R
- ullet solve the constraints for K

Indeed, for fixed γ , E, and p, the constraints form a quasi-linear system of first order for the components K_{ij}

A first naive approach

Notice that the constraints involve a single hypersurface Σ_0 , not a foliation $(\Sigma_t)_{t\in\mathbb{R}}$. In particular, neither the lapse function N nor the shift vector appear $\boldsymbol{\beta}$ in these equations

Naive method of resolution:

- \bullet choose freely the metric $\gamma,$ thereby fixing the connection ${\bf \it D}$ and the scalar curvature R
- \bullet solve the constraints for K

Indeed, for fixed γ , E, and p, the constraints form a quasi-linear system of first order for the components K_{ij}

However, this approach is not satisfactory:

only 4 equations for 6 unknowns K_{ij} and there is no natural prescription for choosing arbitrarily two among the six components K_{ij}

- Conformal methods: initiated by Lichnerowicz (1944) and extended by
 - Choquet-Bruhat (1956, 1971)
 - York and Ó Murchadha (1972, 1974, 1979)
 - York and Pfeiffer (1999, 2003)
 - → by far the most widely spread techniques

- Conformal methods: initiated by Lichnerowicz (1944) and extended by
 - Choquet-Bruhat (1956, 1971)
 - York and Ó Murchadha (1972, 1974, 1979)
 - York and Pfeiffer (1999, 2003)
 - → by far the most widely spread techniques
- Quasi-spherical ansatz introduced by Bartnik (1993)

- Conformal methods: initiated by Lichnerowicz (1944) and extended by
 - Choquet-Bruhat (1956, 1971)
 - York and Ó Murchadha (1972, 1974, 1979)
 - York and Pfeiffer (1999, 2003)
 - → by far the most widely spread techniques
- Quasi-spherical ansatz introduced by Bartnik (1993)
- Gluing technique: Corvino (2000), Isenberg, Mazzeo and Pollack (2002): gluing together known solutions of the constraints, thereby producing new ones

- Conformal methods: initiated by Lichnerowicz (1944) and extended by
 - Choquet-Bruhat (1956, 1971)
 - York and Ó Murchadha (1972, 1974, 1979)
 - York and Pfeiffer (1999, 2003)
 - → by far the most widely spread techniques
- Quasi-spherical ansatz introduced by Bartnik (1993)
- Gluing technique: Corvino (2000), Isenberg, Mazzeo and Pollack (2002): gluing together known solutions of the constraints, thereby producing new ones

In this lecture we foccuss on conformal methods

Outline

The initial data problem

2 Conformal transvere-traceless method

3 Conformal thin sandwich method

Starting point

Conformal decomposition introduced in Lecture 1:

$$\gamma_{ij} = \Psi^4 \tilde{\gamma}_{ij}$$
 and $A^{ij} = \Psi^{-10} \hat{A}^{ij}$

The Hamiltonian and momentum constraints become respectively

$$\tilde{D}_{i}\tilde{D}^{i}\Psi - \frac{1}{8}\tilde{R}\Psi + \frac{1}{8}\hat{A}_{ij}\hat{A}^{ij}\Psi^{-7} + \left(2\pi E - \frac{1}{12}K^{2}\right)\Psi^{5} = 0$$

$$\boxed{ \tilde{D}_j \hat{A}^{ij} - \frac{2}{3} \Psi^6 \tilde{D}^i K = 8\pi \Psi^{10} p^i}$$

Longitudinal/transverse decomposition of \hat{A}^{ij}

York (1973,1979) splitting of \hat{A}^{ij} :

$$\hat{A}^{ij} = (\tilde{L}X)^{ij} + \hat{A}^{ij}_{\mathsf{TT}}$$

with

• $(\tilde{L}X)^{ij}=$ conformal Killing operator associated with the metric $\tilde{\gamma}$ and acting on the vector field X:

$$(\tilde{L}X)^{ij} := \tilde{D}^i X^j + \tilde{D}^j X^i - \frac{2}{3} \tilde{D}_k X^k \, \tilde{\gamma}^{ij}$$

• $\hat{A}_{\mathsf{TT}}^{ij}$ traceless and transverse (i.e. divergence-free) with respect to the metric $\tilde{\gamma}$: $\tilde{\gamma}_{ij}\hat{A}_{\mathsf{TT}}^{ij}=0$ and $\tilde{D}_{j}\hat{A}_{\mathsf{TT}}^{ij}=0$

NB: both the longitudinal part and the TT part are traceless: $\tilde{\gamma}_{ij}(\tilde{L}X)^{ij}=0$ and $\tilde{\gamma}_{ij}\hat{A}^{ij}_{\rm TT}=0$

Longitudinal/transverse decomposition of \hat{A}^{ij}

Determining \boldsymbol{X} and $\hat{A}_{\mathrm{TT}}^{ij}$:

Considering the divergence of \hat{A}^{ij} , we see that $m{X}$ must be a solution of the vector differential equation

$$\tilde{\Delta}_L X^i = \tilde{D}_j \hat{A}^{ij}$$

where $\tilde{\Delta}_L$ is the **conformal vector Laplacian**:

$$\tilde{\Delta}_L X^i := \tilde{D}_j (\tilde{L}X)^{ij} = \tilde{D}_j \tilde{D}^j X^i + \frac{1}{3} \tilde{D}^i \tilde{D}_j X^j + \tilde{R}^i_{\ j} X^j$$

Longitudinal/transverse decomposition of \hat{A}^{ij}

Determining X and \hat{A}_{TT}^{ij} :

Considering the divergence of \hat{A}^{ij} , we see that X must be a solution of the vector differential equation

$$\tilde{\Delta}_L X^i = \tilde{D}_j \hat{A}^{ij}$$

where $\tilde{\Delta}_L$ is the **conformal vector Laplacian**:

$$\tilde{\Delta}_L X^i := \tilde{D}_j (\tilde{L}X)^{ij} = \tilde{D}_j \tilde{D}^j X^i + \frac{1}{3} \tilde{D}^i \tilde{D}_j X^j + \tilde{R}^i_{\ j} X^j$$

The operator $\tilde{\Delta}_L$ is elliptic and its kernel is reduced to **conformal Killing vectors**, i.e. vectors C that satisfy $(\tilde{L}C)^{ij} = 0$ (generators of conformal isometries, if any)

- if Σ_0 is a closed manifold (i.e. compact without boundary): the solution Xexists; it may be not unique, but $(\tilde{L}X)^{ij}$ is unique;
- if (Σ_0, γ) is an asymptotically flat manifold: there exists a unique solution Xwhich vanishes at spatial infinity

Conclusion: the longitudinal/transverse decomposition exists and is unique

Conformal transverse-traceless form of the constraints

Defining $\tilde{E} := \Psi^8 E$ and $\tilde{p}^i := \Psi^{10} p^i$, the Hamiltonian constraint (Lichnerowicz equation) and the momentum constraint become respectively

$$ilde{D}_i ilde{D}^i \Psi - rac{ ilde{R}}{8} \Psi + rac{1}{8} \left[(ilde{L} X)_{ij} + \hat{A}_{ij}^{\mathsf{TT}}
ight] \left[(ilde{L} X)^{ij} + \hat{A}_{\mathsf{TT}}^{ij}
ight] \Psi^{-7} + 2\pi ilde{E} \Psi^{-3} - rac{K^2}{12} \Psi^5 = 0$$

(1)

$$\tilde{\Delta}_L X^i - \frac{2}{3} \Psi^6 \tilde{D}^i K = 8\pi \tilde{p}^i \tag{2}$$

where
$$(\tilde{L}X)_{ij}:=\tilde{\gamma}_{ik}\tilde{\gamma}_{jl}(\tilde{L}X)^{kl}$$
 and $\hat{A}_{ij}^{\mathsf{TT}}:=\tilde{\gamma}_{ik}\tilde{\gamma}_{jl}\hat{A}_{\mathsf{TT}}^{kl}$

Free data and constrained data

In view of the above system, we see clearly which part of the initial data on Σ_0 can be freely chosen and which part is "constrained":

• free data:

- conformal metric ~
- symmetric traceless and transverse tensor \hat{A}_{ij}^{TT}
- scalar field K
- conformal matter variables: (\tilde{E}, \tilde{p}^i)
- constrained data (or "determined data"):
 - conformal factor Ψ , obeying the non-linear elliptic equation (1)
 - vector X, obeying the *linear* elliptic equation (2)

Strategy for construction initial data

York (1979) CTT method:

- lacktriangledown choose $(ilde{\gamma}_{ij}, \hat{A}_{ij}^{\mathsf{TT}}, K, ilde{E}, ilde{p}^i)$ on Σ_0
- ② solve the system (1)-(2) to get Ψ and X^i
- construct

$$\begin{array}{rcl} \gamma_{ij} & = & \Psi^{4}\tilde{\gamma}_{ij} \\ K^{ij} & = & \Psi^{-10}\left((\tilde{L}X)^{ij} + \hat{A}^{ij}_{\mathsf{TT}}\right) + \frac{1}{3}\Psi^{-4}K\tilde{\gamma}^{ij} \\ E & = & \Psi^{-8}\tilde{E} \\ p^{i} & = & \Psi^{-10}\tilde{p}^{i} \end{array}$$

Then one obtains a set (γ, K, E, p) which satisfies the constraint equations

Decoupling on hypersurfaces of constant mean curvature

Consider the momentum constraint equation: $\tilde{\Delta}_L X^i - \frac{2}{3} \Psi^6 \tilde{D}^i K = 8\pi \tilde{p}^i$

If Σ_0 has a constant mean curvature (CMC):

$$K = \mathsf{const}$$

then $\tilde{D}^i K = 0$ and the momentum constraint equations reduces to

$$\tilde{\Delta}_L X^i = 8\pi \tilde{p}^i \tag{3}$$

It does no longer involve Ψ

 \implies decoupling of the constraint system (1)-(2)

NB: a very important case of CMC hypersurface: maximal hypersurface: K = 0

Strategy on CMC hypersurfaces

- 1st step: Solve the linear elliptic equation (3) $(\tilde{\Delta}_L X^i = 8\pi \tilde{p}^i)$ to get the vector X
 - if Σ_0 is a *closed manifold* (i.e. compact without boundary): the solution X exists; it may be not unique, but $(\tilde{L}X)^{ij}$ is unique;
 - if (Σ_0, γ) is an asymptotically flat manifold: there exists a unique solution X which vanishes at spatial infinity
- ullet 2nd step: Inject the solution X into Lichnerowicz equation (1)

$$\tilde{D}_i \tilde{D}^i \Psi - \frac{\tilde{R}}{8} \Psi + \frac{1}{8 \Psi^7} \left[(\tilde{L}X)_{ij} + \hat{A}_{ij}^{\rm TT} \right] \left[(\tilde{L}X)^{ij} + \hat{A}_{\rm TT}^{ij} \right] + \frac{2\pi \tilde{E}}{\Psi^3} - \frac{K^2}{12} \Psi^5 = 0$$

and solve the latter for Ψ (the difficult part!)

Strategy on CMC hypersurfaces

- 1st step: Solve the linear elliptic equation (3) $(\tilde{\Delta}_L X^i = 8\pi \tilde{p}^i)$ to get the vector X
 - if Σ_0 is a *closed manifold* (i.e. compact without boundary): the solution X exists; it may be not unique, but $(\tilde{L}X)^{ij}$ is unique;
 - if (Σ_0, γ) is an asymptotically flat manifold: there exists a unique solution X which vanishes at spatial infinity
- ullet 2nd step: Inject the solution X into Lichnerowicz equation (1)

$$\tilde{D}_{i}\tilde{D}^{i}\Psi - \frac{\tilde{R}}{8}\Psi + \frac{1}{8\Psi^{7}}\left[(\tilde{L}X)_{ij} + \hat{A}_{ij}^{\mathsf{TT}}\right]\left[(\tilde{L}X)^{ij} + \hat{A}_{\mathsf{TT}}^{ij}\right] + \frac{2\pi\tilde{E}}{\Psi^{3}} - \frac{K^{2}}{12}\Psi^{5} = 0$$

and solve the latter for Ψ (the difficult part!)

Existence and uniqueness of solutions to Lichnerowicz equation:

- asymptotically flat case: (1) is solvable iff the metric $\tilde{\gamma}$ is conformal to a metric with vanishing scalar curvature (Cantor 1977)
- closed manifold: complete analysis carried out by Isenberg (1995) (vacuum case)

More details: see review by Bartnik and Isenberg (2004)

Conformally flat initial data on maximal slices

Simplest choice for free data $(\tilde{\gamma}_{ij}, \hat{A}_{ij}^{\mathsf{TT}}, K, \tilde{E}, \tilde{p}^i)$:

- $ilde{\gamma}_{ij} = f_{ij}$ (flat metric)
- $\bullet \ \hat{A}_{ij}^{\mathsf{TT}} = 0$
- K = 0 ($\Sigma_0 = \text{maximal hypersurface}$)
- ullet $ilde{E}=0$ and $ilde{p}^i=0$ (vacuum)

Conformally flat initial data on maximal slices

Simplest choice for free data $(\tilde{\gamma}_{ij}, \hat{A}_{ij}^{\mathsf{TT}}, K, \tilde{E}, \tilde{p}^i)$:

- $\tilde{\gamma}_{ij} = f_{ij}$ (flat metric)
- $\bullet \ \hat{A}_{ij}^{\mathsf{TT}} = \mathbf{0}$
- K = 0 ($\Sigma_0 = \text{maximal hypersurface}$)
- ullet $ilde{E}=0$ and $ilde{p}^i=0$ (vacuum)

Then the constraint equations (1)-((2) reduce to

$$\Delta \Psi + \frac{1}{8} (LX)_{ij} (LX)^{ij} \Psi^{-7} = 0$$
 (4)

$$\Delta X^i + \frac{1}{3} \mathcal{D}^i \mathcal{D}_j X^j = 0 \tag{5}$$

where
$$\Delta:=\mathcal{D}_i\mathcal{D}^i$$
 (flat Laplacian) and $(LX)^{ij}:=\mathcal{D}^iX^j+\mathcal{D}^jX^i-\frac{2}{3}\mathcal{D}_kX^k\,f^{ij}$ (\mathcal{D}_i flat connection: in Cartesian coordinates $\mathcal{D}_i=\partial_i$)

Asymptotic flatness \Longrightarrow boundary conditions $\left\{ \begin{array}{l} \left. \Psi \right|_{r \to \infty} = 1 \\ \left. X \right|_{r \to \infty} = 0 \end{array} \right.$

$$egin{array}{ll} \Psi|_{r
ightarrow\infty} &= 1 \ X|_{r
ightarrow\infty} &= 0 \ N & N & N & N & N & N & N \end{array}$$

A (too) simple solution

Choose $\Sigma_0 \sim \mathbb{R}^3$

Then the only regular solution to $\Delta X^i+\frac{1}{3}\mathcal{D}^i\mathcal{D}_jX^j=0$ with the boundary condition $X|_{r\to\infty}=0$ is

$$\boldsymbol{X} = 0$$

A (too) simple solution

Choose $\Sigma_0 \sim \mathbb{R}^3$

Then the only regular solution to $\Delta X^i+\frac{1}{3}\mathcal{D}^i\mathcal{D}_jX^j=0$ with the boundary condition $X|_{r\to\infty}=0$ is

$$\boldsymbol{X} = 0$$

Plugging this solution into the Hamiltonian constraint (4) yields Laplace equation for Ψ :

$$\Delta \Psi = 0$$

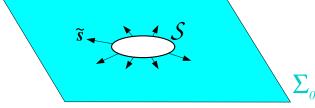
With the boundary condition $\Psi|_{r\to\infty}=1$ the unique regular solution is

$$\Psi = 1$$

Hence the initial (γ, K) is $\left\{ egin{array}{l} \gamma_{ij} = f_{ij} \\ K_{ij} = 0 \end{array} \right.$ (momentarily static)

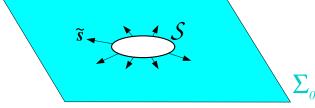
This is a standard slice t = const of Minkowski spacetime

Keep the same simple free data as above, but choose for Σ_0 a less trivial topology: $\Sigma_0 \sim \mathbb{R}^3 \backslash \mathcal{B}$ ($\mathcal{B}=$ ball):



 \Longrightarrow boundary conditions (BC) for X and Ψ must be supplied at the sphere ${\cal S}$ delimiting ${\cal B}$

Keep the same simple free data as above, but choose for Σ_0 a less trivial topology: $\Sigma_0 \sim \mathbb{R}^3 \backslash \mathcal{B}$ ($\mathcal{B}=$ ball):

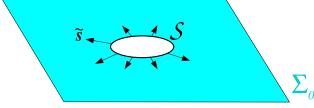


 \Longrightarrow boundary conditions (BC) for X and Ψ must be supplied at the sphere ${\cal S}$ delimiting ${\cal B}$

Let us choose $X|_{\mathcal{S}}=0$. Altogether with the outer BC $X|_{r\to\infty}=0$ this yields to the following solution of momentum constraint (5)

$$\boldsymbol{X} = 0$$

Keep the same simple free data as above, but choose for Σ_0 a less trivial topology: $\Sigma_0 \sim \mathbb{R}^3 \backslash \mathcal{B}$ ($\mathcal{B}=$ ball):



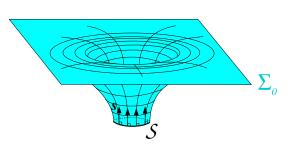
 \Longrightarrow boundary conditions (BC) for X and Ψ must be supplied at the sphere ${\cal S}$ delimiting ${\cal B}$

Let us choose $X|_{\mathcal{S}}=0$. Altogether with the outer BC $X|_{r\to\infty}=0$ this yields to the following solution of momentum constraint (5)

$$\boldsymbol{X} = 0$$

Hamiltonian constraint (4) \Longrightarrow Laplace equation $\Delta \Psi = 0$ The choice $\Psi|_S = 1$ would result in the same trivial solution $\Psi = 1$ as before...

In order to have something not trivial, i.e. to ensure that the metric γ will not be flat, let us demand that γ admits a **closed minimal surface**:



 $oldsymbol{s}$: unit normal to ${\mathcal S}$ for the metric γ $oldsymbol{ ilde{s}}$: unit normal to ${\mathcal S}$ for the metric $oldsymbol{ ilde{\gamma}}$

 ${\cal S}$ minimal surface

$$\iff \mathcal{S}$$
's mean curvature = 0

$$\iff D_i s^i \big|_{\mathcal{S}} = 0$$

$$\iff \mathcal{D}_i(\Psi^6 s^i)|_{\mathcal{S}} = 0$$

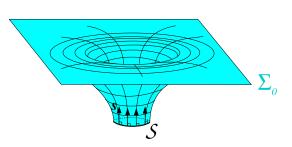
$$\iff \mathcal{D}_i(\Psi^4\tilde{s}^i)\big|_{\mathcal{S}} = 0$$

$$\iff$$

$$\left. \left(\frac{\partial \Psi}{\partial r} + \frac{\Psi}{2r} \right) \right|_{r=a} = 0 \tag{6}$$

$$(r, \theta, \varphi)$$
: coord. sys. $f_{ij} = \operatorname{diag}(1, r^2, r^2 \sin^2 \theta)$ and $S = \operatorname{sphere} \{r = a\}$

In order to have something not trivial, i.e. to ensure that the metric γ will not be flat, let us demand that γ admits a **closed minimal surface**:



 $oldsymbol{s}$: unit normal to ${\mathcal S}$ for the metric ${\boldsymbol \gamma}$ $oldsymbol{ ilde s}$: unit normal to ${\mathcal S}$ for the metric $oldsymbol{ ilde \gamma}$

 ${\cal S}$ minimal surface

$$\iff \mathcal{S}$$
's mean curvature = 0

$$\iff D_i s^i \big|_{\mathcal{S}} = 0$$

$$\iff \mathcal{D}_i(\Psi^6 s^i)|_{\mathcal{S}} = 0$$

$$\iff \left. \mathcal{D}_i (\Psi^4 \tilde{s}^i) \right|_{\mathcal{S}} = 0$$

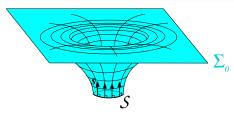
$$\iff$$

$$\left. \left(\frac{\partial \Psi}{\partial r} + \frac{\Psi}{2r} \right) \right|_{r=a} = 0 \tag{6}$$

$$(r, \theta, \varphi)$$
: coord. sys. $f_{ij} = \operatorname{diag}(1, r^2, r^2 \sin^2 \theta)$ and $S = \operatorname{sphere}\{r = a\}$

The solution to Laplace equation $\Delta\Psi=0$ with the BC (6) and $\left.\Psi\right|_{r\to\infty}=1$ is

$$\Psi = 1 + \frac{a}{r}$$



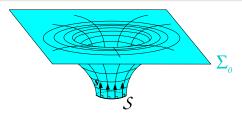
ADM mass of that solution:

$$m = -\frac{1}{2\pi} \lim_{r \to \infty} \oint_{r = \text{const}} \frac{\partial \Psi}{\partial r} r^2 \sin \theta \, d\theta \, d\varphi$$

$$\sum_{\theta} \Rightarrow m = 2a$$

Hence $\Psi = 1 + \frac{m}{2r}$

The obtained initial data is then $\left\{ \begin{array}{l} \gamma_{ij} = \left(1+\frac{m}{2r}\right)^4 \mathrm{diag}(1,r^2,r^2\sin\theta) \\ K_{ij} = 0 \end{array} \right.$



ADM mass of that solution:

$$m = -\frac{1}{2\pi} \lim_{r \to \infty} \oint_{r = \text{const}} \frac{\partial \Psi}{\partial r} r^2 \sin \theta \, d\theta \, d\varphi$$

$$\sum_{\theta} \Rightarrow m = 2a$$

Hence
$$\Psi = 1 + \frac{m}{2r}$$

The obtained initial data is then
$$\left\{ egin{array}{l} \gamma_{ij} = \left(1+rac{m}{2r}\right)^4 \mathrm{diag}(1,r^2,r^2\sin\theta) \\ K_{ij} = 0 \end{array}
ight.$$

This is a slice t = const of Schwarzschild spacetime

Remember: Schwarzschild metric in isotropic coordinates (t, r, θ, φ) :

$$g_{\mu\nu}dx^{\mu}dx^{\nu} = -\left(\frac{1-\frac{m}{2r}}{1+\frac{m}{2r}}\right)^{2}dt^{2} + \left(1+\frac{m}{2r}\right)^{4}\left[dr^{2} + r^{2}(d\theta^{2} + \sin^{2}\theta d\varphi^{2})\right]$$

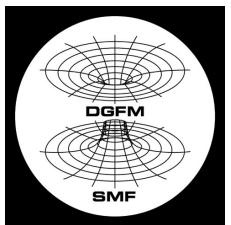
Link with Schwarzschild coordinates (t,R, heta,arphi): $R=r\left(1+rac{m}{2r}
ight)^2$

Extended solution

 $\mathcal S$ minimal surface $\Longrightarrow (\Sigma_0, \gamma)$ can be extended *smoothly* to a larger Riemannian manifold (Σ_0', γ') by gluing a copy of Σ_0 at $\mathcal S$:

Extended solution

 $\mathcal S$ minimal surface $\Longrightarrow (\Sigma_0, \gamma)$ can be extended *smoothly* to a larger Riemannian manifold (Σ_0', γ') by gluing a copy of Σ_0 at $\mathcal S$:



 $\mathcal{S}=$ Einstein-Rosen bridge beween two asymptotically flat manifolds

range of r in Σ_0' : $(0,+\infty)$

extended metric:

$$\gamma'_{ij} dx^i dx^j = \left(1 + \frac{m}{2r}\right)^4 \times \left(dr^2 + r^2 d\theta^2 + r^2 \sin^2 \theta d\varphi^2\right)$$

 $\begin{array}{l} {\rm region} \ r \to 0 = {\rm second} \\ {\rm asymptotically} \ {\rm flat} \ {\rm region} \end{array}$

$$\operatorname{map} r \mapsto r' = \frac{m^2}{4r} \text{ is an}$$
 isometry

This extended solution is still a slice t= const of Schwarzschild spacetime topology of $\Sigma_0'=\mathbb{R}^3\setminus\{O\}$ (puncture)

Same free data as before:

$$\tilde{\gamma}_{ij}=f_{ij},~\hat{A}_{ij}^{\mathsf{TT}}=0,~K=0,~\tilde{E}=0$$
 and $\tilde{p}^i=0$ so that the constraint equations are still

$$\Delta \Psi + \frac{1}{8} (LX)_{ij} (LX)^{ij} \Psi^{-7} = 0$$
 (7)

$$\Delta X^i + \frac{1}{3} \mathcal{D}^i \mathcal{D}_j X^j = 0 \tag{8}$$

Choice of Σ_0 : $\Sigma_0 = \mathbb{R}^3 \setminus \{O\}$ (puncture topology)

Same free data as before:

$$\tilde{\gamma}_{ij}=f_{ij},~\hat{A}_{ij}^{\mathsf{TT}}=0,~K=0,~\tilde{E}=0$$
 and $\tilde{p}^i=0$ so that the constraint equations are still

$$\Delta \Psi + \frac{1}{8} (LX)_{ij} (LX)^{ij} \Psi^{-7} = 0$$
 (7)

$$\Delta X^i + \frac{1}{3} \mathcal{D}^i \mathcal{D}_j X^j = 0 \tag{8}$$

Choice of Σ_0 : $\Sigma_0 = \mathbb{R}^3 \setminus \{O\}$ (puncture topology)

Difference with previous case: $m{X}
eq 0$ (no longer momentarily static data)

Bowen-York (1980) solution of Eq. (8) in Cartesian coord. $(x^i) = (x, y, z)$:

$$X^i = -\frac{1}{4r} \left(7P^i + P_j \frac{x^j x^i}{r^2}\right) - \frac{1}{r^3} \epsilon^i_{jk} S^j x^k$$

Two constant vector parameters : $\left\{ egin{array}{ll} P^i &= {\sf ADM \ linear \ momentum} \\ S^i &= {\sf angular \ momentum} \end{array} \right.$

Example: choose S^i perpendicular to P^i and choose Cartesian coordinates (x,y,z) such that $P^i=(0,P,0)$ and $S^i=(0,0,S)$. Then

$$X^{x} = -\frac{P}{4} \frac{xy}{r^{3}} + S \frac{y}{r^{3}}$$

$$X^{y} = -\frac{P}{4r} \left(7 + \frac{y^{2}}{r^{2}}\right) - S \frac{x}{r^{3}}$$

$$X^{z} = -\frac{P}{4} \frac{xz}{r^{3}}$$

Bowen-Tork extrinsic curvature: $\hat{A}^{ij} = (LX)^{ij}$:

$$\hat{A}^{ij} = \frac{3}{2r^3} \left[P^i x^j + P^j x^i - \left(\delta^{ij} - \frac{x^i x^j}{r^2} \right) P^k x_k \right] + \frac{3}{r^5} \left(\epsilon^i_{\ kl} S^k x^l x^j + \epsilon^j_{\ kl} S^k x^l x^i \right)$$

 $\text{Angular momentum (QI)}: S_i := \frac{1}{8\pi} \lim_{\mathcal{S}_t \to \infty} \oint_{\mathcal{S}_t} \left(K_{jk} - K \gamma_{jk} \right) (\boldsymbol{\phi}_i)^j \, s^k \sqrt{q} \, d^2 y.$

There remains to solve (numerically !) the Hamiltonian constraint equation (7):

$$\Delta\Psi + \frac{1}{8}\hat{A}_{ij}\hat{A}^{ij}\,\Psi^{-7} = 0$$

and to reconstruct
$$\left\{ \begin{array}{l} \gamma_{ij} = \Psi^4 f_{ij} \\ K_{ij} = \Psi^{-2} \hat{A}_{ij} \end{array} \right.$$

There remains to solve (numerically !) the Hamiltonian constraint equation (7):

$$\Delta\Psi + \frac{1}{8}\hat{A}_{ij}\hat{A}^{ij}\,\Psi^{-7} = 0$$

and to reconstruct $\left\{ \begin{array}{l} \gamma_{ij} = \Psi^4 f_{ij} \\ K_{ij} = \Psi^{-2} \hat{A}_{ij} \end{array} \right.$

Remark 1: static Bowen-York solution ($P^i = 0$, $S^i = 0$) = maximal slice of Schwarzschild spacetime considered above

Remark 2: Bowen-York solution with $S^i \neq 0$ is not a slice of Kerr spacetime : it is initial data for a rotating black hole but in a non stationary state (black hole "surrounded" by gravitational radiation)

Outline

The initial data problem

Conformal transvere-traceless method

Conformal thin sandwich method

Conformal thin sandwich decomposition of extrinsic curvature

Origin: York (1999)

From Lecture 1:
$$\left(\frac{\partial}{\partial t} - \mathcal{L}_{\beta}\right) \tilde{\gamma}^{ij} = 2N\tilde{A}^{ij} + \frac{2}{3}\tilde{D}_{k}\beta^{k}\,\tilde{\gamma}^{ij}$$
 with $\tilde{A}^{ij} = \Psi^{4}A^{ij} = \Psi^{-6}\hat{A}^{ij}$ and $-\mathcal{L}_{\beta}\,\tilde{\gamma}^{ij} = (\tilde{L}\beta)^{ij} + \frac{2}{3}\tilde{D}_{k}\beta^{k}$

Hence

$$\hat{A}^{ij} = \frac{\Psi^6}{2N} \left[\dot{\tilde{\gamma}}^{ij} + (\tilde{L}\beta)^{ij} \right]$$

where
$$\dot{ ilde{\gamma}}^{ij}:=rac{\partial}{\partial t} ilde{\gamma}^{ij}$$

Introduce the **conformal lapse**: $\tilde{N} := \Psi^{-6}N$ then

$$\tilde{N} := \Psi^{-6}N$$

$$\hat{A}^{ij} = rac{1}{2\tilde{N}} \left[\dot{ ilde{\gamma}}^{ij} + (\tilde{L}eta)^{ij}
ight]$$

Conformal thin sandwich equations

Hamiltonian and momentum constraints become

$$\boxed{ \begin{split} \tilde{D}_i \tilde{D}^i \Psi - \frac{\tilde{R}}{8} \Psi + \frac{1}{8} \hat{A}_{ij} \hat{A}^{ij} \Psi^{-7} + 2\pi \tilde{E} \Psi^{-3} - \frac{K^2}{12} \Psi^5 &= 0 \\ \tilde{D}_j \left(\frac{1}{\tilde{N}} (\tilde{L}\beta)^{ij} \right) + \tilde{D}_j \left(\frac{1}{\tilde{N}} \dot{\tilde{\gamma}}^{ij} \right) - \frac{4}{3} \Psi^6 \tilde{D}^i K &= 16\pi \tilde{p}^i \end{split}}$$

- free data : $(\tilde{\gamma}_{ij},\dot{\tilde{\gamma}}^{ij},K,\tilde{N},\tilde{E},\tilde{p}^i)$
- constrained data: Ψ and β^i

Extended conformal thin sandwich (XCTS)

Origin: Pfeiffer & York (2003)

Idea: instead of choosing the conformal lapse \tilde{N} , compute it from the Einstein equation (not a constraint !) involving the time derivative \dot{K} of K: from Lecture 1:

$$\left(\frac{\partial}{\partial t} - \mathcal{L}_{\beta}\right) K = -\Psi^{-4} \left(\tilde{D}_{i}\tilde{D}^{i}N + 2\tilde{D}_{i}\ln\Psi\,\tilde{D}^{i}N\right) + N\left[4\pi(E+S) + \tilde{A}_{ij}\tilde{A}^{ij} + \frac{K^{2}}{3}\right]$$

Combining with the Hamiltonian constraint, we get

$$\begin{split} \tilde{D}_{i}\tilde{D}^{i}(\tilde{N}\Psi^{7}) - (\tilde{N}\Psi^{7}) \left[\frac{1}{8}\tilde{R} + \frac{5}{12}K^{2}\Psi^{4} + \frac{7}{8}\hat{A}_{ij}\hat{A}^{ij}\Psi^{-8} + 2\pi(\tilde{E} + 2\tilde{S})\Psi^{-4} \right] \\ + \left(\dot{K} - \beta^{i}\tilde{D}_{i}K \right)\Psi^{5} = 0 \end{split}$$

where $\tilde{E} := \Psi^8 E$ and $\tilde{S} := \Psi^8 S$

Extended conformal thin sandwich system

PDE system of 5 equations:

$$\begin{split} \tilde{D}_{i}\tilde{D}^{i}\Psi - \frac{\tilde{R}}{8}\Psi + \frac{1}{8}\hat{A}_{ij}\hat{A}^{ij}\,\Psi^{-7} + 2\pi\tilde{E}\Psi^{-3} - \frac{K^{2}}{12}\Psi^{5} &= 0 \\ \tilde{D}_{j}\left(\frac{1}{\tilde{N}}(\tilde{L}\beta)^{ij}\right) + \tilde{D}_{j}\left(\frac{1}{\tilde{N}}\dot{\gamma}^{ij}\right) - \frac{4}{3}\Psi^{6}\tilde{D}^{i}K - 16\pi\tilde{p}^{i} &= 0 \\ \tilde{D}_{i}\tilde{D}^{i}(\tilde{N}\Psi^{7}) - (\tilde{N}\Psi^{7})\left[\frac{1}{8}\tilde{R} + \frac{5}{12}K^{2}\Psi^{4} + \frac{7}{8}\hat{A}_{ij}\hat{A}^{ij}\Psi^{-8} + 2\pi(\tilde{E} + 2\tilde{S})\Psi^{-4}\right] \\ &+ \left(\dot{K} - \beta^{i}\tilde{D}_{i}K\right)\Psi^{5} &= 0 \end{split}$$

- \bullet free data : $(\tilde{\gamma}_{ij},\dot{\tilde{\gamma}}^{ij},K,\dot{K},\tilde{E},\tilde{S},\tilde{p}^{i})$
- constrained data: Ψ , \tilde{N} and β^i

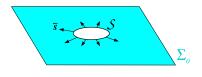
Existence and uniqueness of solutions

Pfeiffer & York (2005): in some cases, solutions $(\Psi, \tilde{N}, \beta^i)$ to the (non-linear !) XCTS system are not unique, even on maximal surfaces

See also recent analysis by Baumgarte, Ó Murchadha & Pfeiffer (2006) and Walsh (2006)

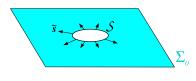
Choose the same manifold $\Sigma_0=\mathbb{R}^3\backslash\mathcal{B}$ (\mathbb{R}^3 with an excised ball) as considered previously Choose the free data to be

$$\tilde{\gamma}_{ij}=f_{ij},\,\dot{\tilde{\gamma}}^{ij}=$$
 0, $K=$ 0, $\dot{K}=$ 0, $\tilde{E}=$ 0, $\tilde{S}=$ 0, $\tilde{p}^{i}=$ 0



Choose the same manifold $\Sigma_0=\mathbb{R}^3\backslash\mathcal{B}$ (\mathbb{R}^3 with an excised ball) as considered previously Choose the free data to be

$$ilde{\gamma}_{ij}=f_{ij},\,\dot{ar{\gamma}}^{ij}=$$
 0, $K=$ 0, $\dot{K}=$ 0, $ilde{E}=$ 0, $ilde{S}=$ 0, $ilde{p}^{i}=$ 0



⇒ the XCTS equations reduce to

$$\Delta \Psi + \frac{1}{8} \hat{A}_{ij} \hat{A}^{ij} \Psi^{-7} = 0 \tag{9}$$

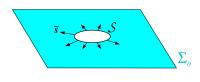
$$\mathcal{D}_{j}\left(\frac{1}{\tilde{N}}(L\beta)^{ij}\right) = 0 \tag{10}$$

$$\Delta(\tilde{N}\Psi^{7}) - \frac{7}{8}\hat{A}_{ij}\hat{A}^{ij}\Psi^{-1}\tilde{N} = 0$$
 (11)

with
$$\hat{A}^{ij} = \frac{1}{2\tilde{N}} (L\beta)^{ij}$$

Choose the same manifold $\Sigma_0=\mathbb{R}^3\backslash\mathcal{B}$ (\mathbb{R}^3 with an excised ball) as considered previously Choose the free data to be

$$ilde{\gamma}_{ij}=f_{ij},\,\dot{ ilde{\gamma}}^{ij}=$$
 0, $K=$ 0, $\dot{K}=$ 0, $\tilde{E}=$ 0, $\tilde{E}=$ 0, $\tilde{p}^{i}=$ 0



⇒ the XCTS equations reduce to

$$\Delta \Psi + \frac{1}{8} \hat{A}_{ij} \hat{A}^{ij} \Psi^{-7} = 0 \tag{9}$$

$$\mathcal{D}_{j}\left(\frac{1}{\tilde{N}}(L\beta)^{ij}\right) = 0 \tag{10}$$

$$\Delta(\tilde{N}\Psi^{7}) - \frac{7}{8}\hat{A}_{ij}\hat{A}^{ij}\Psi^{-1}\tilde{N} = 0$$
 (11)

with
$$\hat{A}^{ij} = \frac{1}{2\tilde{N}} (L\beta)^{ij}$$

Choose the boundary condition $\beta|_{\mathcal{S}}=0$ in addition to $\beta|_{r\to\infty}=0$. Then, independently of the value of \tilde{N} , the unique solution to Eq. (10) is

$$\beta = 0$$

Accordingly $\hat{A}^{ij}=0$ and Eqs. (9) and (11) reduce to two Laplace equations:

$$\Delta \Psi = 0 \tag{12}$$

$$\Delta(\tilde{N}\Psi^7) = 0 \tag{13}$$

As previously use the minimal surface requirement for ${\mathcal S}$ to get the solution

$$\Psi = 1 + \frac{m}{2r}$$
 to Eq. (12).

Accordingly $\hat{A}^{ij} = 0$ and Eqs. (9) and (11) reduce to two Laplace equations:

$$\Delta \Psi = 0 \tag{12}$$

$$\Delta(\tilde{N}\Psi^7) = 0 \tag{13}$$

As previously use the minimal surface requirement for $\mathcal S$ to get the solution

$$\Psi = 1 + \frac{m}{2r}$$
 to Eq. (12).

Regarding Eq. (13), choose the BC $\tilde{N}\big|_{\mathcal{S}}=0$ (singular slicing). Along with the asymptotic flatness BCs $\tilde{N}\big|_{r\to\infty}=1$ and $\Psi|_{r\to\infty}=1$, this yields the solution

$$ilde{N}\Psi^7=1-rac{m}{2r}$$
, i.e., since $N=\Psi^6 ilde{N}$, $N=\left(1-rac{m}{2r}
ight)\left(1+rac{m}{2r}
ight)^{-1}$

Accordingly $\hat{A}^{ij} = 0$ and Eqs. (9) and (11) reduce to two Laplace equations:

$$\Delta \Psi = 0 \tag{12}$$

$$\Delta(\tilde{N}\Psi^7) = 0 \tag{13}$$

As previously use the minimal surface requirement for $\mathcal S$ to get the solution

$$\Psi = 1 + \frac{m}{2r}$$
 to Eq. (12).

Regarding Eq. (13), choose the BC $\tilde{N}\big|_{\mathcal{S}}=0$ (singular slicing). Along with the asymptotic flatness BCs $\tilde{N}\big|_{r\to\infty}=1$ and $\Psi|_{r\to\infty}=1$, this yields the solution

$$\tilde{N}\Psi^7=1-rac{m}{2r}$$
, i.e., since $N=\Psi^6\tilde{N}$, $N=\left(1-rac{m}{2r}
ight)\left(1+rac{m}{2r}
ight)^{-1}$

We obtain Schwarzschild metric (in isotropic coordinates):

$$g_{\mu\nu} dx^{\mu} dx^{\nu} = -\left(\frac{1-\frac{m}{2r}}{1+\frac{m}{2r}}\right)^2 dt^2 + \left(1+\frac{m}{2r}\right)^4 \left[dr^2 + r^2 (d\theta^2 + \sin^2\theta d\varphi^2)\right]$$

Comparing CTT and (X)CTS methods

- ullet CTT : choose some transverse traceless part \hat{A}_{TT}^{ij} of the extrinsic curvature K^{ij} , i.e. some momentum $^2\Longrightarrow$ CTT = Hamiltonian representation
- CTS or XCTS : choose some time derivative $\dot{\tilde{\gamma}}^{ij}$ of the conformal metric $\tilde{\gamma}^{ij}$, i.e. some $velocity \Longrightarrow (\mathbf{X})\mathbf{CTS} = \mathbf{Lagrangian}$ representation

²recall the relation $\pi^{ij} = \sqrt{\gamma}(K\gamma^{ij} - K^{ij})$ between K^{ij} and the ADM canonical momentum

Comparing CTT and (X)CTS methods

- ullet CTT : choose some transverse traceless part \hat{A}^{ij}_{TT} of the extrinsic curvature K^{ij} , i.e. some momentum $^2\Longrightarrow$ CTT = Hamiltonian representation
- CTS or XCTS : choose some time derivative $\dot{\tilde{\gamma}}^{ij}$ of the conformal metric $\tilde{\gamma}^{ij}$, i.e. some $velocity \Longrightarrow (\mathbf{X})\mathbf{CTS} = \mathbf{Lagrangian}$ representation

Advantage of CTT : mathematical theory well developed; existence and uniqueness of solutions established (at least for constant mean curvature ($K={\rm const}$) slices)

Advantage of XCTS : better suited to the description of quasi-stationary spacetimes (\rightarrow quasiequilibrium initial data) :

$$\frac{\partial}{\partial t}$$
 Killing vector $\Rightarrow \dot{\tilde{\gamma}}^{ij} = 0$ and $\dot{K} = 0$

²recall the relation $\pi^{ij}=\sqrt{\gamma}(K\gamma^{ij}-K^{ij})$ between K^{ij} and the ADM canonical momentum