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Outline

@ The 341 foliation of spacetime

Eric Gourgoulhon (LUTH) ism in g ivi APCTP School, 30 July



The 3+1 foliation of spacetime

Framework: globally hyperbolic spacetimes

4-dimensional spacetime (., g) :
o .7 : 4-dimensional smooth manifold
@ g: Lorentzian metric on .-
sign(g) = (—,+,+,+)
(A ,g) is assumed to be time
orientable: the light cones of g can be

divided continuously over .Z in two sets
(past and future)
. .
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The 3+1 foliation of spacetime

Framework: globally hyperbolic spacetimes

Eric Gourgoulhon (LUTH)

4-dimensional spacetime (.7, g) :
o ./ : 4-dimensional smooth manifold

@ g: Lorentzian metric on .-
sign(g) = (—,+,+,+)
(A ,g) is assumed to be time
orientable: the light cones of g can be
divided continuously over .Z in two sets
(past and future)

The spacetime (.#, g) is assumed to be
globally hyperbolic: 3 a foliation (or
slicing) of the spacetime manifold .# by
a family of spacelike hypersurfaces ¥; :
M=%
teR

hypersurface = submanifold of .# of
dimension 3
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The 3+1 foliation of spacetime

Unit normal vector and lapse function

m : unit normal vector to ¥;

>, spacelike <= mn timelike
st moni=g(n,n)=-1

n chosen to be future directed

X

t
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The 3+1 foliation of spacetime

Unit normal vector and lapse function

m : unit normal vector to ¥;
>, spacelike <= mn timelike
st moni=g(n,n)=-1
n chosen to be future directed
Zt
The 1-form n associated with n is proportional to the gradient of ¢:
(1o = NV.0)
N: lapse function ; N >0
Elapse proper time between p and p’: 67 = N{t
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The 3+1 foliation of spacetime

Unit normal vector and lapse function

m : unit normal vector to ¥;
>, spacelike <= mn timelike
st moni=g(n,n)=-1
n chosen to be future directed
Zt

The 1-form n associated with n is proportional to the gradient of ¢:

(1o = NV.0)

N: lapse function ; N >0

Elapse proper time between p and p’: 67 = N{t

Normal evolution vector :

(dt, m) =1 = m Lie drags the hypersurfaces ¥,
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The 3+1 foliation of spacetime

Induced metric (first fundamental form)

The induced metric or first fundamental form on ¥, is the bilinear form ~
defined by
V(u,v) € 7;J(Zt) X %(ZtL Y(u,v) = g(u,v)

Y, spacelike <= ~ positive definite (Riemannian metric)

D : Levi-Civita connection associated with v : D~ =0
R : Riemann tensor of D :

Vv € T(Xy), (D;Dj — D;D;)v"* = R¥);; 0

R : Ricci tensor of D : R;; 1= RF
R : scalar curvature (or Gaussian curvature) of (X,7) : R :=~"R;;

ikj
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The 3+1 foliation of spacetime

Orthogonal projector

Since ~ is not degenerate we have the orthogonal decomposition:
T(M) = T,(51) & Vect(n)
The associated orthogonal projector onto ¥, is

Fo T — T
v — v+ (n-v)n

In particular, ¥(n) = 0 and Yv € 7,(¥X;), y(v) =v
Components: 1“5 = 0“5 + nng
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The 3+1 foliation of spacetime

Orthogonal projector

Since ~ is not degenerate we have the orthogonal decomposition:
T(M) = T,(51) & Vect(n)
The associated orthogonal projector onto ¥, is

Fo T — T
v — v+ (n-v)n

In particular, ¥(n) = 0 and Yv € 7,(¥X;), y(v) =v
Components: 1“5 = 0“5 + nng

“Extended” induced metric :

V(u,v) € Ty(A) x T,(A), ~(u,v):=~v(F(u),5(v))

Yy=g+n®n| (Yas = gas + Nang)

(hence the notation « for the orthogonal projector)
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The 3+1 foliation of spacetime

Extrinsic curvature (second fundamental form)

The extrinsic curvature (or second fundamental form) of ¥, is the bilinear
form defined by

K: T(%) xTp(%) — R
(u,v) — —u-V,n

It measures the “bending” of X, in (.#,g) by evaluating the change of direction
of the normal vector n as one moves on ¥ ;
Weingarten property: K is symmetric: K(u,v) = K(v,u)

Trace: K :=tr, K = " K,; = (3 times) the mean curvature of ¥,
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The 3+1 foliation of spacetime

Extrinsic curvature (second fundamental form)

The extrinsic curvature (or second fundamental form) of ¥, is the bilinear
form defined by

K: T(%) xTp(%) — R
(u,v) — —u-V,n

It measures the “bending” of X, in (.#,g) by evaluating the change of direction
of the normal vector n as one moves on ¥ ;
Weingarten property: K is symmetric: K(u,v) = K(v,u)
Trace: K :=tr, K = " K,; = (3 times) the mean curvature of ¥,
“Extended” K: V(u,v) € T(A) x T,(A#), K(u,v):=K(¥(u),5(v))
= |Vn=-K-DhnNan| (Vgn,=—Kes— DalnNnp)
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The 3+1 foliation of spacetime

Extrinsic curvature (second fundamental form)

The extrinsic curvature (or second fundamental form) of ¥, is the bilinear
form defined by

K: T(%) xTp(%) — R
(u,v) — —u-V,n

It measures the “bending” of X, in (.#,g) by evaluating the change of direction
of the normal vector n as one moves on ¥ ;
Weingarten property: K is symmetric: K(u,v) = K(v,u)
Trace: K :=tr, K = " K,; = (3 times) the mean curvature of ¥,
“Extended” K: V(u,v) € T,(A) x T(A), K(u,v):=K(H(u),¥(v))
= |Vn=-K-DhnNan| (Vgn,=—Kes— DalnNnp)

Y being part of a foliation, an alternative expression of K is available:

1
K = —Eﬁn’y
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The 3+1 foliation of spacetime

Intrinsic and extrinsic curvatures

Examples in the Euclidean space

@ intrinsic curvature: Riemann tensor R

@ extrinsic curvature: second fundamental form K

plane

1 i y
/ p)
R=0
K=0
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The 3+1 foliation of spacetime

Intrinsic and extrinsic curvatures

Examples in the Euclidean space

@ intrinsic curvature: Riemann tensor R

@ extrinsic curvature: second fundamental form K

| cylinder
plane
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The 3+1 foliation of spacetime

Intrinsic and extrinsic curvatures

Examples in the Euclidean space

@ intrinsic curvature: Riemann tensor R

@ extrinsic curvature: second fundamental form K

| cylinder
plane
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The 3+1 foliation of spacetime

Link between the V and D connections

For any tensor field T" tangent to ¥;:

v

... Qp o LA v . AV o 1.
D,T BBy =V Y Y e Y 8,0 p Vel v

1..-Vq

For two vector fields w and v tangent to ¥, | Dyv = Vv + K(um)n‘
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The 3+1 foliation of spacetime

3-+1 decomposition of the Riemann tensor

o Gauss equation: 'y“afy”ﬁy“’pfy"é"'dew =R 505 + Ko Ksp — K" Kas

contracted version :
'y“a'y”B“RW + ’ya,,,n”'y”ﬂn” A’R“Vﬂﬂ =Rop+ KK.3 — K,,,LK“’B

trace: ‘R + 2R, n"n" = R+ K> - K;;K"7  (Theorema Egregium)
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The 3+1 foliation of spacetime

3-+1 decomposition of the Riemann tensor

o Gauss equation: 7“117”57/7/,7”6472‘) =R 505 + Ko Ksp — K" Kas

opv

contracted version :
'y“a'y”B“RW + ’ya,,,n”'y”ﬂn” A’R“Vﬂﬂ =Rop+ KK.3 — K,,,LK“’B

trace: ‘R + 2R, n"n" = R+ K> - K;;K"7  (Theorema Egregium)
o Codazzi equation: 77, n” v*,7"53*R?,,,, = DgK", — Do K",

contracted version : v n” R, = D, K — D, K",
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The 3+1 foliation of spacetime
3-+1 decomposition of the Riemann tensor

o Gauss equation: 7“117”577/,7”6472‘) =R 505 + Ko Ksp — K" Kas

ouv
contracted version :
'y“(ﬂ”BL‘RW + ’ya,,,n”'y”ﬂn" A’R“Um =Rop+ KK.3 — K,,,LK“’B

trace: ‘R + 2R, n"n" = R+ K> - K;;K"7  (Theorema Egregium)
o Codazzi equation: 77, n” v*,7"53*R?,,,, = DgK", — Do K",
contracted version : v n” R, = D, K — D, K",

1 1
@ Ricci equation: ya, nfy" 51" 4’R“/,W = Nﬁm Kaop+ ND(yDﬂNJr KouK"y

combined with the contracted Gauss equation :
. v 1 1 )
V67" 5 Ry = =5 L Kap = 5 DaDoN + Rag + KKop — 2Ka, K"
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3+1 decomposition of Einstein equation

Outline

© 341 decomposition of Einstein equation
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3+1 decomposition of Einstein equation

Einstein equation

The spacetime (.#, g) obeys Einstein equation

1
%—E%g:%T

where T is the matter stress-energy tensor

Eric Gourgoulhon (LUTH)
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3+1 decomposition of Einstein equation

3+1 decomposition of the stress-energy tensor

& : Eulerian observer = observer of 4-velocity n
e F:=T(n,n) : matter energy density as measured by £
e p:=—T(n,¥(.)) : matter momentum density as measured by £
().9

e S:=T(5(.),¥(.)) : matter stress tensor as measured by £

\T:s+@®p+p®a+E@®u
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3+1 decomposition of Einstein equation

Spatial coordinates and shift vector

(2') = (2, 2%, 2*) coordinates
on X

(x") vary smoothly between
neighbouring hypersurfaces =
(%) = (t, 2", 2%, 2%) well
behaved coordinate system on

t+ot %
Associated natural basis :
o =2
T ot
8-'*i i€41,2,3}
1 T ax,’7 ) )
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3+1 decomposition of Einstein equation

Spatial coordinates and shift vector

(%) = (2!, 22, 2%) coordinates

on X

(2") vary smoothly between
neighbouring hypersurfaces =
(%) = (t, 2", 2%, 2%) well
behaved coordinate system on

t+ot %
Associated natural basis :
o =2
L= 85
X = const. 9, = Eyeh i€41,2,3}
xl,

(dt, ;) = 1 = 8, Lie-drags the hypersurfaces ¥;, as m := Nn does. The
difference between 9; and m is called the shift vector and is denoted §3:

Notice: 3 is tangentto X;: n-3 =0
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3+1 decomposition of Einstein equation
Metric tensor in terms of lapse and shift

Components of 8 w.r.t. (z*): B8 =: 3", and B =: B dz’

Components of n w.r.t. (z%):

1 1 2 3
n® = (’_ﬁ’_ﬁ’—ﬁ) and Nag = (_N7Oa050)

Components of g w.r.t. (z%):

_ < goo  goj ) _ < —N2+ 385 ; >
Jap = . - = ] .
gio  Gij ﬂl Yij

or equivalently | g,,,, da# dz¥ = —N?dt? + ;;(dx’ + Bidt)(dz? + 37 dt) ‘
Components of the inverse metric:

. J
g8 = ( 902 907 > — *1\}2 % o
: - i ij - 3 i 3 g7
g9 -

Relation between the determinants : | /—g = N/v
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3+1 decomposition of Einstein equation
3+1 Einstein system

Thanks to the Gauss, Codazzi and Ricci equations , the Einstein equation
is equivalent to the system
0 . . .
° (81‘ — Eg) vij = —2N K kinematical relation K = f%ﬁn'y

° (gt Eﬁ) Kij = DiDjNJrN{RU + KKjj *QKikKkj

+41 [(S — E)vij — 25i5] } dynamical part of Einstein equation

o R+ K?>— K;;K" = 167E Hamiltonian constraint

° DjKji — D; K = 8mp; momentum constraint
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3+1 decomposition of Einstein equation
The full PDE system

Supplementary equations:

2

D;D;N = % — rkij%
DK, = a;;,,; + KN TR K

0K
Dk = oz’
Lgvij = 2[% + giﬂ — 2%, By
L Kij = ﬂk dKU + Ky (?)ﬂj + Kz‘k%ﬁj
Hiy = aarxkkj - darz;k T =Ty
R = ’Yinij

;o1 Oy Oy 9V
rko_ 1k i i ij
ox? * oxi Ol
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3+1 decomposition of Einstein equation

History of 3+1 formalism

G. Darmois (1927): 3+1 Einstein equations in terms of (v;;, [;;)
with & = 1 and 3 = 0 (Gaussian normal coordinates)

A. Lichnerowicz (1939) : o # 1 and 8 = 0 (normal coordinates)
Y. Choquet-Bruhat (1948) : a # 1 and 3 # 0 (general coordinates)

@ R. Arnowitt, S. Deser & C.W. Misner (1962) : Hamiltonian formulation of
GR based on a 3+1 decomposition in terms of (v;;, 7")

NB: spatial projection of Einstein tensor instead of Ricci tensor in previous
works

J. Wheeler (1964) : coined the terms /apse and shift

J.W. York (1979) : modern 3+1 decomposition based on spatial projection of
Ricci tensor
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The Cauchy problem

Outline

© The Cauchy problem
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The Cauchy problem

GR as a 3-dimensional dynamical system

3+1 Einstein system = Einstein equation = time evolution of tensor fields
(v, K) on a single 3-dimensional manifold ¥
(Wheeler's geometrodynamics (1964))

No time derivative of N nor 3: lapse and shift are not dynamical variables
(best seen on the ADM Hamiltonian formulation)
This reflects the coordinate freedom of GR

choice of foliation (X;):cr <= choice of lapse function N
choice of spatial coordinates (z') <= choice of shift vector 3
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The Cauchy problem
Constraints

The dynamical system has two constraints:
o R+ K?>— K;;K" = 167E Hamiltonian constraint
° DjKji — D; K = 8mp; momentum constraint

Similar to D- B =0 and D - E = p/eg in Maxwell equations for the
electromagnetic field
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The Cauchy problem
Cauchy problem

The first two equations of the 3+1 Einstein system can be put in the
form of a Cauchy problem:
% Mkt O 0P
= = F: | Y, , ' 1
o2 KD 9z "ot " Dzmozn (1)

Cauchy problem: given initial data at ¢ = 0: ;5 and Bg;j, find a solution for ¢ > 0

APCTP School, 30 July 2008 23 /34
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The Cauchy problem
Cauchy problem

The first two equations of the 3+1 Einstein system can be put in the
form of a Cauchy problem:
% Mkt O 0P
= = F: | Y, , ' 1
o2 KD 9z "ot " Dzmozn (1)

Cauchy problem: given initial data at ¢ = 0: ;5 and Bg;j, find a solution for ¢ > 0

But this Cauchy problem is subject to the constraints
o R+ K?> - K;;K" = 167E Hamiltonian constraint

o D;K’, — D;K = 8mp; momentum constraint

Preservation of the constraints

Thanks to the Bianchi identities, it can be shown that if the constraints are
satisfied at ¢ = 0, they are preserved by the evolution system (1)
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The Cauchy problem
Existence and uniqueness of solutions

Question:

Given a set (Xo,7, K, E,p), where ¥ is a three-dimensional manifold, v a
Riemannian metric on ¥y, K a symmetric bilinear form field on ¥y, E a scalar
field on £g and p a 1-form field on ¥y, which obeys the constraint equations,
does there exist a spacetime (.7, g, T) such that (g, T) fulfills the Einstein
equation and ¥y can be embedded as an hypersurface of .# with induced metric
~ and extrinsic curvature K 7

Answer:

@ the solution exists and is unique in a vicinity of Xy for analytic initial data
(Cauchy-Kovalevskaya theorem) (Darmois 1927, Lichnerowicz 1939)

@ the solution exists and is unique in a vicinity of X, for generic (i.e. smooth)
initial data (Choquet-Bruhat 1952)

@ there exists a unique maximal solution (Choquet-Bruhat & Geroch 1969)
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Conformal decomposition

Outline

@ Conformal decomposition
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Conformal decomposition

Conformal metric

Introduce on ¥, a metric 4 conformally related to the induced metric ~:

Yij = V9

VU : conformal factor
Inverse metric:
iy —4 xij
Y=V
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Conformal decomposition

Conformal metric

Introduce on ¥, a metric 4 conformally related to the induced metric ~:

Yij = V9

VU : conformal factor
Inverse metric:
i =4 ~ij
Y=V

Motivations:

@ the gravitational field degrees of freedom are carried by conformal
equivalence classes (York 1971)
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Conformal decomposition
Conformal metric

Introduce on ¥, a metric 4 conformally related to the induced metric ~:

Yij = V9

VU : conformal factor
Inverse metric:
i =4 ~ij
Y=V

Motivations:

@ the gravitational field degrees of freedom are carried by conformal
equivalence classes (York 1971)

@ the conformal decomposition is of great help for preparing initial data as
solution of the constraint equations

Eric Gourgoulhon (LUTH) 3+1 formalism in general relativity APCTP School, 30 July 2008 26 / 34



Conformal decomposition
Conformal connection

4 Riemannian metric on ¥;: it has a unique Levi-Civita connection associated to
it: D=0

. ~7. - d’}/[ 8’7/“ a’%
. Pk ki J J
Christoffel symbols: ', = Efy (012 + 50 " Oal

Relation between the two connections:

i, ,1 , ! i1 ip
”1 +ZC Jq cher Jre-ledg

DkTu..//,,,jlmj o DkTU

with C% =" —TF,
One finds

C*; =2(8"D;InV + 6" D;InW — D Inw 7;;)

)

Application: divergence relation : D;v’ = VoD, (\U%i)
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Conformal decomposition
Conformal decomposition of the Ricci tensor

From the Ricci identity:
Rij = Rij + DpC*; — DiC¥; + CF 1y — CFyCly
In the present case this formula reduces to
Rij = Ri;—2D;DjInW—2D D¥ InW A, +4D; InW D; InW—4Dy, InW D¥ In W 3,

Scalar curvature :

R=V*R -8V D, D'V
where R = vinij and R =59 R

j
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Conformal decomposition
Conformal decomposition of the extrinsic curvature

o First step: traceless decomposition:

B} 1
K =2 A 4 2Ky

with ~;; A =0
@ Second step: conformal decomposition of the traceless part:

with « to be determined
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Conformal decomposition

“Time evolution” scaling a = —4

Time evolution of the 3-metric (81‘ £ﬁ> W =2NK%

<EWNK§mﬂ

=

0
- V=
@ trace part <8t Eg) n

s,
o traceless part : <(9 - £g> 319 = 2NW*AY Dkﬁk ok
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Conformal decomposition

“Time evolution” scaling a = —4

Time evolution of the 3-metric

9 3
U= ONK
<0f o )

<D,-,/)”' — NK — g In «7)

=

0
- V=
@ trace part <8t Eg) n

0
@ traceless part : <8t £g> 3 = QNWAAY 4 D w33

This suggests to introduce
Al =yt AT (Nakamura 1994)

— momentum constraint becomes

e . 2~ .
DA +6A7D;Inv — ZD'K = 8wy’

APCTP School, 30 July 2008 30/ 34
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Conformal decomposition

“Momentum-constraint” scaling a« = —10

Momentum constraint: DjKij - D'K = 87rpi

. .. 1 .
Now DK = D;AY + 2D'K and

D, A DA 4+ C7 ) AM 4 O A
= DjA7 426" ;DiInV + 6", DjInW — D' InW5;;,) A% + 6Dy In W A™
= D;AY +10AYD;InW —2D" In W 7;, AT

0

Hence Dinj = \Ufloﬁj (\UIOA”)
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Conformal decomposition

“Momentum-constraint” scaling a« = —10

Momentum constraint: DjKij - D'K = 87rpi

. .. 1 .
Now DK = D;AY + 2D'K and

D, A DA 4+ C7 ) AM 4 O A
= DjA7 426" ;DiInV + 6", DjInW — D' InW5;;,) A% + 6Dy In W A™

= D;AY +10AYD;InW —2D" In W 7;, AT

N——
=0
Hence Dinj = \Ufloﬁj (\UloAij)
This suggests to introduce
A= @104 (Lichnerowicz 1944)

— momentum constraint becomes

~ AL 2 o .
D;AY — §\U6D1K = 80y
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Conformal decomposition
Hamiltonian constraint as the Lichnerowicz equation

Hamiltonian constraint: R + K? — K;; K" = 167EF

- o~ . o oa. K2
Now R=V"*R -8V °D,D'V and K;; K"/ = w124, A" | 5
so that
A i 1- 1. Aij ur—7 1 2 5
D,-D\II—gR\IJ+§A7;jAJ\IJ +(2rE - 5K Ve =0

This is Lichnerowicz equation (or Lichnerowicz-York equation).
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Conformal decomposition
Summary: conformal 3+1 Einstein system

Version & = —4 (Shibata & Nakamura 1995):
0 v 0
(8 - Eﬁ) 59 = 2N AV + %Dm’“ 57
(d - ﬁa) K =-V"*(D;,D'N +2D;InW D'N)
K2
4 [an(B 4 )+ A 894
(8 - zﬁ) AV = w4 [N (R — 2D DI Inw) — D'DIN] +
A i 1~ 1o = 1 5 5
DDV — ZRY 4+ ( ZA ;AT — K24 27E | W =0

8 12
DAY + 6A7D;Inv — gDUX = 8rVp!
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Conformal decomposition
Summary: conformal 3+1 Einstein system

Version o« = —10:

0 v 0, .
e £5> 6<DZ—/3—NK—8tIn7>

2 -
51 = 2N AY + Z DBk 5
ot EB) T30y

/\/\/\
@

.cg> K=V (D;,D'N +2D;InW D'N)
K2
+N [47r(E+S)+A”A”+3}
(0—@)[1?7'—\1:—4@(1%“ 2D'DIInW) — D'DIN] + -+
A i 1~ i 1 5 5
DDV — SR + A JATVTT 4 (2B — —K? | W° =0

- 2
DAY — §W6D K = 8rwifp’
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