
The initial data problem for 3+1 numerical relativity
Part 1

Eric Gourgoulhon

Laboratoire Univers et Théories (LUTH)
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The initial data problem

Initial data for the Cauchy problem

In lecture 1, we have seen

3+1 decomposition =⇒ Einstein equation = Cauchy problem with constraints

Constructing initial data: ∃ two problems:

The mathematical problem: given some hypersurface Σ0, find a
Riemannian metric γ, a symmetric bilinear form K and some matter
distribution (E,p) on Σ0 such that the Hamiltonian and momentum
constraints are satisfied:

R + K2 −KijK
ij = 16πE

DjK
j
i −DiK = 8πpi

NB: the matter distribution (E,p) may have some additional constraints
from its own.

The astrophysical problem: make sure that the obtained solution to the
constraint equations have something to do with the physical system that one
wish to study.
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The initial data problem

A first naive approach

Notice that the constraints involve a single hypersurface Σ0, not a foliation
(Σt)t∈R. In particular, neither the lapse function N nor the shift vector appear β
in these equations

Naive method of resolution:

choose freely the metric γ, thereby fixing the connection D and the scalar
curvature R

solve the constraints for K

Indeed, for fixed γ, E, and p, the constraints form a quasi-linear system of first
order for the components Kij

However, this approach is not satisfactory:
only 4 equations for 6 unknowns Kij and there is no natural prescription for
choosing arbitrarily two among the six components Kij
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The initial data problem

Various approaches to the initial data problem

Conformal methods: initiated by Lichnerowicz (1944) and extended by

Choquet-Bruhat (1956, 1971)
York and Ó Murchadha (1972, 1974, 1979)
York and Pfeiffer (1999, 2003)

→ by far the most widely spread techniques

Quasi-spherical ansatz introduced by Bartnik (1993)

Gluing technique : Corvino (2000), Isenberg, Mazzeo and Pollack (2002) :
gluing together known solutions of the constraints, thereby producing new
ones

In this lecture we focus on conformal methods
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Conformal transverse-traceless method

Starting point

Conformal decomposition introduced in Lecture 1:

γij = Ψ4γ̃ij and Aij = Ψ−10Âij

The Hamiltonian and momentum constraints become respectively

D̃iD̃
iΨ− 1

8
R̃Ψ +

1

8
ÂijÂ

ij Ψ−7 +

(
2πE − 1

12
K2

)
Ψ5 = 0

D̃jÂ
ij − 2

3
Ψ6D̃iK = 8πΨ10pi
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Conformal transverse-traceless method

Longitudinal/transverse decomposition of Âij

York (1973,1979) splitting of Âij :

Âij = (L̃X)ij + Âij
TT

with

(L̃X)ij = conformal Killing operator associated with the metric γ̃ and
acting on the vector field X:

(L̃X)ij := D̃iXj + D̃jXi − 2

3
D̃kXk γ̃ij

Âij
TT traceless and transverse (i.e. divergence-free) with respect to the metric

γ̃: γ̃ijÂ
ij
TT = 0 and D̃jÂ

ij
TT = 0

NB: both the longitudinal part and the TT part are traceless: γ̃ij(L̃X)ij = 0 and

γ̃ijÂ
ij
TT = 0
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Conformal transverse-traceless method

Longitudinal/transverse decomposition of Âij

Determining X and Âij
TT:

Considering the divergence of Âij , we see that X must be a solution of the vector
differential equation

∆̃L Xi = D̃jÂ
ij

where ∆̃L is the conformal vector Laplacian:

∆̃L Xi := D̃j(L̃X)ij = D̃jD̃
jXi +

1

3
D̃iD̃jX

j + R̃i
jX

j

The operator ∆̃L is elliptic and its kernel is reduced to conformal Killing
vectors, i.e. vectors C that satisfy (L̃C)ij = 0 (generators of conformal
isometries, if any)

if Σ0 is a closed manifold (i.e. compact without boundary): the solution X
exists; it may be not unique, but (L̃X)ij is unique;

if (Σ0,γ) is an asymptotically flat manifold: there exists a unique solution X
which vanishes at spatial infinity

Conclusion: the longitudinal/transverse decomposition exists and is unique
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Conformal transverse-traceless method

Conformal transverse-traceless form of the constraints

Defining Ẽ := Ψ8E and p̃i := Ψ10pi, the Hamiltonian constraint (Lichnerowicz
equation) and the momentum constraint become respectively

D̃iD̃
iΨ− R̃

8
Ψ +

1

8

[
(L̃X)ij + ÂTT

ij

] [
(L̃X)ij + Âij

TT

]
Ψ−7 + 2πẼΨ−3 − K2

12
Ψ5 = 0

(1)

∆̃L Xi − 2

3
Ψ6D̃iK = 8πp̃i (2)

where (L̃X)ij := γ̃ikγ̃jl(L̃X)kl and ÂTT
ij := γ̃ikγ̃jlÂ

kl
TT
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Conformal transverse-traceless method

Free data and constrained data

In view of the above system, we see clearly which part of the initial data on Σ0

can be freely chosen and which part is “constrained”:

free data:

conformal metric γ̃
symmetric traceless and transverse1 tensor ÂTT

ij

scalar field K
conformal matter variables: (Ẽ, p̃i)

constrained data (or “determined data”):

conformal factor Ψ, obeying the non-linear elliptic equation (1)
vector X, obeying the linear elliptic equation (2)

1traceless and transverse are meant with respect to γ̃
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Conformal transverse-traceless method

Strategy for construction initial data

York (1979) CTT method:

1 choose (γ̃ij , Â
TT
ij ,K, Ẽ, p̃i) on Σ0

2 solve the system (1)-(2) to get Ψ and Xi

3 construct

γij = Ψ4γ̃ij

Kij = Ψ−10
(
(L̃X)ij + Âij

TT

)
+

1

3
Ψ−4Kγ̃ij

E = Ψ−8Ẽ

pi = Ψ−10p̃i

Then one obtains a set (γ,K, E, p) which satisfies the constraint equations
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Conformal transverse-traceless method

Decoupling on hypersurfaces of constant mean curvature

Consider the momentum constraint equation: ∆̃L Xi − 2

3
Ψ6D̃iK = 8πp̃i

If Σ0 has a constant mean curvature (CMC):

K = const

then D̃iK = 0 and the momentum constraint equations reduces to

∆̃L Xi = 8πp̃i (3)

It does no longer involve Ψ

=⇒ decoupling of the constraint system (1)-(2)

NB: a very important case of CMC hypersurface: maximal hypersurface: K = 0
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Conformal transverse-traceless method

Strategy on CMC hypersurfaces

1st step: Solve the linear elliptic equation (3) (∆̃L Xi = 8πp̃i) to get the
vector X

if Σ0 is a closed manifold (i.e. compact without boundary): the solution X
exists; it may be not unique, but (L̃X)ij is unique;
if (Σ0, γ) is an asymptotically flat manifold: there exists a unique solution X
which vanishes at spatial infinity

2nd step: Inject the solution X into Lichnerowicz equation (1)

D̃iD̃
iΨ− R̃

8
Ψ+

1

8Ψ7

[
(L̃X)ij + ÂTT

ij

] [
(L̃X)ij + Âij

TT

]
+

2πẼ

Ψ3
− K2

12
Ψ5 = 0

and solve the latter for Ψ (the difficult part !)

Existence and uniqueness of solutions to Lichnerowicz equation:

asymptotically flat case: (1) is solvable iff the metric γ̃ is conformal to a
metric with vanishing scalar curvature (Cantor 1977)

closed manifold: complete analysis carried out by Isenberg (1995) (vacuum
case)

More details: see review by Bartnik and Isenberg (2004)
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ij

] [
(L̃X)ij + Âij
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Conformal transverse-traceless method

Conformally flat initial data on maximal slices

Simplest choice for free data (γ̃ij , Â
TT
ij ,K, Ẽ, p̃i):

γ̃ij = fij (flat metric)

ÂTT
ij = 0

K = 0 (Σ0 = maximal hypersurface)

Ẽ = 0 and p̃i = 0 (vacuum)

Then the constraint equations (1)-((2) reduce to

∆Ψ +
1

8
(LX)ij(LX)ij Ψ−7 = 0 (4)

∆Xi +
1

3
DiDjX

j = 0 (5)

where ∆ := DiDi (flat Laplacian) and (LX)ij := DiXj +DjXi − 2

3
DkXk f ij

(Di flat connection: in Cartesian coordinates Di = ∂i)

Asymptotic flatness =⇒ boundary conditions

{
Ψ|r→∞ = 1
X|r→∞ = 0
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ÂTT
ij = 0

K = 0 (Σ0 = maximal hypersurface)
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Conformal transverse-traceless method

A (too) simple solution

Choose Σ0 ∼ R3

Then the only regular solution to ∆Xi +
1

3
DiDjX

j = 0 with the boundary

condition X|r→∞ = 0 is
X = 0

Plugging this solution into the Hamiltonian constraint (4) yields Laplace equation
for Ψ:

∆Ψ = 0

With the boundary condition Ψ|r→∞ = 1 the unique regular solution is

Ψ = 1

Hence the initial (γ,K) is

{
γij = fij

Kij = 0 (momentarily static)

This is a standard slice t = const of Minkowski spacetime
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Conformal transverse-traceless method

A less trivial solution

Keep the same simple free data as above, but choose for Σ0 a less trivial
topology: Σ0 ∼ R3\B (B=ball):

=⇒ boundary conditions (BC) for X and Ψ must be supplied at the sphere S
delimiting B

Let us choose X|S = 0. Altogether with the outer BC X|r→∞ = 0 this yields to
the following solution of momentum constraint (5)

X = 0

Hamiltonian constraint (4) =⇒ Laplace equation ∆Ψ = 0
The choice Ψ|S = 1 would result in the same trivial solution Ψ = 1 as before...
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Conformal transverse-traceless method

A less trivial solution

In order to have something not trivial, i.e. to ensure that the metric γ will not be
flat, let us demand that γ admits a closed minimal surface:

s : unit normal to S for the metric γ
s̃ : unit normal to S for the metric γ̃

S minimal surface

⇐⇒ S’s mean curvature = 0

⇐⇒ Dis
i
∣∣
S = 0

⇐⇒ Di(Ψ
6si)

∣∣
S = 0

⇐⇒ Di(Ψ
4s̃i)

∣∣
S = 0

⇐⇒(
∂Ψ

∂r
+

Ψ

2r

)∣∣∣∣
r=a

= 0 (6)

(r, θ, ϕ) : coord. sys. / fij = diag(1, r2, r2 sin2 θ) and S = sphere {r = a}

The solution to Laplace equation ∆Ψ = 0 with the BC (6) and Ψ|r→∞ = 1 is

Ψ = 1 +
a

r
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Conformal transverse-traceless method

A less trivial solution

ADM mass of that solution:

m = − 1

2π
lim

r→∞

∮
r=const

∂Ψ

∂r
r2 sin θ dθ dϕ

⇒ m = 2a

Hence Ψ = 1 +
m

2r

The obtained initial data is then

{
γij =

(
1 + m

2r

)4
diag(1, r2, r2 sin θ)

Kij = 0

This is a slice t = const of Schwarzschild spacetime

Remember: Schwarzschild metric in isotropic coordinates (t, r, θ, ϕ):

gµνdxµdxν = −
(

1− m
2r

1 + m
2r

)2

dt2 +
(
1 +

m

2r

)4 [
dr2 + r2(dθ2 + sin2 θdϕ2)

]
Link with Schwarzschild coordinates (t, R, θ, ϕ): R = r

“
1 +

m

2r

”2
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Conformal transverse-traceless method

Extended solution

S minimal surface =⇒ (Σ0,γ) can be extended smoothly to a larger Riemannian
manifold (Σ′0,γ

′) by gluing a copy of Σ0 at S :

S = Einstein-Rosen bridge
between two asymptotically flat
manifolds

range of r in Σ′0 : (0,+∞)

extended metric :

γ′ij dxi dxj =
(
1 +

m

2r

)4

×(
dr2 + r2dθ2 + r2 sin2 θdϕ2

)
region r → 0 = second
asymptotically flat region

map r 7→ r′ =
m2

4r
is an

isometry

This extended solution is still a slice t = const of Schwarzschild spacetime
topology of Σ′0 = R3\{O} (puncture)
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Conformal transverse-traceless method

The Bowen-York solution

Same free data as before:
γ̃ij = fij , ÂTT

ij = 0, K = 0, Ẽ = 0 and p̃i = 0
so that the constraint equations are still

∆Ψ +
1

8
(LX)ij(LX)ij Ψ−7 = 0 (7)

∆Xi +
1

3
DiDjX

j = 0 (8)

Choice of Σ0 : Σ0 = R3\{O} (puncture topology)

Difference with previous case: X 6= 0 (no longer momentarily static data)

Bowen-York (1980) solution of Eq. (8) in Cartesian coord. (xi) = (x, y, z):

Xi = − 1

4r

(
7P i + Pj

xjxi

r2

)
− 1

r3
εi

jkSjxk

Two constant vector parameters :

{
P i = ADM linear momentum
Si = angular momentum
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Conformal transverse-traceless method

The Bowen-York solution

Example: choose Si perpendicular to P i and choose Cartesian coordinates
(x, y, z) such that P i = (0, P, 0) and Si = (0, 0, S). Then

Xx = −P

4

xy

r3
+ S

y

r3

Xy = − P

4r

(
7 +

y2

r2

)
− S

x

r3

Xz = −P

4

xz

r3

Bowen-York extrinsic curvature: Âij = (LX)ij :

Âij =
3

2r3

[
P ixj + P jxi −

(
δij − xixj

r2

)
P kxk

]
+

3

r5

(
εi

klS
kxlxj + εj

klS
kxlxi

)
ADM linear momentum : Pi :=

1

8π
lim
St→∞

∮
St

(Kjk −Kγjk) (∂i)
j sk√q d2y

Angular momentum (QI) : Si :=
1

8π
lim
St→∞

∮
St

(Kjk −Kγjk) (φi)
j sk√q d2y.
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Conformal transverse-traceless method

The Bowen-York solution

There remains to solve (numerically !) the Hamiltonian constraint equation (7):

∆Ψ +
1

8
ÂijÂ

ij Ψ−7 = 0

and to reconstruct

{
γij = Ψ4fij

Kij = Ψ−2Âij

Remark 1: static Bowen-York solution (P i = 0, Si = 0) = maximal slice of
Schwarzschild spacetime considered above

Remark 2: Bowen-York solution with Si 6= 0 is not a slice of Kerr spacetime : it is
initial data for a rotating black hole but in a non stationary state (black hole
“surrounded” by gravitational radiation)
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ÂijÂ
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Conformal thin sandwich method

Outline

1 The initial data problem

2 Conformal transverse-traceless method

3 Conformal thin sandwich method
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Conformal thin sandwich method

Conformal thin sandwich decomposition of extrinsic
curvature

Origin: York (1999)

From Lecture 1:

(
∂

∂t
− Lβ

)
γ̃ij = 2NÃij +

2

3
D̃kβk γ̃ij

with Ãij = Ψ4Aij = Ψ−6Âij and −Lβ γ̃ij = (L̃β)ij +
2

3
D̃kβk

Hence

Âij =
Ψ6

2N

[
˙̃γij + (L̃β)ij

]
where ˙̃γij :=

∂

∂t
γ̃ij

Introduce the conformal lapse: Ñ := Ψ−6N
then

Âij =
1

2Ñ

[
˙̃γij + (L̃β)ij

]

Eric Gourgoulhon (LUTH) Initial data problem 1 / 2 APCTP School, 30 July 2008 26 / 33



Conformal thin sandwich method

Conformal thin sandwich equations

Hamiltonian and momentum constraints become

D̃iD̃
iΨ− R̃

8
Ψ +

1

8
ÂijÂ

ij Ψ−7 + 2πẼΨ−3 − K2

12
Ψ5 = 0

D̃j

(
1

Ñ
(L̃β)ij

)
+ D̃j

(
1

Ñ
˙̃γij

)
− 4

3
Ψ6D̃iK = 16πp̃i

free data : (γ̃ij , ˙̃γij ,K, Ñ , Ẽ, p̃i)

constrained data: Ψ and βi
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Conformal thin sandwich method

Extended conformal thin sandwich (XCTS)

Origin: Pfeiffer & York (2003)

Idea: instead of choosing the conformal lapse Ñ , compute it from the Einstein
equation (not a constraint !) involving the time derivative K̇ of K:
from Lecture 1 :(

∂

∂t
− Lβ

)
K = −Ψ−4

(
D̃iD̃

iN + 2D̃i lnΨ D̃iN
)

+N

[
4π(E + S) + ÃijÃ

ij +
K2

3

]
Combining with the Hamiltonian constraint, we get

D̃iD̃
i(ÑΨ7)− (ÑΨ7)

[
1

8
R̃ +

5

12
K2Ψ4 +

7

8
ÂijÂ

ijΨ−8 + 2π(Ẽ + 2S̃)Ψ−4

]
+

(
K̇ − βiD̃iK

)
Ψ5 = 0

where Ẽ := Ψ8E and S̃ := Ψ8S
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Conformal thin sandwich method

Extended conformal thin sandwich system

PDE system of 5 equations:

D̃iD̃
iΨ− R̃

8
Ψ +

1

8
ÂijÂ

ij Ψ−7 + 2πẼΨ−3 − K2

12
Ψ5 = 0

D̃j

(
1

Ñ
(L̃β)ij

)
+ D̃j

(
1

Ñ
˙̃γij

)
− 4

3
Ψ6D̃iK − 16πp̃i = 0

D̃iD̃
i(ÑΨ7)− (ÑΨ7)

[
1

8
R̃ +

5

12
K2Ψ4 +

7

8
ÂijÂ

ijΨ−8 + 2π(Ẽ + 2S̃)Ψ−4

]
+

(
K̇ − βiD̃iK

)
Ψ5 = 0

free data : (γ̃ij , ˙̃γij ,K, K̇, Ẽ, S̃, p̃i)

constrained data: Ψ, Ñ and βi

Eric Gourgoulhon (LUTH) Initial data problem 1 / 2 APCTP School, 30 July 2008 29 / 33



Conformal thin sandwich method

Existence and uniqueness of solutions

Pfeiffer & York (2005): in some cases, solutions (Ψ, Ñ , βi) to the (non-linear !)
XCTS system are not unique, even on maximal surfaces

See also analysis by Baumgarte, Ó Murchadha & Pfeiffer (2007) and Walsh (2007)
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Conformal thin sandwich method

XCTS at work: a simple example

Choose the same manifold Σ0 = R3\B (R3 with
an excised ball) as considered previously
Choose the free data to be
γ̃ij = fij , ˙̃γij = 0, K = 0, K̇ = 0, Ẽ = 0,

S̃ = 0, p̃i = 0

=⇒ the XCTS equations reduce to

∆Ψ +
1

8
ÂijÂ

ij Ψ−7 = 0 (9)

Dj

(
1

Ñ
(Lβ)ij

)
= 0 (10)

∆(ÑΨ7)− 7

8
ÂijÂ

ijΨ−1Ñ = 0 (11)

with Âij =
1

2Ñ
(Lβ)ij

Choose the boundary condition β|S = 0 in addition to β|r→∞ = 0. Then,

independently of the value of Ñ , the unique solution to Eq. (10) is

β = 0
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∆(ÑΨ7)− 7

8
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2Ñ
(Lβ)ij

Choose the boundary condition β|S = 0 in addition to β|r→∞ = 0. Then,
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2Ñ
(Lβ)ij

Choose the boundary condition β|S = 0 in addition to β|r→∞ = 0. Then,
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Conformal thin sandwich method

XCTS at work: a simple example

Accordingly Âij = 0 and Eqs. (9) and (11) reduce to two Laplace equations:

∆Ψ = 0 (12)

∆(ÑΨ7) = 0 (13)

As previously use the minimal surface requirement for S to get the solution

Ψ = 1 +
m

2r
to Eq. (12).

Regarding Eq. (13), choose the BC Ñ
∣∣
S = 0 (singular slicing). Along with the

asymptotic flatness BCs Ñ
∣∣
r→∞ = 1 and Ψ|r→∞ = 1, this yields the solution

ÑΨ7 = 1− m

2r
, i.e., since N = Ψ6Ñ , N =

(
1− m

2r

) (
1 +

m

2r

)−1

We obtain Schwarzschild metric (in isotropic coordinates):

gµνdxµdxν = −
(

1− m
2r

1 + m
2r

)2

dt2 +
(
1 +

m

2r

)4 [
dr2 + r2(dθ2 + sin2 θdϕ2)

]
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Conformal thin sandwich method

Comparing CTT and (X)CTS methods

CTT : choose some transverse traceless part Âij
TT of the extrinsic curvature

Kij , i.e. some momentum 2 =⇒ CTT = Hamiltonian representation

CTS or XCTS : choose some time derivative ˙̃γij of the conformal metric γ̃ij ,
i.e. some velocity =⇒ (X)CTS = Lagrangian representation

Advantage of CTT : mathematical theory well developed; existence and uniqueness
of solutions established (at least for constant mean curvature (K = const) slices)

Advantage of XCTS : better suited to the description of quasi-stationary
spacetimes (→ quasiequilibrium initial data) :

∂

∂t
Killing vector ⇒ ˙̃γij = 0 and K̇ = 0

2recall the relation πij =
√

γ(Kγij −Kij) between Kij and the ADM canonical momentum
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