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The initial data problem

Initial data for the Cauchy problem

In lecture 1, we have seen

3+1 decomposition =—> Einstein equation = Cauchy problem with constraints J
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Initial data for the Cauchy problem

In lecture 1, we have seen

3+1 decomposition =—> Einstein equation = Cauchy problem with constraints J

Constructing initial data: 3 two problems:

@ The mathematical problem: given some hypersurface ¥, find a
Riemannian metric 4, a symmetric bilinear form K and some matter
distribution (E,p) on X such that the Hamiltonian and momentum
constraints are satisfied:

R+ K? - K;jKV = 167E
DjKji — D; K = 8mp;

NB: the matter distribution (E, p) may have some additional constraints
from its own.
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Initial data for the Cauchy problem

In lecture 1, we have seen

3+1 decomposition =—> Einstein equation = Cauchy problem with constraints J

Constructing initial data: 3 two problems:

@ The mathematical problem: given some hypersurface ¥, find a
Riemannian metric 4, a symmetric bilinear form K and some matter
distribution (E,p) on X such that the Hamiltonian and momentum
constraints are satisfied:

R+ K? - K;jKV = 167E
DjKji — D; K = 8mp;

NB: the matter distribution (E, p) may have some additional constraints
from its own.

@ The astrophysical problem: make sure that the obtained solution to the
constraint equations have something to do with the physical system that one
wish to study.
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The initial data problem
A first naive approach

Notice that the constraints involve a single hypersurface ¥, not a foliation
(Xt),cg- In particular, neither the lapse function N nor the shift vector appear 3
in these equations
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The initial data problem
A first naive approach

Notice that the constraints involve a single hypersurface ¥, not a foliation
(Xt),cg- In particular, neither the lapse function N nor the shift vector appear 3
in these equations

Naive method of resolution:

@ choose freely the metric ~, thereby fixing the connection D and the scalar
curvature R

@ solve the constraints for K

Indeed, for fixed +, E, and p, the constraints form a quasi-linear system of first
order for the components K;;
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The initial data problem
A first naive approach

Notice that the constraints involve a single hypersurface ¥, not a foliation
(Xt),cg- In particular, neither the lapse function N nor the shift vector appear 3
in these equations

Naive method of resolution:
@ choose freely the metric ~, thereby fixing the connection D and the scalar
curvature R
@ solve the constraints for K

Indeed, for fixed +, E, and p, the constraints form a quasi-linear system of first
order for the components K;;

However, this approach is not satisfactory:
only 4 equations for 6 unknowns K;; and there is no natural prescription for
choosing arbitrarily two among the six components K;
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The initial data problem
Various approaches to the initial data problem

e Conformal methods: initiated by Lichnerowicz (1944) and extended by

o Choquet-Bruhat (1956, 1971)
e York and O Murchadha (1972, 1974, 1979)
o York and Pfeiffer (1999, 2003)

— by far the most widely spread techniques
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The initial data problem
Various approaches to the initial data problem

e Conformal methods: initiated by Lichnerowicz (1944) and extended by

o Choquet-Bruhat (1956, 1971)
e York and O Murchadha (1972, 1974, 1979)
o York and Pfeiffer (1999, 2003)

— by far the most widely spread techniques

@ Quasi-spherical ansatz introduced by Bartnik (1993)
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The initial data problem
Various approaches to the initial data problem

e Conformal methods: initiated by Lichnerowicz (1944) and extended by

o Choquet-Bruhat (1956, 1971)
e York and O Murchadha (1972, 1974, 1979)
o York and Pfeiffer (1999, 2003)

— by far the most widely spread techniques
@ Quasi-spherical ansatz introduced by Bartnik (1993)

@ Gluing technique : Corvino (2000), Isenberg, Mazzeo and Pollack (2002) :
gluing together known solutions of the constraints, thereby producing new
ones
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The initial data problem
Various approaches to the initial data problem

e Conformal methods: initiated by Lichnerowicz (1944) and extended by

o Choquet-Bruhat (1956, 1971)
e York and O Murchadha (1972, 1974, 1979)
o York and Pfeiffer (1999, 2003)

— by far the most widely spread techniques
@ Quasi-spherical ansatz introduced by Bartnik (1993)

@ Gluing technique : Corvino (2000), Isenberg, Mazzeo and Pollack (2002) :
gluing together known solutions of the constraints, thereby producing new
ones

In this lecture we focus on conformal methods
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Conformal transverse-traceless method

Outline

© Conformal transverse-traceless method

Eric Gourgoulhon (LUTH) Initial data problem APCTP School, 30 July 2008



Conformal transverse-traceless method
Starting point

Conformal decomposition introduced in Lecture 1:
’}/,J = \U4’~y” and Aij = wilo/iij

The Hamiltonian and momentum constraints become respectively

. 1 1. s 1
DDV — SRV 4 2 A AY v 4 (27TE - 12K2) Vo =0

~ A 2 o .
D;AY — gwﬁle = 8rWi0p
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Conformal transverse-traceless method

Longitudinal /transverse decomposition of A%

York (1973,1979) splitting of A% :
A = (LX) + A%,

with
° (EX)” = conformal Killing operator associated with the metric 4 and
acting on the vector field X:

R, S
(LX)" :=D'X7 + DIX" - ngX"' okl
° flfro traceless and transverse (i.e. divergence-free) with respect to the metric
S’Z ;?UA?T =0 and Djzfﬁro =0

NB: both the longitudinal part and the TT part are traceless: ’y,;j(EX)ij =0 and
Fij Aty =0
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Conformal transverse-traceless method

Longitudinal /transverse decomposition of A%

Determining X and /AlZTJT

Considering the divergence of A%, we see that X must be a solution of the vector

differential equation

AL X' = D, AV

where A is the conformal vector Laplacian:

A i N (T iJ .7 Y 1 e T j ) j
Ap X' = Dy(LX)Y = D;DIX" + 3 D'D; X + R jx0
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Conformal transverse-traceless method

Longitudinal /transverse decomposition of A%

Determining X and /AlZTJT
Considering the divergence of A%, we see that X must be a solution of the vector
differential equation

AL X' = D, AV

where A is the conformal vector Laplacian:

A i N (T iJ .7 Y 1 e T j ) j
Ap X' = Dy(LX)Y = D;DIX" + 3 D'D; X + R jx0

The operator A is elliptic and its kernel is reduced to conformal Killing
vectors, i.e. vectors C that satisfy (LC')"” = 0 (generators of conformal
isometries, if any)
e if Xg is a closed manifold (i.e. compact without boundary): the solution X
exists; it may be not unique, but (LX)¥ is unique;
e if (Xo,7) is an asymptotically flat manifold: there exists a unique solution X
which vanishes at spatial infinity

Conclusion: the longitudinal/transverse decomposition exists and is unique
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Conformal transverse-traceless method
Conformal transverse-traceless form of the constraints

Defining F:=W8E and ' := W)’ the Hamiltonian constraint (Lichnerowicz
equation) and the momentum constraint become respectively

.o R 17 - . Ty . K?2
DD - SV 4 5 (LX) + AZTJT] [(LX)” + AH U 2BV - e =0
(1)
K vi_ 2ybpi ~i
Ay x' = SUD'K = 8 (2)

where (IN/X)Z-]- = %k’yjl(IN/X)kl and /AIZTJT = %;ﬁ/ﬂfl@#
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Conformal transverse-traceless method
Free data and constrained data

In view of the above system, we see clearly which part of the initial data on ¥
can be freely chosen and which part is “constrained”:
o free data:
conformal metric 4
symmetric traceless and transverse! tensor A,T,T
scalar field K
conformal matter variables: (£, 7")

e constrained data (or “determined data"):

o conformal factor W, obeying the non-linear elliptic equation (1)
e vector X, obeying the linear elliptic equation (2)

Ltraceless and transverse are meant with respect to %
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Conformal transverse-traceless method
Strategy for construction initial data

York (1979) CTT method:
@ choose (7,5, A” ,K,E,ﬁi) on Yo
@ solve the system (1)-(2) to get W and X’

@ construct

Yij = \U4VU

y . 1 y
K9 = w0 ((EX)7 + A% ) + Jw K5
E = vif

pi — \UflOf)'i

Then one obtains a set (v, K, E, p) which satisfies the constraint equations
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Conformal transverse-traceless method
Decoupling on hypersurfaces of constant mean curvature

N N B
Consider the momentum constraint equation: Ay X' — g\IIGDlK = 8np’

If Xy has a constant mean curvature (CMC):
then DK = 0 and the momentum constraint equations reduces to

@

= decoupling of the constraint system (1)-(2)

It does no longer involve W

NB: a very important case of CMC hypersurface: maximal hypersurface: K =0
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Conformal transverse-traceless method
Strategy on CMC hypersurfaces

@ 1st step: Solve the linear elliptic equation (3) (A; X' = 87j') to get the
vector X
e if X is a closed manifold (i.e. compact without boundary): the solution X
exists; it may be not unique, but (LX) is unique;
o if (Xo,7) is an asymptotically flat manifold: there exists a unique solution X
which vanishes at spatial infinity
@ 2nd step: Inject the solution X into Lichnerowicz equation (1)
I 1 7,- . w1 2nE K2
DD - vy — [(EX); + Aﬂ [(LX)” + ALTJT} + 10

and solve the latter for W (the difficult part !)
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Conformal transverse-traceless method
Strategy on CMC hypersurfaces

@ 1st step: Solve the linear elliptic equation (3) (A; X' = 87j') to get the
vector X
e if X is a closed manifold (i.e. compact without boundary): the solution X
exists; it may be not unique, but (fX)ij is unique;
o if (Xo,7) is an asymptotically flat manifold: there exists a unique solution X
which vanishes at spatial infinity

@ 2nd step: Inject the solution X into Lichnerowicz equation (1)

R 1

. ) ol e o a1 2mE K2
DD — 2w [(IX); +Aﬂ [(LX)’J +ATJT} p TRy

Zys—o
\UE 12

and solve the latter for W (the difficult part !)

Existence and uniqueness of solutions to Lichnerowicz equation:

e asymptotically flat case: (1) is solvable iff the metric 4 is conformal to a
metric with vanishing scalar curvature (Cantor 1977)
o closed manifold: complete analysis carried out by Isenberg (1995) (vacuum
case)
More details: see review by Bartnik and Isenberg (2004)
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Conformal transverse-traceless method
Conformally flat initial data on maximal slices

Simplest choice for free data (A”/ij7ﬁL_T7 K, E"p%):
Fij = [i; (flat metric)

ATT

A =0

K =0 (X9 = maximal hypersurface)

e /=0 and j' = 0 (vacuum)
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Conformal transverse-traceless method
Conformally flat initial data on maximal slices

Simplest choice for free data (ﬁ”/mﬁL-T, K, E,p):
e 7i; = fi; (flat metric)
° /LTJT =0
e K =0 (X, = maximal hypersurface)
e /=0 and j' = 0 (vacuum)
Then the constraint equations (1)-((2) reduce to

AV + %(LX)U»(LX)” v =0 (4)

1. .
AX'+ DD X7 =0 (5)

where A :=D;D" (flat Laplacian) and (LX)" :=D'X’ + D/ X" — ngX]‘” 1Y

(D; flat connection: in Cartesian coordinates D; = 0;)

Asymptotic flatness => boundary conditions { oo
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Conformal transverse-traceless method

A (too) simple solution

Choose ¥y ~ R?
1. .
Then the only regular solution to AX"* + gDZDjXJ = 0 with the boundary

condition X|, . =0 s
X =0
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Conformal transverse-traceless method

A (too) simple solution

Choose ¥y ~ R?
1. .
Then the only regular solution to AX"* + gDZDjXJ = 0 with the boundary

condition X|, . =0 s
X =0

Plugging this solution into the Hamiltonian constraint (4) yields Laplace equation
for W:
AV =0

With the boundary condition V|, = 1 the unique regular solution is

V=1

e : Yij = fij
Hence the initial (7, K) s { K;; =0 (momentarily static)

This is a standard slice ¢t = const of Minkowski spacetime )
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Conformal transverse-traceless method
A less trivial solution

Keep the same simple free data as above, but choose for g a less trivial
topology: Yo ~ R*\B (B=ball):

S

=l

by

0

= boundary conditions (BC) for X and W must be supplied at the sphere S
delimiting B
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Conformal transverse-traceless method
A less trivial solution

Keep the same simple free data as above, but choose for g a less trivial
topology: Yo ~ R*\B (B=ball):

S

=l

by

0

= boundary conditions (BC) for X and W must be supplied at the sphere S
delimiting B

Let us choose X | = 0. Altogether with the outer BC X|
the following solution of momentum constraint (5)

= 0 this yields to

r—00

X =0
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Conformal transverse-traceless method
A less trivial solution

Keep the same simple free data as above, but choose for g a less trivial
topology: Yo ~ R*\B (B=ball):

S

=l

by

0

= boundary conditions (BC) for X and W must be supplied at the sphere S
delimiting B

Let us choose X | = 0. Altogether with the outer BC X|
the following solution of momentum constraint (5)

= 0 this yields to

r—00

X =0

Hamiltonian constraint (4) = Laplace equation ‘ AV =0
The choice V|5 = 1 would result in the same trivial solution ¥ = 1 as before...
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Conformal transverse-traceless method
A less trivial solution

In order to have something not trivial, i.e. to ensure that the metric v will not be
flat, let us demand that v admits a closed minimal surface:

S minimal surface

<= S's mean curvature = 0
s DZ-377|S =0
> — D;y(V°s")|4 =0
Ny 7 0 = Dy(V)| =0
S/
S =
S
ov v
s : unit normal to S for the metric v or + b . =0] (6)

§ : unit normal to S for the metric ¥

(r,0,9) : coord. sys. / fij = diag(1,7?,7*sin” @) and S = sphere {r = a}
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Conformal transverse-traceless method
A less trivial solution

In order to have something not trivial, i.e. to ensure that the metric v will not be
flat, let us demand that v admits a closed minimal surface:

S minimal surface

<= S's mean curvature = 0
— Dis'|s=0
> — D;y(V°s")|4 =0
Ny 7 0 = Dy(V)| =0
Nyyvi]
Wl =
S
ov v
s : unit normal to S for the metric v or + b . =0] (6)

§ : unit normal to S for the metric ¥
(r,0,9) : coord. sys. / fij = diag(1,7?,7*sin” @) and S = sphere {r = a}
The solution to Laplace equation AV = 0 with the BC (6) and V| =1is

r—00

v=142
.
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Conformal transverse-traceless method
A less trivial solution
ADM mass of that solution:
1 ' v
@ m=—— lim 7{ 0 r2sin 0 df dy
Z 27 100 J1_const 6T
0 = m=2a
e

‘i b Hence \I!_1+—

S 2r

e — m\* g 2 .2
The obtained initial data is then { I/éj - (é + 2r> diag(1, 7%, 7% sin 6)
ij =
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Conformal transverse-traceless method
A less trivial solution
ADM mass of that solution:
1 ' v
@ m=—— lim 7{ 0 r2sin 0 df dy
Z 27 r—oo r=const 6T
0 = m=2a
e

‘i b Hence \Il—l—l—f

S 2r
e m\* g 2 .2
The obtained initial data is then g (1 + 2r> diag(L, 7%, sin 0)
This is a slice t = const of Schwarzschild spacetime J

Remember: Schwarzschild metric in isotropic coordinates (¢, 7,0, ¢):

1—2\? N
gupdrtdr” = — < 3;;) dt* + (1 + ﬂ) [dr? + 12(d6? + sin® 0d?)]
1+ 2r

2
Link with Schwarzschild coordinates (t, R, 0, ¢): R = r (1 n %)
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Conformal transverse-traceless method

Extended solution

S minimal surface = (X, «y) can be extended smoothly to a larger Riemannian
manifold (X3,~’) by gluing a copy of ¥ at S :
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Conformal transverse-traceless method
Extended solution

S minimal surface = (X, «y) can be extended smoothly to a larger Riemannian
manifold (X3,~’) by gluing a copy of ¥ at S :

S = Einstein-Rosen bridge
between two asymptotically flat
manifolds

range of r in X : (0, +00)

So Z” extended metric : X

v, da’ da? = (1 + ﬁ) X
: ,
(d7'2 + 12d0% + 12 sin? 6’d<,92)

region r — 0 = second

asymptotically flat region

m2

maerr’:T is an
.

isometry

This extended solution is still a slice ¢ = const of Schwarzschild spacetime
topology of ¥ = R*\{O} (puncture)
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Conformal transverse-traceless method
The Bowen-York solution

Same free data as before: 4
Yij = fij, AT =0, K =0, E=0and §' =0
so that the constraint equations are still

—

AV + (LX) (LX)7 W=7 =0 (7)

o

. 1 . .
AX'+3D'D;X7 =0 (8)

Choice of ¥ : ¥y = R*\{O} (puncture topology)
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Conformal transverse-traceless method
The Bowen-York solution

Same free data as before: 4
Yij = fij, AT =0, K =0, E=0and §' =0
so that the constraint equations are still

—

AV +

(LX) (LX) W= "=0 (7)

o

. 1 . .
AX'+3D'D;X7 =0 (8)

Choice of ¥ : ¥y = R*\{O} (puncture topology)
Difference with previous case: X # 0 (no longer momentarily static data)
Bowen-York (1980) solution of Eq. (8) in Cartesian coord. (z') = (z,v, 2):
1

ik
T36ijx

2t

_ 1 .
Xi=—= (7Pl p "1 ) -
4r< 4 r2 )

P? = ADM linear momentum

Two constant vector parameters : i
S* = angular momentum
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Conformal transverse-traceless method
The Bowen-York solution

Example: choose S° perpendicular to Pf and choose Cartesian coordinates
(z,y, z) such that P* = (0, P,0) and S* = (0,0, S). Then

Py Y
x* = = gY
4 3 +Sr3
P Y2 T
y . _ I Y\ _ ot
X 4y <7 - 7'2> S7'3
x: - P
4 3
Bowen-York extrinsic curvature: AV = (LX)":
Al — 233 [pzxj 4 Pigi (y‘j xrx ) pkxk] + 3 (ei lek:clxj +é lek:L'lwi)
1 _—
ADM linear momentum : P; := 8 Stliinoo%g (Kjr — Kv,r) (8;) sk\/§d2y
1 13
Angular momentum (Ql) : S; := Qstlinooﬁ (K — Kvjr) (¢:) s" /g dy.
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Conformal transverse-traceless method

The Bowen-York solution

There remains to solve (numerically !) the Hamiltonian constraint equation (7):
L
AV + éAijA"J v'=0

vij = V[

and to reconstruct 5
{ Kij =V Ay
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Conformal transverse-traceless method
The Bowen-York solution

There remains to solve (numerically !) the Hamiltonian constraint equation (7):
L
AV + éAijA"J v'=0

vii = Wi
and to reconstruct { ' £
{ Kij =V72A;
Remark 1: static Bowen-York solution (P’ =0, S* = 0) = maximal slice of
Schwarzschild spacetime considered above

Remark 2: Bowen-York solution with S # 0 is not a slice of Kerr spacetime : it is
initial data for a rotating black hole but in a non stationary state (black hole
“surrounded” by gravitational radiation)
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Conformal thin sandwich method

Outline

© Conformal thin sandwich method
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Conformal thin sandwich method

Conformal thin sandwich decomposition of extrinsic

curvature

Origin: York (1999)

From Lecture 1: (8 - Eg) 54 = 2NAY + 2 Dkﬁk y4

0
with A = WA = w=%4Y and — L5757 = (LB)7 + ngﬁ"”
Hence
PUTEE UL i 7 3yis
Al — 7 3
o 17+ (L6)7]
here 7 = —#
where ¥ pril
Introduce the conformal lapse:
then

A =[5+ (L5)"]

Eric Gourgoulhon (LUTH) Initial data problem 1 / 2 APCTP School, 30 July 2008



Conformal thin sandwich method
Conformal thin sandwich equations

Hamiltonian and momentum constraints become

L. R K?
D;D'w — g\u+ A”A”\IJ +2rEw3 EWS:O
1By (259 - 2w ik = 16n5
. — _ = = T
J N’V 3 p

o free data : (%,;,7", K, N, E,j")
o constrained data: V¥ and 3’
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Conformal thin sandwich method

Extended conformal thin sandwich (XCTS)

Origin: Pfeiffer & York (2003)

Idea: instead of choosing the conformal lapse V, compute it from the Einstein
equation (not a constraint !) involving the time derivative K of K:
from Lecture 1 :

(gt £B> K = —W*(D,DiN +2D;Inv DIN)

e K2
+N |:47T(E +8)+A,;AY + 3]
Combining with the Hamiltonian constraint, we get
1. 5
ERRNT
+ (K - ﬁiDiK> V> =0

- - 7 ~ .. - -
D; DY NV — (NW7) [ K2U* ¢ éA,,;jA”\lrS +27(E + 25)w4]

where F = W8E and § := w89
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Conformal thin sandwich method
Extended conformal thin sandwich system

PDE system of 5 equations:

KZ

D, D'v — 721 GATWTT o WS - b =

*3 + 12 0
1. 1\ A .
ﬁ(Lﬁ) )+D ( ﬁ-7>—3\U6D’K—167r151—0

1-~
§R+12K2\U4+ A JATWTE Lo (B 4 25)W™

+ (K- gDk ) we =0

o free data : (9;;,97, K. K, E.5.j")
@ constrained data: V, N and ﬁi

Eric Gourgoulhon (LUTH)
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Conformal thin sandwich method
Existence and uniqueness of solutions

Pfeiffer & York (2005): in some cases, solutions (W, N, 3°) to the (non-linear !)
XCTS system are not unique, even on maximal surfaces

See also analysis by Baumgarte, O Murchadha & Pfeiffer (2007) and Walsh (2007)
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Conformal thin sandwich method
XCTS at work: a simple example

Choose the same manifold ¥y = R*\B (R3 with

an excised ball) as considered previously 5 S
Choose the free data to be ‘ﬁé\
Fij = fij, 57 =0, K =0, K =0, B =0, )
§=0,7 =0 ’
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Choose the free data to be 3 ‘ﬁé\
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AV + gA,,;jA” V=0 (9)
1
D, (o) ~o (10)
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ANV — gA,-jA”w*lz\f =0 (11)

o 1 .
with A = —(Lg)"
)
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Choose the boundary condition 3|5 = 0 in addition to 3|, = 0. Then,
independently of the value of N, the unique solution to Eq. (10) is
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Conformal thin sandwich method
XCTS at work: a simple example

Accordingly A = 0 and Egs. (9) and (11) reduce to two Laplace equations:
AV =0 (12)
ANV =0 (13)
As previously use the minimal surface requirement for S to get the solution

m
W =1+ - |to Eq. (12).
+5 o Eq. (12)
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AV =0 (12)
ANV =0 (13)

As previously use the minimal surface requirement for S to get the solution

m
W =1+ - |to Eq. (12).
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Regarding Eq. (13), choose the BC N|s = 0 (singular slicing). Along with the
asymptotic flatness BCs NLHO@ =1and V|

=1, this yields the solution

T™—00

005

Ny =1-— ;—” i.e., since N = WL,
r
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Conformal thin sandwich method
XCTS at work: a simple example
Accordingly A = 0 and Egs. (9) and (11) reduce to two Laplace equations:

ANV =0

(12)
As previously use the minimal surface requirement for S to get the solution
m
¥V =1+ —|to Eq. (12
+ 5, | o Eq. (12)

(13)

Regarding Eq. (13), choose the BC N|8 = 0 (singular slicing). Along with the
asymptotic flatness BCs NLHO@ =1and V|

=1, this yields the solution
Nv'=1- ;, i.e., since N = WON,
r

~1
v=(-5)(+5)
2r
We obtain Schwarzschild metric (in isotropic coordinates):

2r
1 m
Gl el = = (
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Conformal thin sandwich method

Comparing CTT and (X)CTS methods

@ CTT : choose some transverse traceless part fll}j of the extrinsic curvature
K%, i.e. some momentum? = CTT = Hamiltonian representation

@ CTS or XCTS : choose some time derivative ';yij of the conformal metric f"yij,
i.e. some velocity = (X)CTS = Lagrangian representation

2recall the relation 7/ = \/7(K~% — K'J) between K% and:the ADM canonical momentum
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Conformal thin sandwich method

Comparing CTT and (X)CTS methods

@ CTT : choose some transverse traceless part flyl of the extrinsic curvature
K%, i.e. some momentum? = CTT = Hamiltonian representation

@ CTS or XCTS : choose some time derivative 'Lyij of the conformal metric ﬁij,
i.e. some velocity = (X)CTS = Lagrangian representation

Advantage of CTT : mathematical theory well developed; existence and uniqueness
of solutions established (at least for constant mean curvature (K = const) slices)

Advantage of XCTS : better suited to the description of quasi-stationary
spacetimes (— quasiequilibrium initial data) :

% Killing vector = 5/ = 0 and K = 0

2recall the relation 7/ = \/7(K~% — K'J) between K% and:the ADM canonical momentum
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