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Introduction

Short history of general relativistic MHD
focusing on stationary and axisymmetric spacetimes

Lichnerowicz (1967): formulation of GRMHD

Bekenstein & Oron (1978), Carter (1979) : development of GRMHD for
stationary and axisymmetric spacetimes

Mobarry & Lovelace (1986) : Grad-Shafranov equation for Schwarzschild
spacetime

Nitta, Takahashi & Tomimatsu (1991), Beskin & Pariev (1993) :
Grad-Shafranov equation for Kerr spacetime

Ioka & Sasaki (2003) : Grad-Shafranov equation in the most general (i.e.
noncircular) stationary and axisymmetric spacetimes

NB: not speaking about numerical GRMHD here
(see e.g. Shibata & Sekiguchi (2005))
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Introduction

Why a geometrical approach ?

Previous studies made use of component expressions, the covariance of which
is not obvious
For instance, two of main quantities introduced by Bekenstein & Oron (1978)
and employed by subsequent authors are

ω := −F01

F31
and C :=

F31√
−gnu2

GRMHD calculations can be cumbersome by means of standard tensor
calculus

On the other side

As well known, the electromagnetic field tensor F is fundamentally a 2-form
and Maxwell equations are most naturally expressible in terms of the exterior
derivative operator

The equations of perfect hydrodynamics can also be recast in terms of
exterior calculus, by introducing the fluid vorticity 2-form (Synge 1937,
Lichnerowicz 1941)

Cartan’s exterior calculus makes calculations easier !
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Introduction

Exterior calculus in one slide

A p-form (p = 0, 1, 2, . . .) is a multilinear form (i.e. a tensor 0-times
contravariant and p-times covariant: ωα1...αp

) that is fully antisymmetric

Index-free notation: given a vector ~v and a p-form ω, ~v · ω and ω · ~v are
the (p− 1)-forms defined by

~v · ω := ω(~v, ., . . . , .) [ (~v · ω)α1···αp−1 = vµωµα1···αp−1 ]
ω · ~v := ω(., . . . , ., ~v) [(ω · ~v)α1···αp−1 = ωα1···αp−1µv

µ ]

Exterior derivative : p-form ω 7−→ (p+ 1)-form dω such that

0-form : (dω)α = ∂αω

1-form : (dω)αβ = ∂αωβ − ∂βωα
2-form : (dω)αβγ = ∂αωβγ + ∂βωγα + ∂γωαβ

The exterior derivative is nilpotent: ddω = 0
A very powerful tool : Cartan’s identity expressing the Lie derivative of a

p-form along a vector field: L~v ω = ~v · dω + d(~v · ω)
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Relativistic MHD with exterior calculus

General framework and notations

Spacetime:

M : four-dimensional orientable real manifold

g : Lorentzian metric on M , sign g = (−,+,+,+)
ε : Levi-Civita tensor (volume element 4-form) associated with g:
for any orthonormal basis (~eα),

ε(~e0, ~e1, ~e2, ~e3) = ±1

ε gives rise to Hodge duality : p-form 7−→ (4− p)-form

Notations:

~v vector =⇒ v 1-form associated to ~v by the metric tensor:

v := g(~v, .) [v = v[] [uα = gαµu
µ]

ω 1-form =⇒ ~ω vector associated to ω by the metric tensor:

ω =: g(~ω, .) [~ω = ω]] [ωα = gαµωµ]
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Relativistic MHD with exterior calculus

Maxwell equations

Electromagnetic field in M : 2-form F which obeys to Maxwell equations:

dF = 0

d ?F = µ0 ?j

dF : exterior derivative of F : (dF )αβγ = ∂αFβγ + ∂βFγα + ∂γFαβ

?F : Hodge dual of F : ?Fαβ :=
1
2
εαβµνF

µν

?j : 3-form Hodge-dual of the 1-form j associated to the electric 4-current
~j : ?j := ε(~j, ., ., .)
µ0 : magnetic permeability of vacuum
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Relativistic MHD with exterior calculus

Electric and magnetic fields in the fluid frame

Fluid : congruence of worldlines in M =⇒ 4-velocity ~u

Electric field in the fluid frame: 1-form e = F · ~u

Magnetic field in the fluid frame: vector ~b such that b = ~u · ?F

e and ~b are orthogonal to ~u : e · ~u = 0 and b · ~u = 0

F = u ∧ e+ ε(~u,~b, ., .)

?F = −u ∧ b+ ε(~u, ~e, ., .)
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Relativistic MHD with exterior calculus

Perfect conductor

Fluid is a perfect conductor ⇐⇒ ~e = 0 ⇐⇒ F · ~u = 0
From now on, we assume that the fluid is a perfect conductor (ideal MHD)

The electromagnetic field is then entirely expressible in terms of vectors ~u and ~b:

F = ε(~u,~b, ., .)

?F = b ∧ u
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Relativistic MHD with exterior calculus

Alfvén’s theorem

Cartan’s identity applied to the 2-form F :

L~u F = ~u · dF + d(~u · F )

Now dF = 0 (Maxwell eq.) and ~u · F = 0 (perfect conductor)
Hence the electromagnetic field is preserved by the flow:

L~u F = 0

Application:
d

dτ

∮
C(τ)

A = 0

τ : fluid proper time

C(τ) = closed contour dragged along by the fluid

A : electromagnetic 4-potential : F = dA

Proof:
d

dτ

∮
C(τ)

A =
d

dτ

∫
S(τ)

dA︸︷︷︸
F

=
d

dτ

∫
S(τ)

F =
∫
S(τ)

L~u F︸ ︷︷ ︸
0

= 0

Non-relativistic limit:

∫
S
~b · d~S = const ← Alfvén’s theorem (mag. flux freezing)

Eric Gourgoulhon, Charalampos Markakis, Kōji Uryū & Yoshiharu Eriguchi ()Stationary & axisym. MHD Roscoff, 8 November 2010 12 / 47



Relativistic MHD with exterior calculus

Perfect fluid

From now on, we assume that the fluid is a perfect one: its energy-momentum
tensor is

T fluid = (ε+ p)u⊗ u+ pg

Simple fluid model: all thermodynamical quantities depend on

s: entropy density in the fluid frame,

n: baryon number density in the fluid frame

Equation of state : ε = ε(s, n) =⇒


T :=

∂ε

∂s
temperature

µ :=
∂ε

∂n
baryon chemical potential

First law of thermodynamics =⇒ p = −ε+ Ts+ µn

=⇒ enthalpy per baryon : h =
ε+ p

n
= µ+ TS , with S :=

s

n
(entropy per

baryon)
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Relativistic MHD with exterior calculus

Conservation of energy-momentum

Conservation law for the total energy-momentum:

∇· (T fluid + T em) = 0 (1)

From Maxwell equations, ∇· T em = −F · ~j
Using baryon number conservation, ∇· T fluid can be decomposed in two
parts:

along ~u: ~u ·∇· T fluid = −nT ~u · dS
orthogonal to ~u : ⊥u∇· T fluid = n[~u · d(hu)− TdS]

[Synge 1937] [Lichnerowicz 1941] [Taub 1959] [Carter 1979]

Ω := d(hu) vorticity 2-form

Since ~u · F · ~j = 0, Eq. (1) is equivalent to the system

~u · dS = 0 (2)

~u · d(hu)− TdS =
1
n
F · ~j (3)

Eq. (3) is the MHD-Euler equation in canonical form
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Stationary and axisymmetric electromagnetic fields in general relativity

Stationary and axisymmetric spacetimes

Assume that (M , g) is endowed with two symmetries:
1 stationarity : ∃ a group action of (R,+) on M such that

the orbits are timelike curves
g is invariant under the (R, +) action :

if ~ξ is a generator of the group action,

L~ξ g = 0 (4)

2 axisymmetry : ∃ a group action of SO(2) on M such that
the set of fixed points is a 2-dimensional submanifold ∆ ⊂M (called the
rotation axis)
g is invariant under the SO(2) action :
if ~χ is a generator of the group action,

L~χ g = 0 (5)

(4) and (5) are equivalent to Killing equations:

∇αξβ +∇βξα = 0 and ∇αχβ +∇βχα = 0
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Stationary and axisymmetric electromagnetic fields in general relativity

Stationary and axisymmetric spacetimes

No generality is lost by considering that the stationary and axisymmetric actions
commute [Carter 1970] :
(M , g) is invariant under the action of the Abelian group (R,+)× SO(2), and
not only under the actions of (R,+) and SO(2) separately. It is equivalent to say
that the Killing vectors commute:

[~ξ, ~χ] = 0

=⇒ ∃ coordinates (xα) = (t, x1, x2, ϕ) on M such that ~ξ =
∂

∂t
and ~χ =

∂

∂ϕ
Within them, gαβ = gαβ(x1, x2)

Adapted coordinates are not unique:


t′ = t+ F0(x1, x2)
x′

1 = F1(x1, x2)
x′

2 = F2(x1, x2)
ϕ′ = ϕ+ F3(x1, x2)
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Stationary and axisymmetric electromagnetic fields in general relativity

Stationary and axisymmetric electromagnetic field

Assume that the electromagnetic field is both stationary and axisymmetric:

L~ξ F = 0 and L~χ F = 0 (6)

Cartan’s identity and Maxwell eq. =⇒ L~ξ F = ~ξ · dF︸︷︷︸
0

+d(~ξ · F ) = d(~ξ · F )

Hence (6) is equivalent to

d(~ξ · F ) = 0 and d(~χ · F ) = 0

Poincaré lemma =⇒ ∃ locally two scalar fields Φ and Ψ such that

~ξ · F = −dΦ and ~χ · F = −dΨ

Link with the 4-potential A: one may use the gauge freedom on A to set

Φ = A · ~ξ = At and Ψ = A · ~χ = Aϕ
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Stationary and axisymmetric electromagnetic fields in general relativity

Symmetries of the scalar potentials

From the definitions of Φ and Ψ:

L~ξ Φ = ~ξ · dΦ = −F (~ξ, ~ξ) = 0

L~χΨ = ~χ · dΨ = −F (~χ, ~χ) = 0

L~χ Φ = ~χ · dΦ = −F (~ξ, ~χ)

L~ξ Ψ = ~ξ · dΨ = −F (~χ, ~ξ) = F (~ξ, ~χ)

We have d[F (~ξ, ~χ)] = d[~ξ · dΨ] = L~ξ dΨ− ~ξ · ddΨ︸︷︷︸
0

= L~ξ (F · ~χ) = 0

Hence F (~ξ, ~χ) = const

Assuming that F vanishes somewhere in M (for instance at spatial infinity), we
conclude that

F (~ξ, ~χ) = 0

Then L~ξ Φ = L~χΦ = 0 and L~ξ Ψ = L~χΨ = 0

i.e. the scalar potentials Φ and Ψ obey to the two spacetime symmetries
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Stationary and axisymmetric electromagnetic fields in general relativity

Most general stationary-axisymmetric electromagnetic field

F = dΦ ∧ ξ∗ + dΨ ∧ χ∗ +
I

σ
ε(~ξ, ~χ, ., .) (7)

?F = ε( ~∇Φ, ~ξ∗, ., .) + ε( ~∇Ψ, ~χ∗, ., .)− I

σ
ξ ∧ χ (8)

with

ξ∗ :=
1
σ

(
−X ξ +Wχ

)
, χ∗ :=

1
σ

(
W ξ + V χ

)
V := −ξ · ~ξ , W := ξ · ~χ , X := χ · ~χ , σ := V X +W 2

[Carter (1973) notations]

I := ?F (~ξ, ~χ) ← the only non-trivial scalar, apart from F (~ξ, ~χ), one can

form from F , ~ξ and ~χ

(ξ∗,χ∗) is the dual basis of (~ξ, ~χ) in the 2-plane Π := Vect(~ξ, ~χ) :

ξ∗ · ~ξ = 1, ξ∗ · ~χ = 0, χ∗ · ~ξ = 0, χ∗ · ~χ = 1
∀~v ∈ Π⊥, ξ∗ · ~v = 0 and χ∗ · ~v = 0
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Stationary and axisymmetric electromagnetic fields in general relativity

Most general stationary-axisymmetric electromagnetic field
The proof

Consider the 2-form H := F − dΦ ∧ ξ∗ − dΨ ∧ χ∗
It satisfies

H(~ξ, .) = F (~ξ, .)︸ ︷︷ ︸
−dΦ

−(~ξ · dΦ︸ ︷︷ ︸
0

)ξ∗ + (ξ∗ · ~ξ︸ ︷︷ ︸
1

)dΦ− (~ξ · dΨ︸ ︷︷ ︸
0

)χ∗ + (χ∗ · ~ξ︸ ︷︷ ︸
0

)dΨ = 0

Similarly H(~χ, .) = 0. Hence H|Π = 0

On Π⊥, H|Π⊥ is a 2-form. Another 2-form on Π⊥ is ε(~ξ, ~χ, ., .)
∣∣∣
Π⊥

Since dim Π⊥ = 2 and ε(~ξ, ~χ, ., .)
∣∣∣
Π⊥
6= 0, ∃ a scalar field I such that

H|Π⊥ =
I

σ
ε(~ξ, ~χ, ., .)

∣∣∣
Π⊥

. Because both H and ε(~ξ, ~χ, ., .) vanish on Π, we

can extend the equality to all space:

H =
I

σ
ε(~ξ, ~χ, ., .)

Thus F has the form (7). Taking the Hodge dual gives the form (8) for ?F , on

which we readily check that I = ?F (~ξ, ~χ), thereby completing the proof.
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Stationary and axisymmetric electromagnetic fields in general relativity

Example: Kerr-Newman electromagnetic field

Using Boyer-Lindquist coordinates (t, r, θ, ϕ), the electromagnetic field of the
Kerr-Newman solution (charged rotating black hole) is

F =
µ0Q

4π(r2 + a2 cos2 θ)2

{ [
(r2 − a2 cos2 θ) dr − a2r sin 2θ dθ

]
∧ dt

+
[
a(a2 cos2 θ − r2) sin2 θ dr + ar(r2 + a2) sin 2θ dθ

]
∧ dϕ

}
Q: total electric charge, a := J/M : reduced angular momentum

For Kerr-Newman, ξ∗ = dt and χ∗ = dϕ; comparison with (7) leads to

Φ = −µ0Q

4π
r

r2 + a2 cos2 θ
, Ψ =

µ0Q

4π
ar sin2 θ

r2 + a2 cos2 θ
, I = 0

Non-rotating limit (a = 0): Reissner-Nordström solution: Φ = −µ0

4π
Q

r
, Ψ = 0
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Stationary and axisymmetric electromagnetic fields in general relativity

Maxwell equations

First Maxwell equation: dF = 0

It is automatically satisfied by the form (7) of F

Second Maxwell equation: d ?F = µ0 ?j

It gives the electric 4-current:

µ0
~j = a ~ξ + b ~χ− 1

σ
~ε(~ξ, ~χ, ~∇I, .) (9)

with

a := ∇µ
(
X

σ
∇µΦ− W

σ
∇µΨ

)
+

I

σ2
[−XCξ +WCχ]

b := −∇µ
(
W

σ
∇µΦ +

V

σ
∇µΨ

)
+

I

σ2
[WCξ + V Cχ]

Cξ := ?(ξ ∧ χ ∧ dξ) = εµνρσξµχν∇ρξσ (1st twist scalar)

Cχ := ?(ξ ∧ χ ∧ dχ) = εµνρσξµχν∇ρχσ (2nd twist scalar)

Remark: ~j has no meridional component (i.e. ~j ∈ Π) ⇐⇒ dI = 0
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Stationary and axisymmetric electromagnetic fields in general relativity

Simplification for circular spacetimes

Spacetime (M , g) is circular ⇐⇒ the planes Π⊥ are integrable in 2-surfaces
⇐⇒ Cξ = Cχ = 0

Generalized Papapetrou theorem [Papapetrou 1966] [Kundt & Trümper 1966] [Carter 1969] :
a stationary and axisymmetric spacetime ruled by the Einstein equation is circular
iff the total energy-momentum tensor T obeys to

ξµT [α
µ ξβχγ] = 0

χµT [α
µ ξβχγ] = 0

Examples:

circular spacetimes: Kerr-Newman, rotating star, magnetized rotating star
with either purely poloidal magnetic field or purely toroidal magnetic field

non-circular spacetimes: rotating star with meridional flow, magnetized
rotating star with mixed magnetic field

In what follows, we do not assume that (M , g) is circular
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Stationary and axisymmetric MHD

Perfect conductor hypothesis (1/2)

F · ~u = 0
with the fluid 4-velocity decomposed as

~u = λ(~ξ + Ω~χ) + ~w, ~w ∈ Π⊥ (10)

Ω is the rotational angular velocity and ~w is the meridional velocity

u · ~u = −1 ⇐⇒ λ =

√
1 +w · ~w

V − 2ΩW − Ω2X

We have
L~u Φ = 0 and L~uΨ = 0 , (11)

i.e. the scalar potentials Φ and Ψ are constant along the fluid lines.

Proof: L~uΦ = ~u · dΦ = −F (~ξ, ~u) = 0 by the perfect conductor property.

Corollary: since we had already L~ξ Φ = L~χΦ = 0 and L~ξ Ψ = L~χΨ = 0, it

follows from (11) that

~w · dΦ = 0 and ~w · dΨ = 0 (12)
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Stationary and axisymmetric MHD

Perfect conductor hypothesis (2/2)

Expressing the condition F · ~u = 0 with the general form (7) of a
stationary-axisymmetric electromagnetic field yields

(ξ∗ · ~u︸ ︷︷ ︸
λ

)dΦ− (dΦ · ~u︸ ︷︷ ︸
0

)ξ∗ + (χ∗ · ~u︸ ︷︷ ︸
λΩ

)dΨ− (dΨ · ~u︸ ︷︷ ︸
0

)χ∗ +
I

σ
ε(~ξ, ~χ, ., ~u)︸ ︷︷ ︸
−ε(~ξ,~χ, ~w,.)

= 0

Hence

dΦ = −Ω dΨ +
I

σλ
ε(~ξ, ~χ, ~w, .) (13)
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Stationary and axisymmetric MHD

Conservation of baryon number and stream function

Baryon number conservation : ∇ · (n~u) = 0 ⇐⇒ d(n ?w) = 0

→Poincaré Lemma: ∃ a 2-form H such that n ?w = dH

Considering the scalar field f := H(~ξ, ~χ), we get

df = n ε(~ξ, ~χ, ~w, .) ⇐⇒ ~w = − 1
σn

~ε(~ξ, ~χ, ~∇f, .) (14)

f is called the (Stokes) stream function

It follows from (14) that

~ξ · df = 0 and ~χ · df = 0 =⇒ f obeys to the spacetime symmetries

~u · df = 0 =⇒ f is constant along any fluid line

The perfect conductivity relation (13) is writable as

dΦ = −Ω dΨ +
I

σnλ
df (15)
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Stationary and axisymmetric MHD

Integrating the MHD-Euler equation

With the writing (10) of ~u, (7) of F and (9) of ~j, the MHD-Euler equation

~u · d(hu)− TdS =
1
n
F · ~j

can be shown to be equivalent to the system

~w · d(hu · ~ξ)− 1
µ0σn

ε(~ξ, ~χ, ~∇I, ~∇Φ) = 0 (16)

~w · d(hu · ~χ)− 1
µ0σn

ε(~ξ, ~χ, ~∇I, ~∇Ψ) = 0 (17)

λd(hu · ~ξ) + λΩ d(hu · ~χ)− 1
n

[
q +

λh

σ
(Cξ + ΩCχ)

]
df − I

µ0σn
dI

+
ξ∗ · ~j
n

dΦ +
χ∗ · ~j
n

dΨ + T dS = 0. (18)

with q := −∇µ
(
h

σ n
∇µf

)
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Stationary and axisymmetric MHD

Introducing the master potential (1/2)

As a consequence of the perfect conductivity properties (12) and the baryon
number conservation relation (14), one has

ε(~ξ, ~χ, ~∇f, ~∇Φ) = 0 and ε(~ξ, ~χ, ~∇f, ~∇Ψ) = 0
Along with Eq. (15) above, i.e.

dΦ = −Ω dΨ +
I

σnλ
df

this implies that
The gradient 1-forms dΦ, dΨ and df are colinear to each other

Standard approach in GRMHD: privilege Ψ and write dΦ = −ω dΨ, df = adΨ
Drawback: This is degenerate if dΨ = 0

Here: we follow the approach of Tkalich (1959) and Soloviev (1967) for
Newtonian MHD, i.e. we introduce a fourth potential Υ such that

1 Υ obeys to both spacetime symmetries
2 dΥ 6= 0
3 ∃ three scalar fields α, β and γ such that

dΦ = αdΥ, dΨ = β dΥ, df = γ dΥ
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Stationary and axisymmetric MHD

Introducing the master potential (2/2)

dΦ = αdΥ, dΨ = β dΥ, df = γ dΥ

All potentials can be considered as functions of Υ:

Φ = Φ(Υ), Ψ = Ψ(Υ), f = f(Υ),
α = Φ′(Υ), β = Ψ′(Υ), γ = f ′(Υ)

Proof: ddΦ = 0 = dα ∧ dΥ =⇒ α = α(Υ) =⇒ Φ = Φ(Υ) with α = Φ′

Υ is conserved along the fluid lines (since f is)

the perfect conductor property (13) leads to the relation

α+ Ωβ =
γI

σnλ
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Stationary and axisymmetric MHD

Integrating the first two equations of the MHD-Euler
system

Expressing ~w in terms of df via (14) and using df = γ dΥ as well as dΦ = αdΥ
enables us to write the first equation of the MHD-Euler system [Eq. (16)] in the
equivalent form

ε

(
~ξ, ~χ, ~∇Υ, −γ ~∇(hu · ~ξ) +

α

µ0

~∇I

)
= 0

=⇒ −γhu · ~ξ + αI/µ0 must be a function of Υ, Σ(Υ) say:

Σ(Υ) = −γhu · ~ξ +
αI

µ0
= γλh(V −WΩ) +

αI

µ0

Similarly, the second equation of the MHD-Euler system [Eq. (17)] is equivalent to
the existence of a function Λ(Υ) such that

Λ(Υ) = γhu · ~χ− βI

µ0
= γλh(W +XΩ)− βI

µ0
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Stationary and axisymmetric MHD

Interpretation as Bernoulli-like theorems

If the fluid motion is purely rotational, ~u = λ(~ξ + Ω~χ) and any scalar
quantity obeying to the two spacetime symmetries is conserved along the
fluid lines

If the fluid flow has some meridional component, ~w 6= 0 ⇐⇒ df 6= 0: we

may choose Υ = f ; then γ = 1 and

Σ = λh(V −WΩ) +
αI

µ0
Λ = λh(W +XΩ)− βI

µ0

We recover the two streamline-constants of motion found by Bekenstein &
Oron (1978) in a slightly more complicated form:

Σ = −
(
h+

|b|2

µ0n

)
u · ~ξ − β

µ0

[
u ·
(
~ξ − α

β
~χ

)]
(b · ~ξ)

Λ =
(
h+

|b|2

µ0n

)
u · ~χ+

β

µ0

[
u ·
(
~ξ − α

β
~χ

)]
(b · ~χ)
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Stationary and axisymmetric MHD

Non-relativistic limit

At the Newtonian limit and in standard isotropic spherical coordinates (t, r, θ, ϕ),
V = 1 + 2Φgrav, W = 0
X = (1− 2Φgrav)r2 sin2 θ
σ = r2 sin2 θ,

where Φgrav is the Newtonian gravitational potential (|Φgrav| � 1)

Moreover, introducing the mass density ρ := mb n (mb mean baryon mass)

and specific enthalpy H :=
εint + p

ρ
, we get h = mb(1 +H) with H � 1

Then

Σ
mb
− 1 = H + Φgrav +

v2

2
+

αI

µ0mb
(when I = 0, classical Bernoulli theorem)

Λ
mb

= Ω r2 sin2 θ − βI

µ0mb

Eric Gourgoulhon, Charalampos Markakis, Kōji Uryū & Yoshiharu Eriguchi ()Stationary & axisym. MHD Roscoff, 8 November 2010 34 / 47



Stationary and axisymmetric MHD

Entropy as a function of the master potential

Equation (2) (resulting from ∇ · T = 0) implies successively

~u · dS = 0 =⇒ ~w · dS = 0 =⇒ ε(~ξ, ~χ, ~∇f, ~∇S) = 0

If df 6= 0, this implies S = S(f), i.e.

S = S(Υ) (19)

If df = 0 (purely rotational flow), we assume that (19) still holds
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Stationary and axisymmetric MHD

The master transfield equation

Thanks to the existence of Σ(Υ), Λ(Υ) and S(Υ), the remaining part of the

MHD-Euler equation [Eq. (18)] can be rewritten as A dΥ = 0 . Since dΥ 6= 0,
it is equivalent to A = 0. Expliciting A , we get the master transfield equation:

A∆∗Υ + n
h

[
γ2d

(
h
n

)
− 1

µ0

(
β2dV + 2αβdW − α2dX

)]
· ~∇Υ

+
{
γγ′ − n

µ0h
[V ββ′ +W (α′β + αβ′)−Xαα′]

}
dΥ · ~∇Υ

+σn2

h

{
λ
γ

[
ΩΛ′ − Σ′ + I

µ0
(α′ + Ωβ′) + γ′λh(V − 2WΩ−XΩ2)

]
+ TS′

}
−γλn (Cξ + ΩCχ) + In

µ0σh
[(Wβ −Xα)Cξ + (Wα+ V β)Cχ] = 0

(20)

with A := γ2 − n

µ0h
(V β2 + 2Wαβ −Xα2) and ∆∗Υ := σ∇µ

(
1
σ
∇µΥ

)
Eq. (20) is called transfield for it expresses the component along dΥ of the
MHD-Euler equation and dΥ is transverse to the magnetic field in the fluid frame
~b, in the sense that ~b · dΥ = 0
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Stationary and axisymmetric MHD

Poloidal wind equation

The master transfield eq. has to be supplemented by the poloidal wind equation,
arising from the 4-velocity normalization u · ~u = −1, with λ and Ω expressed in
terms of α, β, γ, Σ, Λ and h :

h2

(
σ +

γ2

n2
dΥ · ~∇Υ

)
− 1
γ2

(
XΣ2 + 2WΣΛ− V Λ2

)
+

n

µ0h

A+ γ2

A2γ2
[(Xα−Wβ)Σ + (V β +Wα)Λ]2 = 0

(21)

Notice that I, λ and Ω in Eq. (20) can be expressed in terms of α, β, γ, Σ, Λ, n
and h. Then

Given

the metric (represented by V , X, W , σ and ∇),

the EOS h = h(n, S),

the six functions α(Υ), β(Υ), γ(Υ), Σ(Υ), Λ(Υ) and S(Υ),

Eqs. (20)-(21) constitute a system of 2 PDEs for the 2 unknowns (Υ, n)

Solving it provides a complete solution of the MHD-Euler equation
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Some subcases of the master transfield equation

Subcase 1 : Newtonian limit

Expression of Σ and Λ:

Σ = γmb

(
1 +H + Φgrav +

v2

2

)
+
αI

µ0

Λ = γmbr
2 sin2 θΩ− βI

µ0

Master transfield equation:

A∆∗Υ− γ2

n
dn · ~∇Υ +

(
γγ′ − n

µ0mb
ββ′
)

dΥ · ~∇Υ

+r2 sin2 θ
n2

mb

{
1
γ

[
ΩΛ′ − Σ′ +

I

µ0
(α′ + Ωβ′) + γ′mb

]
+ TS′

}
= 0

with ∆∗Υ = ∂2
rΥ +

sin θ
r2

∂θ

(
1

sin θ
∂θΥ

)

We recover the equation obtained by Soloviev (1967)
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Some subcases of the master transfield equation

Subcase 2 : relativistic Grad-Shafranov equation

Assume dΨ 6= 0 and choose Υ = Ψ (i.e. β = 1).
The master transfield equation reduces then to(

1− V−2Wω−Xω2

M2

)
∆∗Ψ +

[
n
hd
(
h
n

)
− 1

M2

(
dV − 2ωdW − ω2dX

)]
· ~∇Ψ

+
[
ω′

M2 (W +Xω)− C′

C

]
dΨ · ~∇Ψ

+µ0σn
M2

{
λ
[
ΩL′ − E′ + I

µ0
(C ′(Ω− ω)− Cω′)

]
+ TS′

}
−λnC (Cξ + Ω Cχ) + I

σM2 [(W +Xω)Cξ + (V −Wω)Cχ] = 0

where C := γ−1, ω := −α, E := Σ/γ and L := Λ/γ

This is the relativistic Grad-Shafranov equation, in the most general form (i.e.
including meridional flow and for non-circular spacetimes)
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Some subcases of the master transfield equation

Subcase 2 : relativistic Grad-Shafranov equation

History of the relativistic Grad-Shafranov equation:

Camenzind (1987) : Minkowski spacetime

Lovelace, Mehanian, Mobarry & Sulkanen (1986) : weak gravitational fields

Lovelace & Mobarry (1986) : Schwarzschild spacetime

Nitta, Takahashi & Tomimatsu (1991) : Kerr spacetime (pressureless matter)

Beskin & Pariev (1993) : Kerr spacetime

Ioka & Sasaki (2003) : non-circular spacetimes

Remark: Grad-Shafranov equation not fully explicited by Ioka & Sasaki (2003) +
use of additional structure ((2+1)+1 formalism)
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Some subcases of the master transfield equation

Subcase 3 : pure hydrodynamical flow

No electromagnetic field

dΦ = 0 (⇐⇒ α = 0), dΨ = 0 (⇐⇒ β = 0) and I = 0

=⇒ Σ = γ E with E := λh(V −WΩ) and Λ = γ L with L := λh(W +XΩ)

Master transfield + poloidal wind equations:

γ2∆∗Υ + γ2n

h
d
(
h

n

)
· ~∇Υ + γγ′dΥ · ~∇Υ

+
σn2

h
[λ(ΩL′ − E′) + TS′]− γλn (Cξ + ΩCχ) = 0

γ2h2

n2
dΥ · ~∇Υ + σh2 −XE2 − 2WEL+ V L2 = 0
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Some subcases of the master transfield equation

Subcase 3 : pure hydrodynamical flow
Case of purely rotational motion : γ = 0

The master transfield equation reduces to

ΩL′ − E′ + T

λ
S′ = 0

A wide class of solutions is found by assuming

Ω = Ω(Υ) and
T

λ
= T̄ (Υ) with T̄ ′ = −T̄ λL

h
Ω′

For Ω = const, this leads to the well-known first integral of motion [T = 0: Boyer

(1965)]

µ

λ
=
h− TS

λ
= const

For Ω 6= const, we obtain instead

ln
(µ
λ

)
+
∫ Ω

0

F(Ω̃) dΩ̃ = const

with F(Ω) =
W +XΩ

V − 2WΩ−XΩ2
(relativistic Poincaré-Wavre theorem)
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Some subcases of the master transfield equation

Subcase 3 : pure hydrodynamical flow
Case of flow with meriodional component : γ 6= 0

Then df 6= 0 and a natural choice for Υ is Υ = f

The master transfield + poloidal wind equations reduces to

∆∗f +
n

h
d
(
h

n

)
· ~∇f +

σn2

h
[λ(ΩL′ − E′) + TS′]− λn (Cξ + ΩCχ) = 0

(22)

h2

n2
df · ~∇f + σh2 −XE2 − 2WEL+ V L2 = 0 (23)

with Ω =
V L−WE

XE +WL
Given the three functions E(f), L(f) and S(f) and the EOS
h = h(S, n), T = T (S, n), (22)-(23) forms a system of coupled PDE for (f, n)

At the Newtonian limit, (22) is the Stokes equation
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Conclusion

Conclusions

Ideal GRMHD is well amenable to a treatment based on exterior calculus.

This simplifies calculations with respect to the traditional tensor calculus,
notably via the massive use of Cartan’s identity.

For stationary and axisymmetric GRMHD, we have developed a systematic
treatment based on such an approach. This provides some insight on
previously introduced quantities and leads to the formulation of very general
laws, recovering previous ones as subcases and obtaining new ones in some
specific limits.
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