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Introduction

Symbolic differential geometry and tensor calculus

Packages/modules for general purpose computer algebra systems

xAct free package for Mathematica [J.-M. Martin-Garcia]

Ricci free package for Mathematica [J.L. Lee]

MathTensor package for Mathematica [S.M. Christensen & L. Parker]

GRTensor III package for Maple [P. Musgrave, D. Pollney & K. Lake]

DifferentialGeometry included in Maple [I.M. Anderson & E.S. Cheb-Terrab]

Atlas 2 for Maple and Mathematica
SageManifolds module included in SageMath

Standalone applications

SHEEP, Classi, STensor, based on Lisp, developed in 1970’s and 1980’s (free)
[R. d’Inverno, I. Frick, J. Åman, J. Skea, et al.]

Cadabra (free) [K. Peeters]

Redberry (free) [D.A. Bolotin & S.V. Poslavsky]

cf. the rather exhaustive list at http://www.xact.es/links.html
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Introduction

Tensor calculus software

Two kinds of tensor computations:

Abstract calculus (index manipulations)

xAct/xTensor
MathTensor
Ricci
Cadabra
Redberry

Component calculus (explicit computations)

xAct/xCoba
Atlas 2
DifferentialGeometry
SageManifolds
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Differential geometry with SageMath

SageMath in a few words

SageMath (nickname: Sage) is a free open-source computer algebra system

SageMath is free (GPL v2)

Freedom means
1 everybody can use it, by downloading the application from

https://www.sagemath.org
2 everybody can examine the source code and improve it

SageMath is based on Python

no need to learn any specific syntax to use it
Python is a powerful object oriented language, with a neat syntax
SageMath benefits from the Python ecosystem (e.g. Jupyter notebook,
NumPy, Matplotlib)

SageMath is developed by an enthusiastic community

mostly composed of mathematicians
welcoming newcomers
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Differential geometry with SageMath

Differential geometry with SageMath

SageManifolds project: extends SageMath towards differential geometry and
tensor calculus

Stereographic-coordinate frame on S2

https://sagemanifolds.obspm.fr

more than 110,000 lines of Python code
fully included in SageMath
(after review process)
∼ 25 contributors (developers and reviewers)
cf. https://sagemanifolds.obspm.fr/
authors.html

dedicated mailing list
help: https://ask.sagemath.org

Everybody is welcome to contribute
=⇒ visit https://sagemanifolds.obspm.fr/contrib.html
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Differential geometry with SageMath

Current status

Already present (SageMath 9.2):
differentiable manifolds: tangent spaces, vector frames, tensor fields, curves,
pullback and pushforward operators, submanifolds
vector bundles (tangent bundle, tensor bundles)
standard tensor calculus (tensor product, contraction, symmetrization, etc.),
even on non-parallelizable manifolds, and with all monoterm tensor
symmetries taken into account
Lie derivatives of tensor fields
differential forms: exterior and interior products, exterior derivative, Hodge
duality
multivector fields: exterior and interior products, Schouten-Nijenhuis bracket
affine connections (curvature, torsion)
pseudo-Riemannian metrics
computation of geodesics (numerical integration)
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Differential geometry with SageMath

Current status

Already present (cont’d):
some plotting capabilities (charts, points, curves, vector fields)
parallelization (on tensor components) of CPU demanding computations
extrinsic geometry of pseudo-Riemannian submanifolds
series expansions of tensor fields
2 symbolic backends: Pynac/Maxima (SageMath’s default) and SymPy

Future prospects:
more symbolic backends (Giac, FriCAS, ...)
more graphical outputs
symplectic forms, spinors, integrals on submanifolds, variational calculus, etc.
connection with numerical relativity: use SageMath to explore
numerically-generated spacetimes
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Some implementation details
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Some implementation details

SageMath approach to computer mathematics

SageMath relies on a Parent / Element scheme

Each object x on which some calculus is performed has a parent, which is another
SageMath object X representing the set to which x belongs.
The calculus rules on x are determined by the algebraic structure of X.
Conversion rules prior to an operation are defined at the level of the parents

Example: x+ y with x and y having different parents

sage: x = 4 ; x.parent()
Integer Ring
sage: y = 4/3 ; y.parent()
Rational Field
sage: s = x + y ; s.parent()
Rational Field
sage: y.parent().has_coerce_map_from(x.parent())
True

This approach is similar to that of Magma and is different from that of
Mathematica, in which everything is a tree of symbols
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Some implementation details

Implementing manifolds and their subsets

UniqueRepresentation Parent

ManifoldSubset
element: ManifoldPoint

TopologicalManifold

DifferentiableManifold

OpenInterval

RealLine

Element

ManifoldPointGeneric SageMath class

SageManifolds class
(differential part)
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Some implementation details

Implementing coordinate charts

Given a (topological) manifold M of dimension n ≥ 1, a coordinate chart is a
homeomorphism ϕ : U → V , where U is an open subset of M and V is an open
subset of Rn.

In general, more than one chart is required to cover the manifold:

Examples

at least 2 charts are necessary to cover the n-dimensional sphere Sn (n ≥ 1)
and the torus T2

at least 3 charts are necessary to cover the real projective plane RP2

In SageMath, an arbitrary number of charts can be introduced

To fully specify the manifold, one shall also provide the transition maps on
overlapping chart domains (SageMath class CoordChange)
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Some implementation details

Implementing scalar fields

A scalar field on manifold M is a smooth map

f : M −→ R
p 7−→ f(p)

A scalar field maps points, not coordinates, to real numbers
=⇒ an object f in the ScalarField class has different coordinate
representations in different charts defined on M .

The various coordinate representations F , F̂ , ... of f are stored as a Python
dictionary whose keys are the charts C, Ĉ, ...:

f._express =
{
C : F, Ĉ : F̂ , . . .

}
with f( p︸︷︷︸

point

) = F ( x1, . . . , xn︸ ︷︷ ︸
coord. of p
in chart C

) = F̂ ( x̂1, . . . , x̂n︸ ︷︷ ︸
coord. of p
in chart Ĉ

) = . . .
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C : F, Ĉ : F̂ , . . .

}
with f( p︸︷︷︸

point

) = F ( x1, . . . , xn︸ ︷︷ ︸
coord. of p
in chart C

) = F̂ ( x̂1, . . . , x̂n︸ ︷︷ ︸
coord. of p
in chart Ĉ
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Some implementation details

The scalar field algebra

The parent of the scalar field f :M → R is the set C∞(M) of scalar fields
defined on the manifold M .

C∞(M) has naturally the structure of a commutative algebra over R:
1 it is clearly a vector space over R
2 it is endowed with a commutative ring structure by pointwise multiplication:

∀f, g ∈ C∞(M), ∀p ∈M, (f.g)(p) := f(p)g(p)

The algebra C∞(M) is implemented in SageMath via the class
ScalarFieldAlgebra.
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Some implementation details

Scalar field classes

UniqueRepresentation Parent

ScalarFieldAlgebra
element: ScalarField

category: CommutativeAlgebras(base_field)

DiffScalarFieldAlgebra
element: DiffScalarField

CommutativeAlgebraElement

ScalarField
parent: ScalarFieldAlgebra

DiffScalarField
parent: DiffScalarFieldAlgebra

Generic SageMath class

SageManifolds class
(differential part)
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Some implementation details

Set of vector fields as a C∞(M)-module

The set X(M) of vector fields on a smooth manifold M is endowed with 2
algebraic structures:

1 X(M) is an infinite-dimensional vector space over R, the scalar multiplication
R× X(M)→ X(M), (λ,v) 7→ λv being defined by

∀p ∈M, (λv)|p = λv|p

2 X(M) is a module1 over the ring C∞(M), the scalar multiplication
C∞(M)× X(M)→ X(M), (f,v) 7→ fv being defined by

∀p ∈M, (fv)|p = f(p)v|p ,

the r.h.s. involving the scalar mult. by f(p) ∈ R in the vector space TpM

In SageMath, the second structure, i.e. X(M) = module over C∞(M), is adopted
to implement X(M)

1Recall that a module over a ring generalizes the notion of vector space over a field
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Some implementation details

Free modules and vector frames

X(M) is a free module over C∞(M)⇐⇒ X(M) admits a basis

If this occurs, then X(M) is actually a free module of finite rank over C∞(M)
and rankX(M) = dimM = n.
One says then that M is a parallelizable manifold.
A basis (ea)1≤a≤n of X(M) is called a vector frame; for any p ∈M ,
(ea|p)1≤a≤n is a basis of the tangent vector space TpM .
Basis expansion:

∀v ∈ X(M), v = vaea, with va ∈ C∞(M) (1)

At each point p ∈M , Eq. (1) gives birth to an identity in the vector space TpM :

v|p = va(p) ea|p , with va(p) ∈ R,

Example:

If U is the domain of a coordinate chart (xa)1≤a≤n, X(U) is a free module of
rank n over C∞(U), a basis of it being the coordinate frame (∂/∂xa)1≤a≤n.
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Some implementation details

Parallelizable manifolds

M is parallelizable ⇐⇒ X(M) is a free C∞(M)-module of rank n
⇐⇒ M admits a global vector frame
⇐⇒ the tangent bundle is trivial: TM 'M × Rn

Examples of parallelizable manifolds

Rn (global coordinate chart ⇒ global vector frame)
the circle S1 (rem: no global coordinate chart)
the torus T2 = S1 × S1

the 3-sphere S3 ' SU(2), as any Lie group
the 7-sphere S7

any orientable 3-manifold (Steenrod theorem)

Examples of non-parallelizable manifolds

the sphere S2 (hairy ball theorem!) and any n-sphere Sn with n 6∈ {1, 3, 7}
the real projective plane RP2
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Some implementation details

Implementing vector and tensor fields

Ultimately, in SageMath, vector fields, and more generally tensor fields, are to be
described by their components w.r.t. various vector frames.

Decomposition of M into parallelizable parts

Assumption: the smooth manifold M can be covered by a finite number m of
parallelizable open subsets Ui (1 ≤ i ≤ m)

Example: this holds if M is compact (finite atlas)

We then consider restrictions of vector fields to the parallelizable subsets Ui:

For each i, X(Ui) is a free module of rank n = dimM and is implemented in
SageManifolds as an instance of VectorFieldFreeModule, which is a subclass of
FiniteRankFreeModule.

Each vector field v ∈ X(Ui) has different set of components (va)1≤a≤n in
different vector frames (ea)1≤a≤n introduced on Ui. They are stored as a Python
dictionary whose keys are the vector frames:

v._components = {(e) : (va), (ê) : (v̂a), . . .}
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Some implementation details

Tensor field storage
TensorField

T

dictionary TensorField._restrictions

domain 1:
U1

TensorFieldParal
T |U1

= T a
bea ⊗ eb = T â

b̂
εâ ⊗ εb̂ = . . .

domain 2:
U2

TensorFieldParal
T |U2

. . .

dictionary TensorFieldParal._components

frame 1:
(ea)

Components
(T a

b)1≤a, b≤n
frame 2:
(εâ)

Components
(T â

b̂
)1≤â, b̂≤n

. . .

dictionary Components._comp

(1, 1) :
DiffScalarField

T 1
1

(1, 2) :
DiffScalarField

T 1
2

. . .

dictionary DiffScalarField._express

chart 1:
(xa)

ChartFunction
T 1

1

(
x1, . . . , xn

) chart 2:
(ya)

ChartFunction
T 1

1

(
y1, . . . , yn

) . . .

dictionary ChartFunction._express

SR:
Expression
x1 cosx2

SymPy: Basic
x1 cosx2

. . .
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Example 1: near-horizon geometry of the extremal Kerr black hole

Near-horizon geometry of the extremal Kerr black hole

Extremal Kerr black hole: a = m ⇐⇒ κ = 0 (degenerate horizon)

Near-horizon geometry of extremal 4D Kerr is similar to AdS2 × S2 geometry; it
has has extended isometry group: SL(2,R)×U(1), instead of merely R×U(1)
for Kerr metric [Bardeen & Horowitz, PRD 60, 104030 (1999)]

Near-horizon geometry of extremal Kerr black hole is at the basis of the
Kerr/CFT correspondence (see [Compère, LRR 20, 1 (2017)] for a review)

Let us explore this geometry with a SageMath notebook:
https://nbviewer.jupyter.org/github/sagemanifolds/SageManifolds/
blob/master/Notebooks/SM_extremal_Kerr_near_horizon.ipynb

(In the nbviewer menu, click on to run an interactive version on a Binder server)
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Example 1: near-horizon geometry of the extremal Kerr black hole

The full notebook is available at
https://nbviewer.jupyter.org/github/sagemanifolds/SageManifolds/
blob/master/Notebooks/SM_extremal_Kerr_near_horizon.ipynb

(in the nbviewer menu, click on the icon to run an interactive version on a
Binder server)
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Example 2: gravitational radiation from bodies orbiting Sgr A*
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Example 2: gravitational radiation from bodies orbiting Sgr A*

Computation of geodesics in Kerr spacetime

https://nbviewer.jupyter.org/github/BlackHolePerturbationToolkit/
kerrgeodesic_gw/blob/master/Notebooks/Kerr_geodesics.ipynb

(In the nbviewer menu, click on to run an interactive version on a Binder server)
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Example 2: gravitational radiation from bodies orbiting Sgr A*

Gravitational waves from circular orbits around a Kerr black
hole

https://nbviewer.jupyter.org/github/BlackHolePerturbationToolkit/
kerrgeodesic_gw/blob/master/Notebooks/grav_waves_circular.ipynb

Application: Gravitational waves from bodies orbiting the Galactic Center black
hole and their detectability by LISA
[Gourgoulhon, Le Tiec, Vincent & Warburton, A&A 627, A92 (2019)]
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Example 2: gravitational radiation from bodies orbiting Sgr A*

Time in LISA band with SNR1 yr ≥ 10 for an inspiralling
compact object

10-5 10-4 10-3 10-2 10-1 100 101 102

µ [M¯ ]

104
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T
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d
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r]

−− θ= 0 − − θ= π/4 θ= π/2
a= 0
a= 0.98M

[Gourgoulhon, Le Tiec, Vincent & Warburton, A&A 627, A92 (2019)]

µ: mass of the
inspiralling compact
object

Primordial BHs with
1M⊕ ≤ µ ≤ 5MJup

spend more than 106 yr
in LISA band with
SNR1 yr ≥ 10
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Example 2: gravitational radiation from bodies orbiting Sgr A*

Time in LISA band SNR1 yr ≥ 10 for brown dwarfs and
main-sequence stars

Results for
inclination angle θ = 0

BH spin a = 0 (outside parentheses) and a = 0.98M (inside parentheses)

brown dwarf red dwarf Sun-type 2.4M�-star
µ/M� 0.062 0.20 1 2.40
ρ/ρ� 131. 18.8 1 0.367
r0,max/M 28.2 (28.0) 35.0 (34.9) 47.1 (47.0) 55.6 (55.6)
fm=2(r0,max)
[mHz] 0.105 (0.106) 0.076 (0.076) 0.049 (0.049) 0.038 (0.038)

rRoche/M 7.31 (6.93) 13.3 (13.0) 34.2 (34.1) 47.6 (47.5)
T ins

in-band [105 yr] 4.98 (5.55) 3.72 (3.99) 1.83 (1.89) 0.938 (0.945)

Brown dwarfs stay for ∼ 5× 105 yr in LISA band
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Example 3: images of black holes

Image of an accretion disk around a Schwarzschild BH

Image entirely computed with SageMath by integrating the null geodesics,
cf. the notebook
https://nbviewer.jupyter.org/github/sagemanifolds/SageManifolds/
blob/master/Notebooks/SM_black_hole_rendering.ipynb
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Example 3: images of black holes

Naked rotating wormhole

Regular (singularity-free) spacetime with wormhole topology (R2 × S2), sustained
by exotic matter, asymptotically close a to Kerr spacetime with a naked singularity
(a > M) and surrounded by an accretion torus

zoom on the central region

[Lamy, Gourgoulhon, Paumard & Vincent, CQG 35, 115009 (2018)]

Derivation of the geodesic equation: SageMath
Integration of the geodesic equation: Gyoto
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Conclusions

Conclusions

Symbolic tensor calculus in the free Python-based system SageMath
runs on fully specified smooth manifolds (described by an atlas)

is not limited to a single coordinate chart or vector frame
runs even on non-parallelizable manifolds
is independent of the symbolic engine (e.g. Pynac/Maxima, SymPy,...) used
to perform calculus at the level of coordinate expressions

Many more examples than shown in this talk are available at
https://sagemanifolds.obspm.fr/examples.html

Want to join the SageManifolds project or simply to stay tuned?

visit https://sagemanifolds.obspm.fr/
(download, documentation, example notebooks, mailing list)
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