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Differential geometry and tensor calculus on a computer

Introduction

Computer algebra system (CAS) started to be developed in the 1960’s; for
instance Macsyma (to become Maxima in 1998) was initiated in 1968 at MIT

In 1969, during his PhD under Pirani supervision at King’s College, Ray
d’Inverno wrote ALAM (Atlas Lisp Algebraic Manipulator) and used it
to compute the Riemann tensor of Bondi metric. The original calculations
took Bondi and his collaborators 6 months to go. The computation with
ALAM took 4 minutes and yield to the discovery of 6 errors in the original
paper [J.E.F. Skea, Applications of SHEEP (1994)]

In the early 1970’s, ALAM was rewritten in the LISP programming language,
thereby becoming machine independent and renamed LAM

The descendant of LAM, called SHEEP (!), was initiated in 1977 by Inge Frick

Since then, many softwares for tensor calculus have been developed...
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Differential geometry and tensor calculus on a computer

An example of modern software: The xAct suite

Free packages for tensor computer algebra in Mathematica, developed by José
Mart́ın-Garćıa et al. http://www.xact.es/

xCore

Mathematica tools

xPerm

Permutation Group theory

xTensor

Abstract tensor algebra

Invar
"Riemann tensor Invariants"

J.M. Martín-García, 

R. Portugal and D. Yllanes.

Spinors
"Spinor calculus in GR"

A. García-Parrado and

J.M. Martín-García.

xCoba
"Component tensor algebra"

J.M. Martín-García and 

D. Yllanes.

xPert
"Perturbation theory"

D. Brizuela, J.M. Martín-García

and G. Mena Marugán.

Harmonics
  "Tensor spherical harmonics"

D. Brizuela, J.M. Martín-García

and G. Mena Marugán.

The xAct system

SymManipulator
"Symmetrized tensor expressions"

T. Bäckdahl.

xperm.c

C-language module

M
athLink

xPrint

"Graphical front-end"

A. Stecchina.

[Garćıa-Parrado Gómez-Lobo & Mart́ın-Garćıa, Comp. Phys. Comm. 183, 2214 (2012)]
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Differential geometry and tensor calculus on a computer

Software for differential geometry

Packages for general purpose computer algebra systems:

xAct free package for Mathematica [J.-M. Martin-Garcia]

Ricci free package for Mathematica [J. L. Lee]

MathTensor package for Mathematica [S. M. Christensen & L. Parker]

DifferentialGeometry included in Maple [I. M. Anderson & E. S. Cheb-Terrab]

Atlas 2 for Maple and Mathematica

· · ·

Standalone applications:

SHEEP, Classi, STensor, based on Lisp, developed in 1970’s and 1980’s (free)
[R. d’Inverno, I. Frick, J. Åman, J. Skea, et al.]

Cadabra field theory (free) [K. Peeters]

SnapPy topology and geometry of 3-manifolds, based on Python (free) [M.

Culler, N. M. Dunfield & J. R. Weeks]

· · ·

cf. the complete list on http://www.xact.es/links.html
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Differential geometry and tensor calculus on a computer

Software for differential geometry

Two types of tensor computations:

Abstract computations

xAct/xTensor

MathTensor

Ricci

Cadabra

Component computations

xAct/xCoba

Atlas 2

DifferentialGeometry

SageManifolds
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Éric Gourgoulhon, Micha l Bejger (LUTH, CAMK) SageManifolds ERE2014, Valencia, 2 Sept. 2014 8 / 44



Sage: a free mathematics software

Sage in a few words

Sage is a free open-source mathematics software system

it is based on the Python programming language

it makes use of many pre-existing open-sources packages, among which

Maxima (symbolic calculations, since 1968!)
GAP (group theory)
PARI/GP (number theory)
Singular (polynomial computations)
matplotlib (high quality 2D figures)

and provides a uniform interface to them

William Stein (Univ. of Washington) created Sage in 2005; since then, ∼100
developers (mostly mathematicians) have joined the Sage team

The mission

Create a viable free open source alternative to Magma, Maple, Mathematica and
Matlab.
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Sage: a free mathematics software

Some advantages of Sage

Sage is free

Freedom means

1 everybody can use it, by downloading the software from
http://sagemath.org

2 everybody can examine the source code and improve it

Sage is based on Python

no need to learn any specific syntax to use it

easy access for students

Python is a very powerful object oriented language, with a neat syntax

Sage is developing and spreading fast

...sustained by an important community of developers
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Sage: a free mathematics software

Sage approach to computer mathematics

Sage relies on a Parent / Element scheme: each object x on which some
calculus is performed has a “parent”, which is another Sage object X representing
the set to which x belongs.
The calculus rules on x are determined by the algebraic structure of X.
Conversion rules prior to an operation, e.g. x+ y with x and y having different
parents, are defined at the level of the parents

Example

sage: x = 4 ; x.parent()

Integer Ring

sage: y = 4/3 ; y.parent()

Rational Field

sage: s = x + y ; s.parent()

Rational Field

sage: y.parent().has_coerce_map_from(x.parent())

True

This approach is similar to that of Magma (a CAS quite well spread in pure
mathematics) and different from that of Mathematica, in which everything is a
tree of symbols
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Sage: a free mathematics software

The Sage book

by Paul Zimmermann et al. (2013)

Released under Creative Commons license:

freely downloadable from
http://sagebook.gforge.inria.fr/

printed copies can be ordered at moderate
price (10 e)

English translation in progress...
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The SageManifolds project

Differential geometry in Sage

Sage is well developed in many domains of mathematics:
number theory, group theory, linear algebra, combinatorics, etc.

...but not too much in the area of differential geometry:

Already in Sage

differential forms on an open subset of Euclidean space (with a fixed set of
coordinates) (J. Vankerschaver)

parametrized 2-surfaces in 3-dim. Euclidean space (M. Malakhaltsev, J.
Vankerschaver, V. Delecroix)

Proposed extensions (Sage Trac)

2-D hyperbolic geometry (V. Delecroix, M. Raum, G. Laun, trac ticket
#9439)
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The SageManifolds project

The SageManifolds project

http://sagemanifolds.obspm.fr/

Aim

Implement the concept of real smooth manifolds of arbitrary dimension in Sage
and tensor calculus on them, in a coordinate/frame-independent manner

In practice, this amounts to introducing new Python classes in Sage, basically one
class per mathematical concept, for instance:

Manifold: differentiable manifolds over R, of arbitrary dimension

Chart: coordinate charts

Point: points on a manifold

DiffMapping: differential mappings between manifolds

ScalarField, VectorField, TensorField: tensor fields on a manifold

DiffForm: p-forms

AffConnection, LeviCivitaConnection: affine connections

Metric: pseudo-Riemannian metrics
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The SageManifolds project

Implementing coordinate charts

Given a manifold M of dimension n, a coordinate chart on an open subset
U ⊂M is implemented in SageManifolds via the class Chart, whose main data is
a n-uple of Sage symbolic variables x, y, ..., each of them representing a
coordinate

In general, more than one (regular) chart is required to cover the entire manifold:

Examples:

at least 2 charts are necessary to cover the circle S1, the sphere S2, and more
generally the n-dimensional sphere Sn

at least 3 charts are necessary to cover the real projective plane RP2

In SageManifolds, an arbitrary number of charts can be introduced

To fully specify the manifold, one shall also provide the transition maps on
overlapping chart domains (SageManifolds class CoordChange)
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The SageManifolds project

Implementing scalar fields

A scalar field on manifold M is a smooth mapping

f : U ⊂M −→ R
p 7−→ f(p)

where U is an open subset of M

A scalar field maps points, not coordinates, to real numbers
=⇒ an object f in the ScalarField class has different coordinate
representations in different charts defined on U .

The various coordinate representations F , F̂ , ... of f are stored as a Python
dictionary whose keys are the charts C, Ĉ, ...:

f. express =
{
C : F, Ĉ : F̂ , . . .

}
with f( p︸︷︷︸

point

) = F ( x1, . . . , xn︸ ︷︷ ︸
coord. of p
in chart C

) = F̂ ( x̂1, . . . , x̂n︸ ︷︷ ︸
coord. of p
in chart Ĉ

) = . . .
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f. express =
{
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The SageManifolds project

The scalar field algebra

Given an open subset U ⊂M, the set C∞(U) of scalar fields defined on U has
naturally the structure of a commutative algebra over R: it is clearly a vector
space over R and it is endowed with a commutative ring structure by pointwise
multiplication:

∀f, g ∈ C∞(U), ∀p ∈ U, (f.g)(p) := f(p)g(p)

The algebra C∞(U) is implemented in SageManifolds via the class
ScalarFieldAlgebra.
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The SageManifolds project

Classes for scalar fields

      Parent      UniqueRepresentation

ScalarFieldAlgebra

Element: ScalarField

category: CommutativeAlgebras

SageManifolds class
(differential part) 

SageManifolds class
(algebraic part) 

native Sage class

ring: SR

CommutativeAlgebraElement

ScalarField

Parent: ScalarFieldAlgebra

ZeroScalarField

Parent: ScalarFieldAlgebra
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The SageManifolds project

Vector fields

Given an open subset U ⊂M, the set X (U) of smooth vector fields defined on U
has naturally the structure of a module over the scalar field algebra C∞(U).

Reminder from linear algebra

A module is ∼ vector space, except that it is based on a ring (here C∞(U))
instead of a field (usually R or C in physics)

An importance difference: a vector space always has a basis, while a module does
not necessarily have any

→ A module with a basis is called a free module

When X (U) is a free module, a basis is a vector frame (ea)1≤a≤n on U :

∀v ∈ X (U), v = vaea, with va ∈ C∞(U)

At a point p ∈ U , the above translates into an identity in the tangent vector
space TpM:

v(p) = va(p) ea(p), with va(p) ∈ R
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The SageManifolds project

Vector fields

A manifold M that admits a global vector frame (or equivalently, such that
X (M) is a free module) is called a parallelizable manifold

Examples of parallelizable manifolds

Rn (global coordinate charts ⇒ global vector frames)

the circle S1 (NB: no global coordinate chart)

the torus T2 = S1 × S1

the 3-sphere S3 ' SU(2), as any Lie group

the 7-sphere S7

Examples of non-parallelizable manifolds

the sphere S2 (hairy ball theorem!) and any n-sphere Sn with n 6∈ {1, 3, 7}
the real projective plane RP2

most manifolds...
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The SageManifolds project

Implementing vector fields

Ultimately, in SageManifolds, vector fields are to be described by their
components w.r.t. various vector frames.

If the manifold M is not parallelizable, one has to decompose it in parallelizable
open subsets Ui (1 ≤ i ≤ N) and consider restrictions of vector fields to these
domains.

For each i, X (Ui) is a free module of rank n = dimM and is implemented in
SageManifolds as an instance of VectorFieldFreeModule, which is a subclass of
FiniteRankFreeModule.

Each vector field v ∈ X (Ui) has different set of components (va)1≤a≤n in
different vector frames (ea)1≤a≤n introduced on Ui. They are stored as a Python
dictionary whose keys are the vector frames:

v. components = {(e) : (va), (ê) : (v̂a), . . .}
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different vector frames (ea)1≤a≤n introduced on Ui. They are stored as a Python
dictionary whose keys are the vector frames:

v. components = {(e) : (va), (ê) : (v̂a), . . .}
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The SageManifolds project

Module classes in SageManifolds

VectorFieldFreeModule

Element: VectorFieldFreeParal
ring: ScalarFieldAlgebra

TensorFieldFreeModule

Element: TensorFieldParal
ring: ScalarFieldAlgebra

TensorFreeModule

Element: FreeModuleTensor

FiniteRankFreeModule

Element: FiniteRankFreeModuleElement
ring: CommutativeRing

category: Modules

      Parent      UniqueRepresentation

TensorFieldModule

Element: TensorField
ring: ScalarFieldAlgebra

VectorFieldModule

Element: VectorField
ring: ScalarFieldAlgebra

SageManifolds class
(differential part) 

SageManifolds class
(algebraic part) 

native Sage class

category:
Modules

category: Modules

TangentSpace

Element: TangentVector
ring: SR
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The SageManifolds project

Tensor field classes in SageManifolds

VectorField

Parent: VectorFieldModule

FreeModuleTensorTensorField

Parent: TensorFieldModule

TensorFieldParal

Parent: TensorFieldFreeModule

VectorFieldParal
Parent: VectorFieldFreeModule

FiniteRankFreeModuleElement

Parent: FiniteRankFreeModule

Parent: TensorFreeModule

      Element

ModuleElement

Parent: Module

SageManifolds class
(differential part) 

SageManifolds class
(algebraic part) 

native Sage class

TangentVector
Parent: TangentSpace
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The SageManifolds project

Tensor field storage

dictionary TensorField._restrictions

...

dictionary ScalarField._express

...

dictionary Components._comp

...

dictionary TensorFieldParal._components

...

...

Expression

Components
frame 1:

FunctionChart
chart 1:

ScalarField

(1,1) :

Components
frame 2:

ScalarField

(1,2) :

FunctionChart
chart 2:

Expression

TensorFieldParal

U1

U1

domain 1: TensorFieldParal

U2
U2

domain 2:

TensorField
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SageManifolds at work: the Mars-Simon tensor example

Mars-Simon tensor

Definition [M. Mars, CQG 16, 2507 (1999)]

Given a 4-dimensional spacetime (M, g) endowed with a Killing vector field ξ, the
Mars-Simon tensor w.r.t. ξ is the type-(0,3) tensor S defined by

Sαβγ := 4Cµαν[β ξµξν σγ] + γα[β Cγ]ρµν ξρ Fµν

where

γαβ := λ gαβ + ξαξβ , with λ := −ξµξµ

Cαβµν := Cαβµν +
i

2
ερσµν Cαβρσ, with Cαβµν being the Weyl tensor and

εαβµν the Levi-Civita volume form

Fαβ := Fαβ + i ∗Fαβ , with Fαβ := ∇αξβ (Killing 2-form) and

∗Fαβ :=
1

2
εµναβFµν (Hodge dual of Fαβ)

σα := 2Fµαξµ (Ernst 1-form)
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SageManifolds at work: the Mars-Simon tensor example

Mars-Simon tensor

The Mars-Simon tensor provides a nice characterization of Kerr spacetime:

Theorem (Mars, 1999)

If g satisfies the vacuum Einstein equation and (M, g) contains a stationary
asymptotically flat end M∞ such that ξ tends to a time translation at infinity in
M∞ and the Komar mass of ξ in M∞ is non-zero, then

S = 0 ⇐⇒ (M, g) is locally isometric to a Kerr spacetime

Let us use SageManifolds...

...to check the ⇐ part of the theorem, namely that the Mars-Simon tensor is
identically zero in Kerr spacetime.

NB: what follows illustrates only certain features of SageManifolds; other ones,
like the multi-chart and multi-frame capabilities on non-parallelizable manifolds,
are not considered in this example. =⇒ More examples are provided at
http://sagemanifolds.obspm.fr/examples.html
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SageManifolds at work: the Mars-Simon tensor example

Object-oriented notation

To understand what follows, be aware that

as an object-oriented language, Python (and hence Sage) makes use of the
following postfix notation:

result = object.function(arguments)

In a functional language, this would be written as

result = function(object,arguments)

Examples

riem = g.riemann()

lie t v = t.lie der(v)
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Éric Gourgoulhon, Micha l Bejger (LUTH, CAMK) SageManifolds ERE2014, Valencia, 2 Sept. 2014 31 / 44



SageManifolds at work: the Mars-Simon tensor example
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Éric Gourgoulhon, Micha l Bejger (LUTH, CAMK) SageManifolds ERE2014, Valencia, 2 Sept. 2014 33 / 44



SageManifolds at work: the Mars-Simon tensor example
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Éric Gourgoulhon, Micha l Bejger (LUTH, CAMK) SageManifolds ERE2014, Valencia, 2 Sept. 2014 36 / 44



SageManifolds at work: the Mars-Simon tensor example
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Conclusion and perspectives

SageManifolds is a work in progress
∼ 34,000 lines of Python code up to now (including comments and doctests)

A preliminary version (v0.5) is freely available (GPL) at
http://sagemanifolds.obspm.fr/

and the development version (to become v0.6 soon) is available from the Git
repository https://github.com/sagemanifolds/sage

Already present:

maps between manifolds, pullback operator
submanifolds, pushforward operator
standard tensor calculus (tensor product, contraction, symmetrization, etc.),
even on non-parallelizable manifolds
all monoterm tensor symmetries
exterior calculus, Hodge duality
Lie derivatives
affine connections, curvature, torsion
pseudo-Riemannian metrics, Weyl tensor
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Not implemented yet (but should be soon):

extrinsic geometry of pseudo-Riemannian submanifolds
computation of geodesics (numerical integration via Sage/GSL or Gyoto)
integrals on submanifolds

To do:

add more graphical outputs
add more functionalities: symplectic forms, fibre bundles, spinors, variational
calculus, etc.
connection with Lorene, CoCoNuT, ...

Want to join the project or simply to stay tuned?

visit http://sagemanifolds.obspm.fr/
(download page, documentation, example worksheets, mailing list)
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