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Differential geometry and tensor calculus on a computer

Introduction

o Computer algebra system (CAS) started to be developed in the 1960's; for
instance Macsyma (to become Maxima in 1998) was initiated in 1968 at MIT
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Differential geometry and tensor calculus on a computer
Introduction

o Computer algebra system (CAS) started to be developed in the 1960's; for
instance Macsyma (to become Maxima in 1998) was initiated in 1968 at MIT

@ In 1969, during his PhD under Pirani supervision at King's College, Ray
d’'Inverno wrote ALAM (Atlas Lisp Algebraic Manipulator) and used it
to compute the Riemann tensor of Bondi metric. The original calculations
took Bondi and his collaborators 6 months to go. The computation with
ALAM took 4 minutes and yield to the discovery of 6 errors in the original
paper [J.E.F. Skea, Applications of SHEEP (1994)]
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Differential geometry and tensor calculus on a computer
Introduction

o Computer algebra system (CAS) started to be developed in the 1960's; for
instance Macsyma (to become Maxima in 1998) was initiated in 1968 at MIT

@ In 1969, during his PhD under Pirani supervision at King's College, Ray
d’'Inverno wrote ALAM (Atlas Lisp Algebraic Manipulator) and used it
to compute the Riemann tensor of Bondi metric. The original calculations
took Bondi and his collaborators 6 months to go. The computation with
ALAM took 4 minutes and yield to the discovery of 6 errors in the original
paper [J.E.F. Skea, Applications of SHEEP (1994)]

@ In the early 1970's, ALAM was rewritten in the LISP programming language,
thereby becoming machine independent and renamed LAM

@ The descendant of LAM, called SHEEP (!), was initiated in 1977 by Inge Frick

@ Since then, many softwares for tensor calculus have been developed...
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Differential geometry and tensor calculus on a computer

An example of modern software: The xAct suite

Free packages for tensor computer algebra in Mathematica, developed by José

Martin-Garcia et al. http://www.xact.es/

The xAct syste

xCoba
"Component tensor algebra"
J.M. Martin-Garcia and

D. Yllanes.

Spinors
"Spinor calculus in GR"
A. Garcia-Parrado and
J.M. Martin-Garcia.

Invar
"Riemann tensor Invariants"

xTensor
J.M. Martin-Garcia, Abstract tensor algebra

R. Portugal and D. Yllanes.

SymManipulator
"Symmetrized tensor expressions"
T. Bickdahl.

xPerm

Permutation Group theory

xCore
Mathematica tools

[Garcia-Parrado Gémez-Lobo & Martin-Garcia, Comp

Eric Gourgoulhon, Michat Bejger (LUTH, CAM

m

Harmonics
"Tensor spherical harmonics"
D. Brizuela, J.M. Martin-Garcia
and G. Mena Marugan.

xPert
"Perturbation theory"
D. Brizuela, J.M. Martin-Garcia
and G. Mena Marugan.

xPrint
"Graphical front-end"
A. Stecchina.



http://www.xact.es/
http://dx.doi.org/10.1016/j.cpc.2012.04.024

Differential geometry and tensor calculus on a computer
Software for differential geometry

Packages for general purpose computer algebra systems:
@ xAct free package for Mathematica [J.-M. Martin-Garcia]
Ricci free package for Mathematica [J. L. Lee]
MathTensor package for Mathematica [S. M. Christensen & L. Parker|

o
°
o DifferentialGeometry included in Maple [I. M. Anderson & E. S. Cheb-Terrab]
o Atlas 2 for Maple and Mathematica

°

Standalone applications:

e SHEEP, Classi, STensor, based on Lisp, developed in 1970's and 1980's (free)
[R. d'Inverno, I. Frick, J. Aman, J. Skea, et al.]

o Cadabra field theory (free) [K. Peeters]

@ SnapPy topology and geometry of 3-manifolds, based on Python (free) [m.
Culler, N. M. Dunfield & J. R. Weeks]

cf. the complete list on http://www.xact.es/links.html
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Differential geometry and tensor calculus on a computer
Software for differential geometry

Two types of tensor computations:

Abstract computations
@ xAct/xTensor
@ MathTensor
@ Ricci
o Cadabra
Component computations
@ xAct/xCoba
o Atlas 2
o DifferentialGeometry

@ SageManifolds
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Sage: a free mathematics software
Sage in a few words

@ Sage is a free open-source mathematics software system
@ it is based on the Python programming language

@ it makes use of many pre-existing open-sources packages, among which
Maxima (symbolic calculations, since 1968!)

GAP (group theory)

PARI/GP (number theory)

Singular (polynomial computations)

e matplotlib (high quality 2D figures)

and provides a uniform interface to them

@ William Stein (Univ. of Washington) created Sage in 2005; since then, ~100
developers (mostly mathematicians) have joined the Sage team

Create a viable free open source alternative to Magma, Maple, Mathematica and
Matlab.
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Sage: a free mathematics software
Some advantages of Sage

Freedom means

@ everybody can use it, by downloading the software from
http://sagemath.org

@ everybody can examine the source code and improve it

Sage is based on Python

@ no need to learn any specific syntax to use it

@ easy access for students

@ Python is a very powerful object oriented language, with a neat syntax

Sage is developing and spreading fast

...sustained by an important community of developers
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Sage: a free mathematics software
Sage approach to computer mathematics

Sage relies on a Parent / Element scheme: each object x on which some
calculus is performed has a “parent”, which is another Sage object X representing
the set to which x belongs.

The calculus rules on = are determined by the algebraic structure of X.
Conversion rules prior to an operation, e.g. x + y with x and y having different
parents, are defined at the level of the parents

Example

sage: x = 4 ; x.parent()

Integer Ring

sage: y = 4/3 ; y.parent()

Rational Field

sage: s = x +y ; s.parent()

Rational Field

sage: y.parent () .has_coerce_map_from(x.parent())
True

This approach is similar to that of Magma (a CAS quite well spread in pure
mathematics) and different from that of Mathematica, in which everything is a
tree of symbols
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Sage: a free mathematics software
The Sage book

Calcul mathématique avec

by Paul Zimmermann et al. (2013)

Released under Creative Commons license:

o freely downloadable from
http://sagebook.gforge.inria.fr/

@ printed copies can be ordered at moderate
price (10 €)

English translation in progress...
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The SageManifolds project
Differential geometry in Sage

Sage is well developed in many domains of mathematics:
number theory, group theory, linear algebra, combinatorics, etc.

...but not too much in the area of differential geometry:

Already in Sage

o differential forms on an open subset of Euclidean space (with a fixed set of
coordinates) (J. Vankerschaver)

@ parametrized 2-surfaces in 3-dim. Euclidean space (M. Malakhaltsev, J.
Vankerschaver, V. Delecroix)

Proposed extensions (Sage Trac)

@ 2-D hyperbolic geometry (V. Delecroix, M. Raum, G. Laun, trac ticket
#9439)

Eric Gourgoulhon, Michat Bejger (LUTH, CAMK) SageManifolds
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The SageManifolds project
The SageManifolds project

http://sagemanifolds.obspm.fr/

Implement the concept of real smooth manifolds of arbitrary dimension in Sage
and tensor calculus on them, in a coordinate/frame-independent manner
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The SageManifolds project
The SageManifolds project

http://sagemanifolds.obspm.fr/

Implement the concept of real smooth manifolds of arbitrary dimension in Sage
and tensor calculus on them, in a coordinate/frame-independent manner

In practice, this amounts to introducing new Python classes in Sage, basically one
class per mathematical concept, for instance:

@ Manifold: differentiable manifolds over R, of arbitrary dimension
Chart: coordinate charts

Point: points on a manifold

DiffMapping: differential mappings between manifolds

ScalarField, VectorField, TensorField: tensor fields on a manifold
DiffForm: p-forms

AffConnection, LeviCivitaConnection: affine connections

Metric: pseudo-Riemannian metrics
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The SageManifolds project
Implementing coordinate charts

Given a manifold M of dimension n, a coordinate chart on an open subset

U C M is implemented in SageManifolds via the class Chart, whose main data is
a n-uple of Sage symbolic variables x, y, ..., each of them representing a
coordinate
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Given a manifold M of dimension n, a coordinate chart on an open subset

U C M is implemented in SageManifolds via the class Chart, whose main data is
a n-uple of Sage symbolic variables x, y, ..., each of them representing a
coordinate

In general, more than one (regular) chart is required to cover the entire manifold:

@ at least 2 charts are necessary to cover the circle S, the sphere S?, and more
generally the n-dimensional sphere S"

e at least 3 charts are necessary to cover the real projective plane RIP?
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The SageManifolds project
Implementing coordinate charts

Given a manifold M of dimension n, a coordinate chart on an open subset

U C M is implemented in SageManifolds via the class Chart, whose main data is
a n-uple of Sage symbolic variables x, y, ..., each of them representing a
coordinate

In general, more than one (regular) chart is required to cover the entire manifold:

@ at least 2 charts are necessary to cover the circle S, the sphere S?, and more
generally the n-dimensional sphere S"

e at least 3 charts are necessary to cover the real projective plane RIP?

In SageManifolds, an arbitrary number of charts can be introduced J

To fully specify the manifold, one shall also provide the transition maps on
overlapping chart domains (SageManifolds class CoordChange)
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The SageManifolds project
Implementing scalar fields

A scalar field on manifold M is a smooth mapping

f:r UcM — R
p — f(p)

where U is an open subset of M
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The SageManifolds project
Implementing scalar fields

A scalar field on manifold M is a smooth mapping

f:r UcM — R
p — f(p)

where U is an open subset of M

A scalar field maps points, not coordinates, to real numbers
= an object f in the ScalarField class has different coordinate
representations in different charts defined on U.
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The SageManifolds project
Implementing scalar fields

A scalar field on manifold M is a smooth mapping

f:r UcM — R
p — f(p)

where U is an open subset of M

A scalar field maps points, not coordinates, to real numbers
= an object f in the ScalarField class has different coordinate
representations in different charts defined on U.

The various coordinate representations F/, F, .. of f are stored as a Python

dictionary whose keys are the charts C, C, ...

with f(p)=F(2',...,2" ) =F(&',...,ia") =
~~ ———— ———
point coord. of p coord. of p
in chart C in chart ¢
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The SageManifolds project
The scalar field algebra

Given an open subset U C M, the set C°°(U) of scalar fields defined on U has
naturally the structure of a commutative algebra over R: it is clearly a vector
space over R and it is endowed with a commutative ring structure by pointwise
multiplication:

Vi, ge C(U), YpeU, (f9)(p):=f(pglp)

The algebra C°°(U) is implemented in SageManifolds via the class
ScalarFieldAlgebra.
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The SageManifolds project

Classes for scalar fields

UnigueRepresentation

Parent

CommutativeAlgebraElement

category: CommutativeAlgebras

ScalarFieldAlgebra

ring: SR
Element: ScalarField

I:] native Sage class

SageManifolds class
(algebraic part)

SageManifolds class
(differential part)

ScalarField

Parent: ScalarFieldAlgebra

ZeroScalarField

Parent: ScalarFieldAlgebra

Eric Gourgoulhon, Michat Bejger (LUTH, CAMK)
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The SageManifolds project

Vector fields

Given an open subset U C M, the set X'(U) of smooth vector fields defined on U
has naturally the structure of a module over the scalar field algebra C°°(U).
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The SageManifolds project
Vector fields

Given an open subset U C M, the set X'(U) of smooth vector fields defined on U
has naturally the structure of a module over the scalar field algebra C°°(U).

Reminder from linear algebra

A module is ~ vector space, except that it is based on a ring (here C°(U))
instead of a field (usually R or C in physics)

An importance difference: a vector space always has a basis, while a module does
not necessarily have any

— A module with a basis is called a free module
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The SageManifolds project
Vector fields

Given an open subset U C M, the set X'(U) of smooth vector fields defined on U
has naturally the structure of a module over the scalar field algebra C°°(U).

Reminder from linear algebra

A module is ~ vector space, except that it is based on a ring (here C°(U))
instead of a field (usually R or C in physics)

An importance difference: a vector space always has a basis, while a module does
not necessarily have any

— A module with a basis is called a free module

When X(U) is a free module, a basis is a vector frame (e,)1<q<y, on U:
Yo e X(U), v=uv,, withv*eC®{)

At a point p € U, the above translates into an identity in the tangent vector
space 1), M:
v(p) =v*(p) €a(p), withv*(p) €R
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The SageManifolds project
Vector fields

A manifold M that admits a global vector frame (or equivalently, such that
X (M) is a free module) is called a parallelizable manifold

Examples of parallelizable manifolds

R™ (global coordinate charts = global vector frames)

the circle S' (NB: no global coordinate chart)
the torus T? = S' x S!

the 3-sphere S* ~ SU(2), as any Lie group
the 7-sphere S”

v

Examples of non-parallelizable manifolds

o the sphere S? (hairy ball theorem!) and any n-sphere S™ with n ¢ {1,3,7}

o the real projective plane RP?

@ most manifolds...
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The SageManifolds project
Implementing vector fields

Ultimately, in SageManifolds, vector fields are to be described by their
components w.r.t. various vector frames.

If the manifold M is not parallelizable, one has to decompose it in parallelizable
open subsets U; (1 < i < N) and consider restrictions of vector fields to these
domains.
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The SageManifolds project
Implementing vector fields

Ultimately, in SageManifolds, vector fields are to be described by their
components w.r.t. various vector frames.

If the manifold M is not parallelizable, one has to decompose it in parallelizable
open subsets U; (1 < i < N) and consider restrictions of vector fields to these
domains.

For each i, X(U;) is a free module of rank n = dim M and is implemented in
SageManifolds as an instance of VectorFieldFreelModule, which is a subclass of
FiniteRankFreeModule.

Each vector field v € X(U;) has different set of components (v*)1<q<y, in
different vector frames (e,)1<q<, introduced on U,. They are stored as a Python
dictionary whose keys are the vector frames:

(%), ...}

v._components = {(e) : (v?), (&)
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The SageManifolds project

Module classes in SageManifolds

:I native Sage class

SageManifolds class
(algebraic part)

Parent

UniqueRepresentation

SageManifolds class
(differential part)

category: Modules

FiniteRankFreeModule
ring: CommutativeRing

Zategory: Modules Element: FiniteRankFreeModuleElement
category: | VectorFieldModule

Modules | ring: ScalarFieldAlgebra

. Element: VectorField
TensorFieldModule

ring: ScalarFieldAlgebra VECtorFleldFrEEMOdUIe TensorFreeModule
Element: TensorField ring: ScalarFieldAlgebra
Element: VectorFieldFreeParal Element: FreeModuleTensor
TensorFieldFreeModule TangentSpace
ring: ScalarFieldAlgebra ring: SR
Element: TensorFieldParal Element: TangentVector
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The SageManifolds project

Tensor field classes in SageManifolds

I:I native Sage class

SageManifolds class
(algebraic part) “

Element

SageManifolds class
(differential part)

ModuleElement

Parent: Module

TensorField FreeModuleTensor
Parent: TensorFieldModule Parent: TensorFreeModule
VectorField TensorFieldParal FiniteRankFreeModuleElement
Parent: VectorFieldModule Parent: TensorFieldFreeModule| Parent: FiniteRankFreeModule
VectorFieldParal TangentVector
Parent: VectorFieldFreeModule Parent: TangentSpace
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The SageManifolds project

Tensor field storage

TensorField

T

dictionary TensorField. restrictions

ulhon, Michat Bejger

LUTH, CAMK

ageManifolds

domain 1: | Tensorrieldparal domain 2: | TensorFieldparal
U |T),= T“bea®e":T“i)aé®sb:~-~ U, T,
V4
Zz
dictionary TensorFieldParal. components
; Components Components
rame 1: frame 2: &
(Ta ) Té nes
b/1<a,b< & b
(€a) SO (a) b/)1<ab<n
7
dictionary Components._comp
ScalarField ScalarField
1) 1 12): 1 s
T 1 T 2
/I
dictionary ScalarField. express
FunctionChart FunctionChart
chart 1: 1 1 chart 2: 1 1
n n e
(@) | Th@Eh .z | o) [ ThE ™)
| |
Expression Expression
! cosa? (y' + ) cos(y* —y?)
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SageManifolds at work: the Mars-Simon tensor example

Mars-Simon tensor

Definition
Given a 4-dimensional spacetime (M, g) endowed with a Killing vector field &, the
Mars-Simon tensor w.r.t. £ is the type-(0,3) tensor S defined by

‘ Sapy = 4Cuavs §"€" 5] + Yaip Cyjpun & F

where
® Yop i= Agap + Ealp, With X := =&, &

£y

@ Copuy = Copuy + %EWW Clspo, with C%; ., being the Weyl tensor and
€apuv the Levi-Civita volume form
@ Fop = Fup+1"Fup, with F,53 := V{3 (Killing 2-form) and

1
*Fop i= 5e”’”aﬁFW (Hodge dual of F,z)

® 0, 1= 2F,o&" (Ernst 1-form)
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SageManifolds at work: the Mars-Simon tensor example

Mars-Simon tensor

The Mars-Simon tensor provides a nice characterization of Kerr spacetime:

Theorem (Mars, 1999)

If g satisfies the vacuum Einstein equation and (M, g) contains a stationary
asymptotically flat end M such that £ tends to a time translation at infinity in
M and the Komar mass of £ in M*° is non-zero, then

S =0 < (M,g) is locally isometric to a Kerr spacetime
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SageManifolds at work: the Mars-Simon tensor example

Mars-Simon tensor

The Mars-Simon tensor provides a nice characterization of Kerr spacetime:

Theorem (Mars, 1999)

If g satisfies the vacuum Einstein equation and (M, g) contains a stationary
asymptotically flat end M such that £ tends to a time translation at infinity in
M and the Komar mass of £ in M*° is non-zero, then

S =0 < (M,g) is locally isometric to a Kerr spacetime

Let us use SageManifolds...

...to check the < part of the theorem, namely that the Mars-Simon tensor is
identically zero in Kerr spacetime.

o

NB: what follows illustrates only certain features of SageManifolds; other ones,
like the multi-chart and multi-frame capabilities on non-parallelizable manifolds,
are not considered in this example. =—> More examples are provided at
http://sagemanifolds.obspm.fr/examples.html
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SageManifolds at work: the Mars-Simon tensor example

Object-oriented notation

To understand what follows, be aware that

as an object-oriented language, Python (and hence Sage) makes use of the
following postfix notation:

result = object.function(arguments)

In a functional language, this would be written as

result = function(object,arguments)
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SageManifolds at work: the Mars-Simon tensor example

Object-oriented notation

To understand what follows, be aware that

as an object-oriented language, Python (and hence Sage) makes use of the
following postfix notation:

result = object.function(arguments)

In a functional language, this would be written as

result = function(object,arguments)

riem = g.riemann()
lie t.v =t.lie der(v)
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M = Manifold(4, 'M', latex_name=r'\mathcal{M}"')
print M

4-dimensional manifold 'M'
‘We introduce the standard Boyer-Lindquist coordinates as follows:

X.<t,r,th,ph> = M.chart(r't r:(0,+00) th:(0,pi):\theta ph:(0,2%pi):\phi')

print X ; X
chart (M, (t, r, th, ph))
(M, (t, 7,6, )

Metric tensor

The 2 parameters m and a of the Kerr spacetime are declared as symbolic variables:

var('m, a')

(m,a)

Let us introduce the spacetime metric g and set its components in the coordinate frame associated with Boyer-Lindquist coordinates, which is the
current manifold's default frame:

g = M.lorentz metric('g")

rho2 = r*2 + (a*cos(th))"2

Delta = r*2 -2*m*r + a"2

g[0,0] -(1-2*m*r/rho2)

gl0,3] -2*a*m*r*sin(th)"~2/rho2

gl[1,1], gl[2,2] = rho2/Delta, rho2

g[3,3] = (r"2+a~2+2*m*r*(a*sin(th))”~2/rho2)*sin(th)"2
g.view()

2 N 2 2 .
9= (f M)dt@dt—»— (— M)dt®d¢+ (M)drt@ ar+ (azcos(9)2+r2)d9®d9+ (— Zamr st

a?cos (6)°+r? a? cos (6)"+r a’-2mrirt a?cos (0]
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2 ~ 2amrsin ()"

 atcos (8) —2mrer?

0 0
a?cos (8) 42 a? cas (8) 412
a? cos (8)"+r2
0 e 0 0
0 0 o cos(\‘))2 + 0
3 amrsin (6)’ 0 2atmrsin (0)' + (a2 44 (ot +a¥r?) cos (0)°) sin (6)°
a? cos (8) 412 a? cas (8) 412

The Levi-Civita connection V associated with g:

nab = g.connection() ; print nab

Levi-Civita connection 'nabla g' associated with the Lorentzian metric
'g" on the 4-dimensional manifold 'M*

As a check, we verify that the covariant derivative of g with respect to V vanishes identically:
nab(g).view()
Vg =0
Killing vector

The default vector frame on the spacetime manifold is the coordinate basis associated with Boyer-Lindquist coordinates:

M.default frame() is X.frame()

True

X.frame()
4 4 8 a
(v (2.5 5.2))
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Let us consider the first vector field of this frame:

xi = X.frame()[0] ; xi
L2
at
print xi

vector field 'd/dt' on the 4-dimensional manifold 'M'

The 1-form associated to it by metric duality is

xi_form = xi.down(g)
xi_form.set name('xi_form', r'\upderline{\xi}')
print xi_form ; xi_form.view()

1-form 'xi_form' on the 4-dimensional manifold 'M*
(- a2 cos (ﬂ)2722mr+r2 ats (- 2amrsinz(9)! 4o
= a2 cos () +r? a2 cos (6) +r2

Its covariant derivative is

nab xi = nab(xi_form)
print nab xi ; nab xi.view()
tensor field 'nabla g xi form' of type (0,2) on the 4-dimensional

manifold 'M*
2,

= at cos (0)'+2 a2r2 cos (6] at cos (8)"+2 a2 cos (8) 04

Let us check that the Killing equation is satisfied:

nab_xi.symmetrize().view()
0

(8)"+2a2r? cos (6)+

2 . 2
V€ = (w)dt ®dr ( 2ar con(0) i) )dt 281 (7 i cos (0)' e
) e

(am cos

at cos (6)

)dr@dt+
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Equivalently, we check that the Lie derivative of the metric along £ vanishes:

g.lie_der(xi), view()
0

Thank to Killing equation, V £ is antisymmetric. We may therefore define a 2-form by F :

the function antisymmetrize () onnab_xi:

F = - nap_xi.antisymetrize()

F.set_name('F')

print F
Fouiew()

2-form 'F' on the 4-dimensional manifold 'M’

o a?m cos (6)°—mr? atndrs (- 2a?mr cos(6) sin(6)
at cos (6) +2a2r cos () +r a4 cos (6) +2 a?r? cos (6) 4t

= —V €. Here we enforce the antisymmetry by calling

3, 0)?_amr?) sin (8)%
aindg s - (Emee @ e @) (26
a*cos (6) +2 a2 cos (8) +r4 ater

We check that

The squared norm of the Killing vector is:

lamb = - g(xi,xi)
lamb.set name('lambda’, r'\lambda’)

print lamb
Tanb. view()

scalar field 'lambda' on the 4-dimensional manifold 'M*
A M —

a? cos (0)° 2 mr+r2

a? cos (9)"+r2

(t,r,0,8) —
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Instead of invoking g(£,£), we could have evaluated A by means of the 1-form £ acting on the vector field &:

lamb == - xi_form(xi)

True

or, in index notation,

lamb == - ( xi_form['_a'l*xi['"a'l )
True
Curvature

The Riemann curvature tensor associated with g is:
Riem = g.riemann()
print Riem
tensor field 'Riem(g)’' of type (1,3) on the 4-dimensional manifold 'M'

The component an, is

Riem(0,1,2,3]

(a'm—2 aPm?r +a’mr2) cos(6) sin (6) "+ (a'm+2 a¥mr+6 amr—6 abmr+5 a¥mrd) cos(6) sin (8)° =2 (a'm—a¥mr? 5 amrd—_3 amst)

cos(8) sin(#)

02582 mrT4r5+ (a8—2 abmr+a¥r?) cos (6)"+3 (abr2—2 atmrS+airt) cos (6)'+3 (atri—2 a2mrS+a2r9) cos (8)°
The Ricci tensor:
Ric = g.ricci()
print Ric

field of symmetric bilinear forms 'Ric(g)' on the 4-dimensional manifold
M
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Let us check that we are dealing with a solution of Einstein equation:

Ric.view()
Ric(g) =0

The Weyl conformal curvature tensor is

C = g.weyl()
print C

tensor field 'C(g)' of type (1,3) on the 4-dimensional manifold 'M*
Let us exhibit two of its components CDI% and Cnml:

cre,1,2,3]
_ (a'm-2a* mirraimr?) cos(6) sin (6) "+ (aTm+2 a*mPr 6 a*mr?—6 atmtrd+5 a*mrt) cos(8) sin (6)'—2 (a'm—a®mr? —5 a¥mr'—3 ams%) cos(6) sin(6)

a?rf 2 mrt+r8+ (a5~ 2 abmr-+a®r2) cos (6)"+3 (aSr2—2atmrd+a*rt) cos ()" +3 (atrt—2 a?mrs+a2r) cos (6)°

C[6,1,0,1]
3 atmr cos (8)'+3 amrd+ 2 mr (9 atmr+7a2mrd) cos (6)

a2 2mpT 415+ (a5 2 abmr-+adr?) cos (8)°+3 (a5r2 2 atmrd +atrt) cos (8)'+3 (atrt—2 atmrd+a?r5) cos ()

To form the Mars-Simon tensor, we need the fully covariant (type-(0,4) tensor) form of the Weyl tensor (i.e. Caguy = gMCUgW); we get it by
lowering the first index with the metric:

¢d = C.down(g)
print ¢d
tensor field of type (0,4) on the 4-dimensional manifold 'M"

The (monoterm) symmetries of this tensor are those inherited from the Weyl tensor, i.e. the antisymmetry on the last two indices (position 2 and 3,
the first index being at position 0):
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The (monoterm) symmetries of this tensor are those inherited from the Weyl tensor, i.e. the antisymmetry on the last two indices (position 2 and 3,
the first index being at position 0):

cd.symmetries()
no symmetry; antisymmetry: (2, 3)

Actually, Cd is also antisymmetric with respect to the first two indices, as we can check:

Cd == Cd.antisymmetrize((®,1))
True

To take this symmetry into account explicitely, we set

Cd = Cd.antisymnetrize((0,1))

Hence we have now

d.symmetries()
no symmetry; antisymmetries: [(@, 1), (2, 3)]

Mars-Simon tensor
The Mars-Simon tensor with respect to the Killing vector £ is a rank-3 tensor introduced by Marc Mars in 1999 (Class. Quantum Grav. 16, 2507).
It has the remarkable property to vanish identically if, and only if, the spacetime (M, g) is locally isometric to a Kerr spacetime.
Let us evaluate the Mars-Simon tensor by following the formulas given in Mars' article. The starting point is the self-dual complex 2-form
associated with the Killing 2-form F, i.e. the ohject F := F 4 i *F, where * F is the Hodge dual of F":

FE = F + I * F.hodge star(g)

FE.set_name('FF', r'\mathcal{F}') ; print FF

2-form 'FF' on the 4-dimensional manifold 'M'
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[ SM_Mars-Simon - Sage

FE.view()

F_ (_ a?m cos (9)2+2iamrcus(9) : )d“\dr+ ((ia’m cos (6)" 2 a?mr cos(6) —i amr) sinf6) )dt g (,4,-a4mzr2 cos(8) sin (6) "+ (a¥mrt 2 am?
+7

at cos (8)" +2a2r? cos () at cos (8)" +2 a?r? cos (8) +rt a5 2

Let us check that F is self-dual, i.e. that it obeys *F = —iF:

FF.hodge star(g) == - I * FF

True

Let us form the right self-dual of the Weyl tensor as follows

Copur = Capv + 5 fmiv Coagps

where €’ is associated to the Levi-Civita tensor €,q,, and is obtained by

eps = g.volume_form(2) # 2
print eps
eps.symmetries()

tensor field of type (2,2) on the 4-dimensional manifold 'M'
no symmetry; antisymmetries: [(@, 1), (2, 3)]

the first 2 indices are contravariant

The right self-dual Weyl tensor is then:
CC = Cd + I/2%( ¢ wQW['“rs; LRGN arst] )
CC.set | _name('CC', r \mathcal{c} ) w cC
tensor field 'CC' of type (0,4) on the 4-dimensional manifold 'M'

CC.symmetries()
no symmetry; antisymmetries: [(0, 1), (2, 3)]

CC[o,1,2,3]
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ccre,1,2,3]

(a¥m cos (6)"+3i abrur cos (8)"+3i a2mr®+2i mr’— (3 a¥m+5 a¥mr?) cos ()" +(~9% amr—7i a*mr®) cos (6)"+3 (3 a¥mr®+2 amr) cos(6) ) sin(6)

a cos (8) +3a'r? cos () +3 a?r cas (6) +¢
The Ernst 1-form 0, = 2.F 4 £" (0 = contraction on the first index of F):

sigma = 2*FF.contract(0, xi)

Instead of invoking the function contract (), we could have used the index notation to denote the contraction:

sigma == 2*( EE['_ma']*xi['"m'] )

True
sigma.set name('sigma’, r'\sigma’) ; print sigma
sigma.view()

1-form 'sigma' on the 4-dimensional manifold 'M’

o (7 zazmm(g)hmm,m(g)_zm,z) oy [[(imens @t o) tame)snl0) )

at cos ()42 a2r? cos (6) +r4 atcos (6)"+2a2r? cos () +14
The symmetric bilinear formy = Ag+ £ & &:

gamma = lamb*g + xi form * xi form
gamma.set _pame('gamma’, r'\gamma‘) ; print gamma
gamma. yiew()

field of symmetric bilinear forms 'gamma’ on the 4-dimensional manifold
M

2a?mr sin (0)'~ (2 a?mr—a?r +2mr —rt~(a*+ar?) cos ()”) s (6)"

a? cos (6)"+r2

d¢

a?—2mr+r?

2 2 2
= (M)drc@drnt (0.2005(9)2 - 2m7‘+7‘2)d9®d9+
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Final computation leading to the Mars-Simon tensor:

First, we evaluate
1
50 = 1€ £ 0,

1 = 4%( CC.contract(®,xi).contract(l,xi) ) * sigma
print S1

tensor field of type (0,3) on the 4-dimensional manifold 'M"

Then we form the tensor

2
Sif’r)'r = Yag Cypur & F

by first computing C.,,,,, £

XxiCC = CC['_.r..'"]*xi['"r']
print xiCC

tensor field of type (0,3) on the 4-dimensional manifold 'M'
and evaluating F* = g"“gﬂ"fw:

FFuu = FF.up(g)

‘We use the index notation to perform the double contraction C.,p#,,}- e,

52 = gamma * ( xiCC['_.mn'1*FFuu["~mn'] )
print s2
52.synmetries ()

tensor field of type (0,3) on the 4-dimensional manifold 'M"
symmetry: (0, 1); no antisymmetry
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The Mars-Simon tensor with respect to £ is obtained by antisymmetrizing S5 (1) and $® on their last two indices and adding them:

S S 1 S 2
ap c(x:;zh{ c(x:;)%:
‘We use the index notation for the antisymmetrization:

S1A
S2A

[}
—

An equivalent writing would have been (the last two indices being in position 1 and 2):

# S1A = Sl.antisymmetrize((1,2))
# S2A = S2.antisymmetrize((1,2))

The Mars-Simon tensor is

S = S1A + S2A

.set_name('S') ; print S

-symmetries()
tensor field 'S' of type (8,3) on the 4-dimensional manifold 'M*
no symmetry; antisymmetry: (1, 2)

wn

w

view()
S=0

‘We thus recover the fact that the Mars-Simon tensor vanishes identically in Kerr spacetime.

To check that the above computation was not trival, here is the component 112=rrg for each of the two parts of the Mars-Simon tensor:

S1A[1,1,2]
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2] SM_Mars-Simon - Sage

The Mars-Simon tensor is

S = S1A + S2A

S.set_name('S') ; print S
S.symmetries()
tensor field 'S' of type (0,3) on the 4-dimensional manifold "M’
no symmetry; antisymmetry: (1, 2)
S.yiew()

S=0
‘We thus recover the fact that the Mars-Simon tensor vanishes identically in Kerr spacetime.
To check that the above computation was not trival, here is the component 112=rr@ for each of the two parts of the Mars-Simon tensor:

SI1A[1,1,2]
Smdpd

(4a%m? cos (6)"+20i a’mr cos (6)°—8i wm*sP+4i am?’ 4 (2 a®mr+0a®m?r?) cos (6)°+(—40i a®mir? 20 a¥m?r%) cos (6)'+20 (4a'mir® —a'm?r!) cos (8)" (80 amr'-

2102 mpll 4124 (gl 2 almr-+al972) cos (8)"+5 (al9r2 2 aSmrs-+a5rt) cos (8)°+10 (aBr— 2 aSmrs-+a5r5) cos (8)°+10 (abr5 2 atmrT+atrs) cos (

S2A[1,1,2]
(4 aSm? cos ()" +20i a’m?r cos (6)° —8i am®r® +4i am®7—4 (2a5m3r+9 abm?r2) cos (6)"+(—40i aPm3? 20 a¥m?2r®) cos (8)'+20 (4 a*mr3—a*m?r4) cos (8)°+(80i a®m’r—36

a2r10_2 mrll 47124+ (al2-2 al0mr-+ai9r2) cos (8) " +5 (al9r2—2aSmrd+a5rt) cos (6)°+10 (aSri—2 aSmyS-+abrd) cos (8)°+10 (abrd—2 almr+airs) cos (6)

S1A[1,1,2] + S2A[1,1,2]
0

evaluate
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Conclusion and perspectives
Conclusion and perspectives

o SageManifolds is a work in progress
~ 34,000 lines of Python code up to now (including comments and doctests)

@ A preliminary version (v0.5) is freely available (GPL) at
http://sagemanifolds.obspm.fr/
and the development version (to become v0.6 soon) is available from the Git
repository https://github.com/sagemanifolds/sage

o Already present:

e maps between manifolds, pullback operator

e submanifolds, pushforward operator

standard tensor calculus (tensor product, contraction, symmetrization, etc.),
even on non-parallelizable manifolds

all monoterm tensor symmetries

exterior calculus, Hodge duality

Lie derivatives

affine connections, curvature, torsion

pseudo-Riemannian metrics, Weyl tensor

Eric Gourgoulhon, Michat Bejger (LUTH, CAMK) SageManifolds ERE2014, Valencia, 2 Sept. 2014 43 / 44


http://sagemanifolds.obspm.fr/
https://github.com/sagemanifolds/sage

Conclusion and perspectives
Conclusion and perspectives

e Not implemented yet (but should be soon):

e extrinsic geometry of pseudo-Riemannian submanifolds
e computation of geodesics (numerical integration via Sage/GSL or Gyoto)
e integrals on submanifolds

e To do:

e add more graphical outputs

e add more functionalities: symplectic forms, fibre bundles, spinors, variational
calculus, etc.

e connection with Lorene, CoCoNuT, ...

Want to join the project or simply to stay tuned?

visit http://sagemanifolds.obspm.fr/
(download page, documentation, example worksheets, mailing list)
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