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Computer differential geometry and tensor calculus

Introduction

Computer algebra system (CAS) started to be developed in the 1960’s; for
instance Macsyma (to become Maxima in 1998) was initiated in 1968 at MIT

In 1965, J.G. Fletcher develop the GEOM program, to compute the Riemann
tensor of a given metric

In 1969, during his PhD under Pirani supervision at King’s College, Ray
d’Inverno wrote ALAM (Atlas Lisp Algebraic Manipulator) and used it
to compute the Riemann tensor of Bondi metric. The original calculations
took Bondi and his collaborators 6 months to go. The computation with
ALAM took 4 minutes and yield to the discovery of 6 errors in the original
paper [J.E.F. Skea, Applications of SHEEP (1994)]

In the early 1970’s, ALAM was rewritten in the LISP programming language,
thereby becoming machine independent and renamed LAM

The descendant of LAM, called SHEEP (!), was initiated in 1977 by Inge Frick

Since then, many softwares for tensor calculus have been developed...
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Computer differential geometry and tensor calculus

An example of modern software: The xAct suite

Free packages for tensor computer algebra in Mathematica, developed by José
Mart́ın-Garćıa et al. http://www.xact.es/

xCore

Mathematica tools

xPerm

Permutation Group theory

xTensor

Abstract tensor algebra

Invar
"Riemann tensor Invariants"

J.M. Martín-García, 

R. Portugal and D. Yllanes.

Spinors
"Spinor calculus in GR"

A. García-Parrado and

J.M. Martín-García.

xCoba
"Component tensor algebra"

J.M. Martín-García and 

D. Yllanes.

xPert
"Perturbation theory"

D. Brizuela, J.M. Martín-García

and G. Mena Marugán.

Harmonics
  "Tensor spherical harmonics"

D. Brizuela, J.M. Martín-García

and G. Mena Marugán.

The xAct system

SymManipulator
"Symmetrized tensor expressions"

T. Bäckdahl.

xperm.c

C-language module

M
athLink

xPrint

"Graphical front-end"

A. Stecchina.

[Garćıa-Parrado Gómez-Lobo & Mart́ın-Garćıa, Comp. Phys. Comm. 183, 2214 (2012)]
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Computer differential geometry and tensor calculus

Software for differential geometry

Packages for general purpose computer algebra systems:

xAct free package for Mathematica [J.-M. Martin-Garcia]

Ricci free package for Mathematica [J. L. Lee]

MathTensor package for Mathematica [S. M. Christensen & L. Parker]

DifferentialGeometry included in Maple [I. M. Anderson & E. S. Cheb-Terrab]

Atlas 2 for Maple and Mathematica

· · ·

Standalone applications:

SHEEP, Classi, STensor, based on Lisp, developed in 1970’s and 1980’s (free)
[R. d’Inverno, I. Frick, J. Åman, J. Skea, et al.]

Cadabra field theory (free) [K. Peeters]

SnapPy topology and geometry of 3-manifolds, based on Python (free) [M.

Culler, N. M. Dunfield & J. R. Weeks]

· · ·

cf. the complete list at http://www.xact.es/links.html
Éric Gourgoulhon (LUTH) SageManifolds IAP, Paris, 18 May 2015 6 / 36
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Computer differential geometry and tensor calculus

Sage in a few words

Sage (SageMath) is a free open-source mathematics software system

it is based on the Python programming language

it makes use of many pre-existing open-sources packages, among which

Maxima (symbolic calculations, since 1968!)
GAP (group theory)
PARI/GP (number theory)
Singular (polynomial computations)
matplotlib (high quality 2D figures)

and provides a uniform interface to them

William Stein (Univ. of Washington) created Sage in 2005; since then, ∼100
developers (mostly mathematicians) have joined the Sage team

The mission

Create a viable free open source alternative to Magma, Maple, Mathematica and
Matlab.
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Computer differential geometry and tensor calculus

Some advantages of Sage

Sage is free

Freedom means

1 everybody can use it, by downloading the software from
http://sagemath.org

2 everybody can examine the source code and improve it

Sage is based on Python

no need to learn any specific syntax to use it

easy access for students

Python is a very powerful object oriented language, with a neat syntax

Sage is developing and spreading fast

...sustained by an important community of developers

Éric Gourgoulhon (LUTH) SageManifolds IAP, Paris, 18 May 2015 8 / 36
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Computer differential geometry and tensor calculus

Object-oriented notation in Python

As an object-oriented language, Python (and hence Sage) makes use of the
following postfix notation (same in C++, Java, etc.):

result = object.function(arguments)

In a procedural language, this would be written as

result = function(object,arguments)

Examples

1. riem = g.riemann()

2. lie t v = t.lie der(v)

NB: no argument in example 1
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Computer differential geometry and tensor calculus

Sage approach to computer mathematics

Sage relies on a Parent / Element scheme: each object x on which some
calculus is performed has a “parent”, which is another Sage object X representing
the set to which x belongs.
The calculus rules on x are determined by the algebraic structure of X.
Conversion rules prior to an operation, e.g. x+ y with x and y having different
parents, are defined at the level of the parents

Example

sage: x = 4 ; x.parent()

Integer Ring

sage: y = 4/3 ; y.parent()

Rational Field

sage: s = x + y ; s.parent()

Rational Field

sage: y.parent().has_coerce_map_from(x.parent())

True

This approach is similar to that of Magma and is different from that of
Mathematica, in which everything is a tree of symbols
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Computer differential geometry and tensor calculus

The Sage book

by A. Casamayou, N. Cohen, G. Connan,
T. Dumont, L. Fousse, F. Maltey, M. Meulien,
M. Mezzarobba, C. Pernet, N.M. Thiéry &
P. Zimmermann (2013)

Released under Creative Commons license:

freely downloadable from
http://sagebook.gforge.inria.fr/

printed copies can be ordered at moderate
price (10 e)
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Computer differential geometry and tensor calculus

Differential geometry in Sage

Sage is well developed in many domains of mathematics but not too much in the
area of differential geometry:

Already in Sage

differential forms on an open subset of Euclidean space (with a fixed set of
coordinates) (J. Vankerschaver)

parametrized 2-surfaces in 3-dim. Euclidean space (M. Malakhaltsev, J.
Vankerschaver, V. Delecroix)

hyperbolic geometry (models of H2 without explicitly specifying the metric)
(G.Laun, V. Delecroix, M. Raum) (since Sage 6.6)
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The SageManifolds project

The SageManifolds project

http://sagemanifolds.obspm.fr/

Aim

Implement real smooth manifolds of arbitrary dimension in Sage and tensor
calculus on them, in a coordinate/frame-independent manner

In particular:

one should be able to introduce an arbitrary number of coordinate charts on
a given manifold, with the relevant transition maps

tensor fields must be manipulated as such and not through their components
with respect to a specific (possibly coordinate) vector frame

Concretely, the project amounts to creating new Python classes, such as
Manifold, Chart, TensorField or Metric, within Sage’s Parent/Element
framework.
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The SageManifolds project

Implementating manifolds and their subsets

UniqueRepresentation Parent

ManifoldSubset

category: Sets()

ManifoldOpenSubset

Manifold
element: ManifoldPoint

Submanifold RealLine

Element

ManifoldPoint

Native Sage class

SageManifolds class
(differential part)
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The SageManifolds project

Implementing coordinate charts

Given a (topological) manifold M of dimension n ≥ 1, a coordinate chart is a
homeomorphism ϕ : U → V , where U is an open subset of M and V is an open
subset of Rn.
Coordinate charts are implemented in SageManifolds via the class Chart, whose
main data is U and a n-tuple of Sage symbolic variables x, y, ..., each of them
representing a coordinate.

In general, more than one chart is required to cover the entire manifold:

Examples:

at least 2 charts are necessary to cover the n-dimensional sphere Sn (n ≥ 1)
and the torus T2

at least 3 charts are necessary to cover the real projective plane RP2

In SageManifolds, an arbitrary number of charts can be introduced

To fully specify the manifold, one shall also provide the transition maps on
overlapping chart domains (SageManifolds class CoordChange)
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The SageManifolds project

Implementing coordinate charts

Given a (topological) manifold M of dimension n ≥ 1, a coordinate chart is a
homeomorphism ϕ : U → V , where U is an open subset of M and V is an open
subset of Rn.
Coordinate charts are implemented in SageManifolds via the class Chart, whose
main data is U and a n-tuple of Sage symbolic variables x, y, ..., each of them
representing a coordinate.

In general, more than one chart is required to cover the entire manifold:

Examples:

at least 2 charts are necessary to cover the n-dimensional sphere Sn (n ≥ 1)
and the torus T2

at least 3 charts are necessary to cover the real projective plane RP2

In SageManifolds, an arbitrary number of charts can be introduced

To fully specify the manifold, one shall also provide the transition maps on
overlapping chart domains (SageManifolds class CoordChange)
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The SageManifolds project

Implementing scalar fields

A scalar field on manifold M is a smooth mapping

f : U ⊂M −→ R
p 7−→ f(p)

where U is an open subset of M .

A scalar field maps points, not coordinates, to real numbers
=⇒ an object f in the ScalarField class has different coordinate
representations in different charts defined on U .

The various coordinate representations F , F̂ , ... of f are stored as a Python
dictionary whose keys are the charts C, Ĉ, ...:

f. express =
{
C : F, Ĉ : F̂ , . . .

}

with f( p︸︷︷︸
point

) = F ( x1, . . . , xn

︸ ︷︷ ︸
coord. of p
in chart C

) = F̂ ( x̂1, . . . , x̂n

︸ ︷︷ ︸
coord. of p
in chart Ĉ

) = . . .
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The SageManifolds project

The scalar field algebra

Given an open subset U ⊂M , the set C∞(U) of scalar fields defined on U has
naturally the structure of a commutative algebra over R:

1 it is clearly a vector space over R
2 it is endowed with a commutative ring structure by pointwise multiplication:

∀f, g ∈ C∞(U), ∀p ∈ U, (f.g)(p) := f(p)g(p)

The algebra C∞(U) is implemented in SageManifolds via the class
ScalarFieldAlgebra.
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The SageManifolds project

Classes for scalar fields

UniqueRepresentation Parent

ScalarFieldAlgebra
ring: SR

element: ScalarField

category: CommutativeAlgebras(SR)

CommutativeAlgebraElement

ScalarField
parent: ScalarFieldAlgebra

Native Sage class

SageManifolds class
(differential part)
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The SageManifolds project

Vector field modules

Given an open subset U ⊂M , the set X (U) of smooth vector fields defined on U
has naturally the structure of a module over the scalar field algebra C∞(U).

Reminder from linear algebra

A module is ∼ vector space, except that it is based on a ring (here C∞(U))
instead of a field (usually R or C in physics)

An importance difference: a vector space always has a basis, while a module does
not necessarily have any

→ A module with a basis is called a free module

Éric Gourgoulhon (LUTH) SageManifolds IAP, Paris, 18 May 2015 20 / 36
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Éric Gourgoulhon (LUTH) SageManifolds IAP, Paris, 18 May 2015 20 / 36



The SageManifolds project

Vector field modules

X (U) is a free module ⇐⇒ U admits a global vector frame (ea)1≤a≤n:

∀v ∈ X (U), v = vaea, with va ∈ C∞(U)

At any point p ∈ U , the above translates into an identity in the tangent vector
space TpM :

v(p) = va(p) ea(p), with va(p) ∈ R

Example:

If U is the domain of a coordinate chart (xa)1≤a≤n, X (U) is a free module of
rank n over C∞(U), a basis of it being the coordinate frame (∂/∂xa)1≤a≤n.
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The SageManifolds project

Parallelizable manifolds

M is a parallelizable manifold ⇐⇒ M admits a global vector frame
⇐⇒ X (M) is a free module
⇐⇒ M ’s tangent bundle is trivial:

TM 'M × Rn

Examples of parallelizable manifolds

Rn (global coordinate charts ⇒ global vector frames)

the circle S1 (NB: no global coordinate chart)

the torus T2 = S1 × S1

the 3-sphere S3 ' SU(2), as any Lie group

the 7-sphere S7

any orientable 3-manifold (Steenrod theorem)

Examples of non-parallelizable manifolds

the sphere S2 (hairy ball theorem!) and any n-sphere Sn with n 6∈ {1, 3, 7}
the real projective plane RP2
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The SageManifolds project

Implementing vector fields

Ultimately, in SageManifolds, vector fields are to be described by their
components w.r.t. various vector frames.

If the manifold M is not parallelizable, we assume that it can be covered by a
finite number N of parallelizable open subsets Ui (1 ≤ i ≤ N) (OK for M
compact). We then consider restrictions of vector fields to these domains:

For each i, X (Ui) is a free module of rank n = dimM and is implemented in
SageManifolds as an instance of VectorFieldFreeModule, which is a subclass of
FiniteRankFreeModule.

Each vector field v ∈ X (Ui) has different set of components (va)1≤a≤n in
different vector frames (ea)1≤a≤n introduced on Ui. They are stored as a Python
dictionary whose keys are the vector frames:

v. components = {(e) : (va), (ê) : (v̂a), . . .}
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The SageManifolds project

Module classes in SageManifolds

UniqueRepresentation Parent

VectorFieldModule
ring: ScalarFieldAlgebra

element: VectorField

ca
te
go
ry
:

M
o
d
u
le

s

TensorFieldModule
ring: ScalarFieldAlgebra

element: TensorField

ca
teg

or
y:

M
odules

VectorFieldFreeModule
ring: ScalarFieldAlgebra

element: VectorFieldParal

TensorFieldFreeModule
ring: ScalarFieldAlgebra

element: TensorFieldParal

FiniteRankFreeModule
ring: CommutativeRing

element: FiniteRankFreeModuleElement

TensorFreeModule
element:

FreeModuleTensor

TangentSpace
ring: SR

element:

TangentVector

category:
M

odules

Native Sage class

SageManifolds class
(algebraic part; in Sage 6.6)

SageManifolds class
(differential part)
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The SageManifolds project

Tensor field classes

TensorField
parent:

TensorFieldModule

VectorField
parent:

VectorFieldModule

TensorFieldParal
parent:

TensorFieldFreeModule

VectorFieldParal
parent:

VectorFieldFreeModule

FreeModuleTensor
parent:

TensorFreeModule

FiniteRankFreeModuleElement
parent:

FiniteRankFreeModule

TangentVector
parent:

TangentSpace

Element

ModuleElement
parent: Module

Native Sage class

SageManifolds class
(algebraic part; in Sage 6.6)

SageManifolds class
(differential part)
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The SageManifolds project

Tensor field storage

TensorField

T

dictionary TensorField. restrictions

domain 1:
U1

TensorFieldParal

T |U1
= T a

bea ⊗ eb = T â
b̂
εâ ⊗ εb̂ = . . .

domain 2:
U2

TensorFieldParal

T |U2

. . .

dictionary TensorFieldParal. components

frame 1:
(ea)

Components

(T a
b)1≤a, b≤n

frame 2:
(εâ)

Components

(T â
b̂
)1≤â, b̂≤n

. . .

dictionary Components. comp

(1, 1) :
ScalarField

T 1
1

(1, 2) :
ScalarField

T 1
2

. . .

dictionary ScalarField. express

chart 1:
(xa)

FunctionChart

T 1
1

(
x1, . . . , xn

) chart 2:
(ya)

FunctionChart

T 1
1

(
y1, . . . , yn

) . . .

Expression

x1 cosx2
Expression(
y1 + y2

)
cos

(
y1 − y2

)
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Concrete examples: S2 and Kerr spacetime
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Concrete examples: S2 and Kerr spacetime

The 2-sphere example

Stereographic coordinates on the
2-sphere

Two charts:

X1: S2 \ {N} → R2

X2: S2 \ {S} → R2

← picture obtained via function
Chart.plot()

See the worksheet at
http://sagemanifolds.obspm.fr/examples/html/SM_sphere_S2.html
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Concrete examples: S2 and Kerr spacetime

The 2-sphere example

Vector frame associated
with the stereographic
coordinates (x, y) from the
North pole

∂
∂x

∂
∂y

← picture obtained via
function
VectorField.plot()
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Concrete examples: S2 and Kerr spacetime

The 2-sphere example

A curve in S2: a loxodrome and
its tangent vector field

← picture obtained via functions
ManifoldCurve.plot() and
VectorField.plot()

See the worksheet at
http://sagemanifolds.obspm.fr/examples/html/SM_sphere_S2.html

Éric Gourgoulhon (LUTH) SageManifolds IAP, Paris, 18 May 2015 30 / 36

http://sagemanifolds.obspm.fr/examples/html/SM_sphere_S2.html


Concrete examples: S2 and Kerr spacetime

The Kerr spacetime example

See the full worksheet at
http://sagemanifolds.obspm.fr/examples/html/SM_Kerr.html

See also http://sagemanifolds.obspm.fr/examples/html/SM_Kerr_Newman.html
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Conclusion and perspectives

Conclusion and perspectives

SageManifolds is a work in progress
∼ 51,000 lines of Python code up to now (including comments and doctests)

A preliminary version (v0.8) is freely available (GPL) at
http://sagemanifolds.obspm.fr/

and the development version is available from the Git repository
https://github.com/sagemanifolds/sage
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Conclusion and perspectives

Current status

Already present (v0.8):

maps between manifolds, pullback operator

submanifolds, pushforward operator

curves in manifolds

standard tensor calculus (tensor product, contraction, symmetrization, etc.),
even on non-parallelizable manifolds

all monoterm tensor symmetries

exterior calculus (wedge product, exterior derivative, Hodge duality)

Lie derivatives of tensor fields

affine connections, curvature, torsion

pseudo-Riemannian metrics, Weyl tensor

some plotting capabilities (charts, points, curves, vector fields)

parallelization (on tensor components) of CPU demanding computations, via
the Python library multiprocessing
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Conclusion and perspectives

Current status

Not implemented yet (but should be soon):

extrinsic geometry of pseudo-Riemannian submanifolds
computation of geodesics (numerical integration via Sage/GSL or Gyoto)
integrals on submanifolds

Future prospects:

add more graphical outputs
add more functionalities: symplectic forms, fibre bundles, spinors, variational
calculus, etc.
connection with numerical relativity: using Sage to explore
numerically-generated spacetimes
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Conclusion and perspectives

Integration into Sage

SageManifolds is aimed to be fully integrated into Sage

The algebraic part (tensors on free modules of finite rank) has been
submitted to Sage Trac as ticket #15916 and got a positive review
=⇒ integrated in Sage 6.6

The differential part will be split in various tickets for submission to Sage
Trac; meanwhile, one has to download it from
http://sagemanifolds.obspm.fr/

Acknowledgements: the SageManifolds project has benefited from many
discussions with Sage developers around the world, and especially in Paris area

Want to join the project or simply to stay tuned?

visit http://sagemanifolds.obspm.fr/
(download page, documentation, example worksheets, mailing list)

Éric Gourgoulhon (LUTH) SageManifolds IAP, Paris, 18 May 2015 36 / 36

http://trac.sagemath.org/ticket/15916
http://sagemanifolds.obspm.fr/
http://wiki.sagemath.org/GroupeUtilisateursParis
http://sagemanifolds.obspm.fr/

	Computer differential geometry and tensor calculus
	The SageManifolds project
	Concrete examples: S2 and Kerr spacetime
	Conclusion and perspectives

