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SageMath in a few words

SageMath (nickname: Sage) is a free open-source computer algebra system
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GR computations with SageMath GR22, Valencia, 11 July 2019 2/15


http://sagemath.org

SageMath in a few words

SageMath (nickname: Sage) is a free open-source computer algebra system

SageMath is free (GPL v2)

Freedom means

© everybody can use it, by downloading the software from
http://sagemath.org

@ everybody can examine the source code and improve it

SageMath is based on Python
@ no need to learn any specific syntax to use it
o Python is a very powerful object oriented language, with a neat syntax
o SageMath benefits from the Python ecosystem (e.g. Jupyter notebook)

GR computations with SageMath GR22, Valencia, 11 July 2019 2/15


http://sagemath.org

SageMath in a few words

SageMath (nickname: Sage) is a free open-source computer algebra system

SageMath is free (GPL v2)

Freedom means

© everybody can use it, by downloading the software from
http://sagemath.org

@ everybody can examine the source code and improve it

SageMath is based on Python
@ no need to learn any specific syntax to use it
o Python is a very powerful object oriented language, with a neat syntax
o SageMath benefits from the Python ecosystem (e.g. Jupyter notebook)

SageMath is developed by an enthusiastic community
@ mostly composed of mathematicians

o welcoming newcomers
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Tensor calculus with SageMath

SageMath is well developed in group theory and graph theory
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Tensor calculus with SageMath

SageMath is well developed in group theory and graph theory

SageManifolds project: extends SageMath towards differential geometry and
tensor calculurrsr_

// - T—
=~ >
\ Iy = /
/ @ https://sagemanifolds.obspm.fr
o fully included in SageMath
@ ~ 15 contributors (developers and reviewers)
) . cf. https://sagemanifolds.obspm.fr/
\\ P authors.html
N '

o dedicated mailing list

N )
My
\\/ @ help: https://ask.sagemath.org

Stereographic-coordinate frame on S2

Everybody is very welcome to contribute
— visit https://sagemanifolds.obspm.fr/contrib.html J
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Current status

Already present (SageMath 8.8):

differentiable manifolds: tangent spaces, vector frames, tensor fields, curves,
pullback and pushforward operators, submanifolds

standard tensor calculus (tensor product, contraction, symmetrization, etc.),
even on non-parallelizable manifolds, and with all monoterm tensor
symmetries taken into account

Lie derivatives of tensor fields

differential forms: exterior and interior products, exterior derivative, Hodge
duality

multivector fields: exterior and interior products, Schouten-Nijenhuis bracket
affine connections (curvature, torsion)
pseudo-Riemannian metrics

computation of geodesics (numerical integration)
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Current status

Already present (cont’d):

@ some plotting capabilities (charts, points, curves, vector fields)

parallelization (on tensor components) of CPU demanding computations

@ extrinsic geometry of pseudo-Riemannian submanifolds

@ tensor series expansions

Future prospects:

more symbolic backends (Giac, FriCAS, ...)
more graphical outputs

symplectic forms, fibre bundles, spinors, integrals on submanifolds, variational
calculus, etc.

connection with numerical relativity: use SageMath to explore
numerically-generated spacetimes
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A short example:

In [1]:

In [2]:

In [3]:

Out[3]:

Near-horizon geometry of the extremal Kerr black hole

This notebook derives the near-horizon geometry of the extremal (i.e. maximally spinning) Kerr black hole. It is based on
SageMath tools developed through the SageManifolds project.

First we set up the notebook to display maths using LaTeX rendering and to perform computations in parallel on 8 threads:

sdisplay latex
Parallelism().set(nproc=8)

Spacetime manifold

We declare the Kerr spacetime (or more precisely the part of it covered by Boyer-Lindquist coordinates) as a 4-dimensional
Lorentzian manifold A :

M = Manifold(4, 'M', latex_name=r'\mathcal{M}', structure='Lorentzian')

print (M)

4-dimensional Lorentzian manifold M
We then introduce the standard Boyer-Lindquist coordinates (7. r, 6, ¢) as a chart BL (for Boyer-Lindquist) on M:

BL.<t,r,th,ph> = M.chart(r"t r th:(0,pi):\theta ph:(0,2*pi):periodic:\phi")
print(BL); BL
Chart (M, (t, r, th, ph))

(M, (1, r,6.))
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Metric tensor of the extremal Kerr spacetime

The metric is set by its compaonents in the coordinate frame associated with Boyer-Lindquist coordinates, which is the
current manifold's default frame:

In [4]: = var('m', domain='real"')

=m # extremal Kerr

ho2 = r*2 + (a*cos(th))"2

elta = r2 -2*m*r + a"2

g[e,08] = -(1-2*m*r/rho2)

g[0,3] = -2*a*m*r*sin(th)~2/rho2

gl1,1], gl2,2] = rho2/Delta, rho2

gl3,3]1 = (r~2+a~2+2*m*r*(a*sin(th))}~2/rho2)*sin(th)~2

g.display()

out[4]: 2 2 mlrsi 2 5 2
g= (7 - 1)d,®dr+ Qm)mdw (w)mdr
m?cos (6)° + r? m2 cos (6)° + r? m? = 2mr+ r?

) 2 mrsin (@) 2mPrsin(0) 2.2
+ (mcos (@) +r7) O @ d6 + (7%) dp @ di + (M + +r“) sin(6)°dgp
m?cos (6)” + r? m?cos (0) + r?
®dp

Check that we are dealing with a solution of the vacuum Einstein equation:

In [5]: g.ricci().display()
Out[5]: Ric(g)=0
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In [6]:

Out[6]:

In [7]:

Qut[7]:

Near-horizon coordinates

Let us introduce the chart NH of the near-horizon coordinates (7, r, 6, 1]_'1):

NH.<tb, rb, th,phb> = M.chart(r"tb:\bar{t} rb:\bar{r} th:(0,pi):\theta phb:(0,2*pi):periodic:)
print(NH)
NH

Chart (M, (tb, rb, th, phb))
(M.(EF.6.4))

Following J. Bardeen and G. T. Horowitz, Phys. Rev. D 60, 104030 (1999}, the near-horizon coordinates (7, r, &, &) are
related to the Boyer-Lindquist coordinates by
_ _ r—m - t
r=e¢t, r= , =0, ¢p=¢p-——,
€ 2m
where € is a constant parameter. The horizon of the extremal Kerr black hole is located at ¥ = 1, which corresponds to
r=0.

We implement the above relations as a transition map from the chart BL to the chart NH :

eps = var('eps', latex_name=r'\epsilon')
BL_to_NH = BL.transition_map(NH, [eps*t, (r-m)/eps, th, ph - t/(2*m)])
BL_to_NH.display()

I = et
= m—r
Fo= 4
€
g = 0
,2, = R
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The inverse relation is

In [8]: BL_to NH.inverse().display()

out[8]: [, - L
r = €er+m
0 = 0
¢ _ 2 emi

2em

The metric components with respect the coordinates (7, , 9,:})] are computed by passing the chart NH to the method
display() :

In [9]: g.display(NH)

out[9]: PP cos () — 2 F — demP = 3m’F + (EF +demP +6m>F)cos(0) \
8= df @ dr

4 (e’zmzi'?' + m* cos (0)° + 2 em’F + m*)

( em®F sin (!9)4 - (s"ﬂ‘f’ +4mP +8em’ P +4 rﬁij‘?) sin (6’)2
+ -

2 (e‘-’-rm‘j +m? COS(H): +2em’r + m3)

)df@dz}&

=2

+ ( 272 + m? cos(6)” + 2emr + m?
r

) dF @ dF + (77" + m” cos(0) + 2emF +m ) d0 @ do

em®2 sin (6)* — (5‘3)74 +4etmiP + Semit + 4 rﬁJT‘F) sin(6)* _ _
+( - d¢p ® dr

2 (2mi + m® cos (0 + 2 em’F + m®)

€ m’i sin (t'))4 — (e.‘}‘?"1 +4EmP +8Em P +8em’r + 4 m“‘) sin (19)2
+
272 4+ m? cos (0) + 2emi + m?

)d&@d&

GR computations with SageMath 11 July 2019 9/15



From now on, we use the near-horizon coordinates as the default ones on the spacetime manifold:

In [10]: M.set default chart(NH)
M.set_default frame(NH.frame())

The near-horizon metric /1 as the limit e — 0 of the Kerr metric g

Let us define the near-horizon metric as the metric 1 on M that is the limit € — O of the Kerr metric &. The limit is taken
by asking for a series expansion of g with respect to € up to the 0-th order (i.e. keeping only 6‘0 terms). This is acheived via
the method truncate :

In [11]: h = M.lorentzian_metric('h')
h.set(g.truncate(eps, 0))
h.display()

Out[11]: -2 4 -2 2 _ 72 —gi 2 _ 2 2 2
P cos(0) +67 c:)s(é') 37 df®df+( 2rsm1(6‘) )df®d¢:+ (m COS(&? +m )d?@d?
4 (m? cos(8) +m?) cos(f) + 1 s

= 2 2 Gin (2
+ (mPcos (67 +m?) dO @ dO + (m) 4 ® dF + (M) 43 ® dp
cos(8) + 1 cos(6)” + 1

We note that the metric /1 is not asymptotically flat.
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In [12]:

out[12]:

In [13]:
Out[13]:

In [14]:

out[14]:

In [15]:
Out[15]:

Killing vectors of the near-horizon geometry

Let us first consider the vector field i7 ;= mi,'&:

eta = M.vector_field(0, @, 0, 1, name='eta', latex name=r'\eta')
eta.display()

d
n=-——=

ap
It is a Killing vector of the near-horizon metric, since the Lie derivative of /1 along 1 vanishes:
h.lie derivative(eta).display()
0

This is not surprising since the components of /; are independent from (EJ
Similarly, we can check that &) = % is a Killing vector of h, reflecting the independence of the components of /i from f:

xil = M.vector field(1l, @, @, 0, name='xi2', latex name=r'\xi {1}')
xil.display()

d

5125 i

h.lie derivative(xil).display()

0

GR computations with SageMath 11 July 2019 11 /18



In [16]:

Out[16]:

In [17]:
Out[17]:

In [18]:

Out[18]:

In [19]:
Out[19]:

The above two Killing vectors correspond respectively to the axisymmetry and the pseudo-stationarity of the Kerr metric.
A third symmetry, which is not present in the original Kerr metric, is the invariance under the scaling (7, 7) — (af,r/a), as
it is clear on the metric components in Out[11]. The correspanding Killing vector is

xi2 = M.vector field(tb, -rb, ©, ©, name='xi2', latex_name=r'\xi {2}')
xi2.display()

h.lie derivative(xi2).display()

0
Finally, a fourth Killing vector is

xi3 = M.vector_field(tb*2/2 + 2*m*4/rb"2, -tb*rb, 0, -2*m*2/rb,
name='x13"', latex_name=r'\x1i_{3}')
xi3.display()

2m* 1 ,\a __o 2m o
&3 = + = | —=—-it—= - ———
P2 2 or or Foap

h.lie_derivative(xi3).display()

0
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In [20]:
In [21]:
Out[21]:
In [22]:
Out[22]:
In [23]:
Out[23]:

Symmetry group

We have four independent Killing vectors, #, &1, é‘z and rf;. which implies that the symmetry group of the near-horizon
geometry is a 4-dimensional Lie group G. Let us determine (& by investigating the structure constants of the basis
(11,€1., &2, &3) of the Lie algebra of G. First of all, we notice that 17 commutes with the other Killing vectors:

for xi in [xil, xi2, xi3]:
show(eta.bracket(xi).display())

[m&1=0
[m&21=0
[m&31=0

since 1 generates the rotation group SO(2) = U(1), we may write that G = U(1) X G5, where Gj is a 3-dimensional
Lie group, whose generators are ((fl . fz s f;). Let us determine the structure constants of these three vectors. We have

x1l.bracket(xi2).display()

e .4 0

[1.6:] = o

x1l.bracket(xi3).display()
J a

[§1.83]1= =

xi2.bracket(xi3).display()

Am*+PP N a _o 2m’ d
[fz.rsa]:(L)—,—w—,— w2

27

GR computations




To summarize, we have

In [24]: all([xil.bracket(xi2) == xil,
xil.bracket(xi3) xi2,
xi2.bracket(xi3) == xi3])

out[24]: True

To recognize a standard Lie algebra, let us perform a slight change of basis:

In [25]: VvE = -sqrt(2)#*xi3
VvF = sqrt(2)*xil
vH = 2*xi2

We have then the following commutation relations:

In [26]: all([vE.bracket(vF)
vH.bracket (vE)
vH.bracket (vF) =

= -2*VF])
0utl[26]: True

We recognize the Lie algebra 8[(2,R). Indeed, we have

In [27]: s12 = lie algebras.sl(RR, 2)
E,F.H = sl2.gens()
all([E.bracket(F) == H,

H.bracket(E) == 2*E,
H.bracket(F) == -2*F])

0ut[27]: True
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Hence, we have

Lie(Gs) = 81(2,R).

At this stage, G3 could be SL(2,R), PSL(2,R) or SL(2,R) (the universal covering group of SL(2, R)). One can
show that actually G3 = SL(Z. R). We conclude that the full isometry group of the near-horizon geometry is
G =U(1) x SL(2.R).

The full notebook is available at
https://nbviewer. jupyter.org/github/sagemanifolds/SageManifolds/
blob/master/Notebooks/SM_extremal Kerr_near_horizon.ipynb
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Hence, we have

Lie(Gs) = 81(2,R).

At this stage, G3 could be SL(2,R), PSL(2,R) or SL(2,R) (the universal covering group of SL(2, R)). One can
show that actually G3 = SL(Z. R). We conclude that the full isometry group of the near-horizon geometry is
G =U(1) x SL(2.R).

The full notebook is available at
https://nbviewer. jupyter.org/github/sagemanifolds/SageManifolds/

blob/master/Notebooks/SM_extremal Kerr_near_horizon.ipynb

Many other examples are posted at
https://sagemanifolds.obspm.fr/
examples.html

Carter-Penrose diagram computed
and drawn with SageMath —

Want to join the project or simply to stay tuned?
visit https://sagemanifolds.obspm.fr/
(download, documentation, example notebooks, mailing list)
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