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The 3+1 Einstein equations

Outline

@ The 3+1 Einstein equations

Eric Gourgoulhon (LUTH) Evolving the 3+1 Einstein equations Valencia, 4 Nov



The 3+1 Einstein equations
3-+1 foliation of spacetime

t+o

X! = const.

Spacetime (.#, g) assumed to
be globally hyperbolic: 3 a
foliation (or slicing) of the
spacetime manifold .Z by a
family of spacelike hypersurfaces

Et .
M=%
teR
mn : unit normal to ¥
Ng = =NVt
N : lapse function
shift vector 3: 8, = Nn + 3

Components of the metric tensor in terms of lapse and shift :

G dat da¥ = —N?dt* 4 ~;5(dx’ + Brdt)(dz’ + 37 dt)
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The 3+1 Einstein equations
3+1 Einstein system

Thanks to the Gauss, Codazzi and Ricci equations, the Einstein equation
4 1y
Ruﬂ - 5 Rgu[)’ - 871—T‘uﬂ

is equivalent to the system

° (aaf — Eg) vij = —2N Ky (kinematical relation K = f%Ln )

° (8815 —£,3> Ki; = —DiDjN+N{R”. + KKy — QKikKkj

+4m [(S — E)vij — 25i5] } (dynamical part of Einstein equation)

o R+ K*— K;;K" =167E (Hamiltonian constraint)

° DjKji — D;K = 8mp; (momentum constraint)

Zxﬂ = S(y(a' + naPp +pozn[7’ + En(vnﬁ
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The 3+1 Einstein equations
The full PDE system

Supplementary equations:

2N, ON

DiD;jN = 2027 Y0
D;K’; = 85;77 + ijkKki - ijink:

0K
Db = 5 /
LpKij = ﬁ"aK” +thﬁj + Ky gﬂ’;
iy = ag;zj - a;;ik + % = Tl
R =7"Ry

Fk = — Kl 7-1 ’/‘l o 1]
ij 27 < O + 9 5l
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The 3+1 Einstein equations

A few words of history...

G. Darmois (1927): 3+1 Einstein equations in terms of (v;;, K;;)
with N =1 and 3 = 0 (Gaussian normal coordinates)

A. Lichnerowicz (1939) : N # 1 and 3 = 0 (normal coordinates)
Y. Choquet-Bruhat (1948) : N # 1 and 3 # 0 (general coordinates)

e R. Arnowitt, S. Deser & C.W. Misner (1962) : Hamiltonian formulation of
GR based on a 3+1 decomposition in terms of (v;;,7*)

NB: spatial projection of Einstein tensor instead of Ricci tensor in previous
works

J. Wheeler (1964) : coined the terms /apse and shift

J.W. York (1979) : modern 3+1 decomposition based on spatial projection of
Ricci tensor
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The 3+1 Einstein equations
The Cauchy problem

The first two equations of the 3+1 Einstein system can be recast as

0?7 — A Ovm Ovm 9P
oz~ T\ Gam ot famazn

(1)

allowing to formulate a Cauchy problem: given initial data at ¢ = 0: ~;; and

8ng , find a solution for ¢t > 0
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The 3+1 Einstein equations
The Cauchy problem

The first two equations of the 3+1 Einstein system can be recast as

0?7 —F. (A Ok Oy 0Py
o2 = L'jj /kl’ﬁmm’ ot '/al,mamn

(1)

allowing to formulate a Cauchy problem: given initial data at ¢ = 0: ~;; and

agzj , find a solution for ¢t > 0

But this Cauchy problem is subject to the constraints
o R+ K?* - K;;KY =167E (Hamiltonian constraint)
o D;K’, — D;K = 8mp; (momentum constraint)

Preservation of the constraints

Thanks to the Bianchi identities, it can be shown that
if the constraints are satisfied at t = 0, they are preserved by the evolution system
(1), provided that VzT*# = 0 is maintained
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The 3+1 Einstein eauations
Existence and uniqueness of solutions

Question:
Given a set (X,~, K, E,p), where

Yo is a three-dimensional manifold,

~ a Riemannian metric on X,

K a symmetric bilinear form field on X,

E a scalar field on X

p a 1-form field on X,
which obeys the constraint equations, does there exist a spacetime (.7, g,T)
such that (g, T") fulfills Einstein equation and ¥, can be embedded as an
hypersurface of .# with induced metric «v and extrinsic curvature K ?

Valencia, 4 Nov 2009
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The 3+1 Einstein eauations
Existence and uniqueness of solutions

Question:
Given a set (X,~, K, E,p), where

Yo is a three-dimensional manifold,

~ a Riemannian metric on X,

K a symmetric bilinear form field on X,

E a scalar field on X

p a 1-form field on X,
which obeys the constraint equations, does there exist a spacetime (.7, g,T)
such that (g, T") fulfills Einstein equation and ¥, can be embedded as an
hypersurface of .# with induced metric «v and extrinsic curvature K ?

Answer:

@ the solution exists and is unique in a vicinity of X for analytic initial data
(Cauchy-Kovalevskaya theorem) [Darmois (1927)], [Lichnerowicz (1939)]

@ the solution exists and is unique in a vicinity of ¥ for generic (i.e. smooth)
initial data [Choquet-Bruhat (1952)]

@ there exists a unique maximal solution [Choquet-Bruhat & Geroch (1969)]
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The 3+1 Einstein equations

Free vs. constrained evolution schemes

Taking into account the constraint preservation property, various schemes can be
contemplated®:

o free evolution scheme: the constraints are not solved during the evolution
(they are employed only to get valid initial data or to monitor the solution);
example: BSSN scheme

o partially constrained scheme: some of the constraints are solved along
with the evolution equation

o fully constrained scheme: the four constraints are solved at each step of
the evolution

Lfor a review see [Jaramillo, Valiente Kroon & Gourgoulhon, CQG-25, 093001 (2008)]
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The 3+1 Einstein equations

Free vs. constrained evolution schemes

Taking into account the constraint preservation property, various schemes can be
contemplated®:

o free evolution scheme: the constraints are not solved during the evolution
(they are employed only to get valid initial data or to monitor the solution);
example: BSSN scheme

o partially constrained scheme: some of the constraints are solved along
with the evolution equation

o fully constrained scheme: the four constraints are solved at each step of
the evolution

NB: the constraint preservation is a property of the exact mathematical system: it
may not hold in actual numerical implementations of free schemes, due to the
appearance of unstable constraint-violating modes

Lfor a review see [Jaramillo, Valiente Kroon & Gourgoulhon, CQG-25, 093001 (2008)]
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The 3+1 Einstein equations

Constrained schemes

2D (axisymmetric) codes:
o partially constrained (Hamiltonian constraint enforced):
@ [Bardeen & Piran (1983)], [Stark & Piran (1985)], [Evans (1986)] : gravitational collapse
of a stellar core
@ [Abrahams & Evans (1993)], [Garfinkle & Duncan, PRD 63, 044011 (2001)] : evolution of
Brill waves
o fully constrained:
@ [Evans (1989)], [Shapiro & Teukolsky (1992)], [Abrahams, Cook, Shapiro & Teukolsky (1994)] :
gravitational collapse
@ [Choptuik, Hirschmann, Liebling & Pretorius, CQG 20, 1857 (2003)] : critical collapse
e [Rinne, CQG 25, 135009 (2008)] : gravitational collapse of of Brill waves
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The 3+1 Einstein equations

Constrained schemes

2D (axisymmetric) codes:
o partially constrained (Hamiltonian constraint enforced):
@ [Bardeen & Piran (1983)], [Stark & Piran (1985)], [Evans (1986)] : gravitational collapse
of a stellar core
@ [Abrahams & Evans (1993)], [Garfinkle & Duncan, PRD 63, 044011 (2001)] : evolution of
Brill waves
o fully constrained:
@ [Evans (1989)], [Shapiro & Teukolsky (1992)], [Abrahams, Cook, Shapiro & Teukolsky (1994)] :
gravitational collapse
@ [Choptuik, Hirschmann, Liebling & Pretorius, CQG 20, 1857 (2003)] : critical collapse
e [Rinne, CQG 25, 135009 (2008)] : gravitational collapse of of Brill waves
3D codes: fully constrained schemes:
o Isenberg-Wilson-Mathews approximation to GR: CFC
[Isenberg (1978)], [Wilson & Mathews (1989)]
o full GR:
@ [Anderson & Matzner, Found. Phys. 35, 1477 (2005)] : evolution of a black hole
@ [Bonazzola, Gourgoulhon, Grandclément & Novak, PRD 70, 104007 (2004)],
[Cordero-Carrién, Ibafiez, Gourgoulhon, Jaramillo & Novak, PRD 77, 084007 (2008)]
[Cordero-Carrién, Cerdd-Durdn, Dimmelmeier, Jaramillo, Novak & Gourgoulhon, PRD 79, 024017
(2009)]: the Meudon-Valencia FCF scheme
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The Meudon-Valencia FCF scheme

Outline

© The Meudon-Valencia FCF scheme
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The Meudon-Valencia FCF scheme

Original formulation

Constrained scheme built upon maximal slicing and Dirac gauge

[Bonazzola, Gourgoulhon, Grandclément & Novak, PRD 70, 104007 (2004)]

Motivations

@ to maximize the number of elliptic equations and minimize that of hyperbolic
equations (elliptic equations usually more stable)

@ no constraint-violating mode by construction

@ recover at the steady-state limit, the equations describing stationary
spacetimes
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The Meudon-Valencia FCF scheme

Conformal metric and dynamics of the gravitational field

Dynamical degrees of freedom of the gravitational field:

York (1972) : they are carried by the conformal “metric”

’%‘j = 7_1/3 Yij with v := det Yij

4i; = tensor density of weight —2/3

To work with tensor fields only, introduce an extra structure on X;: a flat metric

f such that % =0 and ~;; ~ f;; at spatial infinity (asymptotic flatness)
\1/12
Define 9 1= U, or 7;; = W' 5, with U 1= (}) , f = det f;;

7¥i; is invariant under any conformal transformation of v;; and verifies det ¥;; = f

Notations: 7": inverse conformal metric : 7, 77 = 5,7

D; : covariant derivative associated with 7;;, D= f?ijf)j
D; : covariant derivative associated with f;;, D" := f"“D;
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The Meudon-Valencia FCF scheme
Dirac gauge: definition

Conformal decomposition of the metric «;; of the spacelike hypersurfaces 3;:
vig =2 U with Fi = fii 4 pid

where f;; is a flat metric on 3, h' a symmetric tensor and U a scalar field
1/12
det ’Yij>

det f”
Dirac gauge (Dirac, 1959) = divergence-free condition on 7,

defined by ¥ := (

D77 = D;h" =0

where D; denotes the covariant derivative with respect to the flat metric f;;.
Compare

e minimal distortion (Smarr & York 1978) : D; (95 /0t) =0
e pseudo-minimal distortion (Nakamura 1994) : D7 (05" /0t) =0

Notice: Dirac gauge <= BSSN connection functions vanish: T = 0
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The Meudon-Valencia FCF scheme
Dirac gauge: motivation

Expressing the Ricci tensor of conformal metric as a second order operator:
In terms of the covariant derivative D; associated with the flat metric f:

"7;""‘ =~ 1 ~ 7',' N?‘~ y ~qk l ~ ~
VY R = 5 (FDRDRY = D HT = FEDLHY) + (3, D)
with H' := D;h" = D, = -3 A", = 38, —T"))

and Q(4, D7) is quadratic in first order derivatives Dh

Dirac gauge: H' = 0 = Ricci tensor becomes an elliptic operator for h*/

Similar property as harmonic coordinates for the 4-dimensional Ricci tensor:

1 o 0
4 I 1 3
R.p = 29 i gap + quadratic terms
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The Meudon-Valencia FCF scheme

Dirac gauge: motivation (con't)

@ spatial harmonic coordinates: D;

= makes the Ricci tensor R;; (associated with the physical 3-metric ;;)
an elliptic operator for "/U [Andersson & Moncrief, Ann. Henri Poincaré 4, 1 (2003)]

AL/
@ Dirac gauge: D; [(;) 7”] -0

= makes the Ricci tensor R;; (associated with the conformal 3-metric 7; )
an elliptic operator for 5/
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The Meudon-Valencia FCF scheme
Dirac gauge: discussion

@ introduced by Dirac (1959) in order to fix the coordinates in some
Hamiltonian formulation of general relativity; originally defined for Cartesian

coordinates only: % <y1/3 7?7’) =0

but trivially extended by us to more general type of coordinates (e.g.
spherical) thanks to the introduction of the flat metric f;;:

D; (/1)) =0
o first discussed in the context of numerical relativity by Smarr & York (1978),
as a candidate for a radiation gauge, but disregarded for not being covariant

under coordinate transformation (z%) — (2%) in the hypersurface 3,
contrary to the minimal distortion gauge proposed by them

@ Shibata, Uryu & Friedman [PRD 70, 044044 (2004)] proposed to use Dirac gauge
to compute quasiequilibrium configurations of binary neutron stars beyond
the CFC (conformal flatness condition) approximation
— used by [Uryu, Limousin, Friedman, Gourgoulhon & Shibata, PRL 97, 171101 (2006)], [PRD, in
press, arXiv:0908.0579]
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The Meudon-Valencia FCF scheme

Dirac gauge: discussion (con't)

Dirac gauge

leads asymptotically to transverse-traceless (TT) coordinates (same as
minimal distortion gauge). Both gauges are analogous to Coulomb gauge in
electrodynamics

turns the Ricci tensor of conformal metric 7;; into an elliptic operator for hi
— the dynamical Einstein equations become a wave equation for h*’
insures that the Ricci scalar 12 (arising in the Hamiltonian constraint) does
not contain any second order derivative of h*J vector [*

is fulfilled by conformally flat initial data : 7,; = fi; = h% = 0: this allows
for the direct use of many currently available initial data sets

fully specifies (up to some boundary conditions) the coordinates in each
hypersurface Y, including the initial one = allows for the search for
stationary solutions
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The Meudon-Valencia FCF scheme
Maximal slicing + Dirac gauge

Our choice of coordinates to solve numerically the Cauchy problem:
@ choice of ¥; foliation: maximal slicing: K :=tr K =0

o choice of (x') coordinates within ;: Dirac gauge: D;h" =

Note: the Cauchy problem has been shown to be locally strongly well posed for a
similar coordinate system, namely constant mean curvature (K = t) and spatial
harmonic coordinates (Dj [('y/f)l/2 7@} = O)

[Andersson & Moncrief, Ann. Henri Poincaré 4, 1 (2003)]
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The Meudon-Valencia FCF scheme
Decomposition of the extrinsic curvature

’Kij =0 1047 (K =0) (Lichnerowicz rescaling)

A = (LW)"¥ 4+ A%.|  (York longitudinal /transverse decomposition)

(LW)4 := D'WJ + DIW* — gDkwk /9 (conformal Killing operator)

fijA%, =0and DAL, =0 (TT tensor)

NB: expression of A% in terms of the shift vector 3%

wo . 9FY - S a2
ij _ ij ij . 7yigi igi _ 2D, ghaii

i = {(Lﬁ) - ] (LB) = D' + DIp' = DB

Eric Gourgoulhon (LUTH) Evolving the 3+1 Einstein equations Valencia, 4 Nov 2009



The Meudon-Valencia FCF scheme
Rescaled matter quantities

@ From the energy-momentum tensor:

E:=U%F pi = UOp; S:=008| §:= 'yijS,,;j

@ Baryon number:
n : proper number density of baryons
— " T = Nu" : fluid Lorentz factor w.r.t Eulerian observer

Equation of state: | P = P(n,¢)

Perfect fluid:
E=T%e+P)-P

. 1
S =3P+ (E+P)UU", with U' = + (
r=(1-UU)~Y?

dz?

Y- et
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The Meudon-Valencia FCF scheme
Part 1 of FCF scheme: evolution equations

[Cordero-Carrién, Cerdd-Durén, Dimmelmeier, Jaramillo, Novak & Gourgoulhon, PRD 79, 024017 (2009)]

o Fluid equations (conservation of baryon number and energy-momentum):

oU  OF7 A . L
— - =38 U:=(D,E,p; = D, I, p;
5% T B (D, E.p;) p
o Dynamical Einstein equations :

Oh 2N ...

e L AR

ot _wel T

DA Nw?2

= ARY ...
ot g~

Constraints:
o det(f" 4+ h") =det f¥ (unimodular) and D;h" =0 (Dirac gauge)
o fi;AV =0 and D;AY =8r77p; — A’ A" (momentum constraint)
— (h%, A7) have only 2 degrees of freedom
= solve only for the TT part of the above system
= this involves two scalar potentials A and B, from which one can
reconstruct h*/ (ﬁ ’7/”) and A’II{T [Novak, Cornou & Vasset, JCP, in press,
arXiv:0905.2048]
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The Meudon-Valencia FCF scheme
Part 2 of FCF scheme: elliptic equations

[Cordero-Carrién, Cerdd-Durdn, Dimmelmeier, Jaramillo, Novak & Gourgoulhon, PRD 79, 024017 (2009)]

@ Momentum constraint?:
AW + gpipj W74+ A (LW)R = 83, — AT, ARL
= Wi = A= (LW)" + A%,

@ Hamiltonian const%int ::Y- 5 AmAS  wh
MDD = 2 ”-”;T + 5

@ Maximal slicing condition (+ Ham. constraint) :

o A 5 AL Alm fpig P
20 2(E +28) + (7%”]’”A A R)

— V=P =5

<kl
DyDi(NV) = NV

= NV = N
@ Preservation of Dirac gauge in time (+ momentum constraint) :

~k 7 1 ~ i N ~1 ) N
DD B + gv'kpkplﬁl 6 (167“7 Tpj — 24 114“) +24YD; <\I,o>

=

2Ai kl ‘T fL kl — fl kl — ;‘.f“n (Dkﬁ/m.l + Dlﬁ/knz - D'mﬁ/kl) /2
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The Meudon-Valencia FCF scheme

Mathematical analysis of the evolution part of the FCF

system

If — is timelike and A"/ obeys to the Dirac gauge, then the evolution equations

ot

OhY 2N ...
— 2 A9 ...
o gt T
gAY NOZ
- ARY + ...
ot g ST

form a strongly hyperbolic system
[Cordero-Carrién, Ibafiez, Gourgoulhon, Jaramillo & Novak, PRD 77, 084007 (2008)]
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Extended CFC approximation

Outline

© Extended CFC approximation
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Extended CFC approximation

Conformally flat limit of the FCF scheme

Hypotheses: 4;; = fij (<= h¥ =0) and A7, =0 J
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Extended CFC approximation

Conformally flat limit of the FCF scheme

Hypotheses: 4;; = fij (<= h¥ =0) and A7, =0 J

= evolution equations only for matter quantities —> D, E, Di
The elliptic FCF equations reduce to

° (XCFCO) AW 4 gDZDjWJ = 877,]””@ — W' = AY = (LW)”
E  fufjmAmAd
B JafimAT™AY

0 T = V=P =9

o (XCFC1) AU = —2

TfafimAm Al

o (XCFC2) A(NW) = 270 2(E +25) + T8

(NU) = NU

o (XCFC3) AB" + Dﬁ)ﬁl N (167rj” ;) + 249D, (g) =
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Extended CFC approximation

Conformally flat limit of the FCF scheme

Hypotheses: 4;; = fij (<= h¥ =0) and A7, =0

= evolution equations only for matter quantities —> D, E, p;
The elliptic FCF equations reduce to

1 . o ) o iy

o (XCFCO) AW" + gDZDﬂ/W =8 f"p; = W' = AY= (LW)¥

B fufimAmAY

0 T = V=P =9

7f'il f]m AlmAij
W8

o (XCFC1) AU = —2r7

o (XCFC2) A(NT) = 270 2(E +25) + (NU) = NV

i 1 N rij A A N 21
o (XCFC3) Ap' + gv*pld =56 (167 f“p;) + 2AYD; (q/ﬁ) = f
Similar to

@ Saijo’s system introduced to compute gravitational collapse of differentially
rotating supermassive stars [Saijo, ApJ 615, 866 (2004)]

@ Shibata & Uryu's system for BH-NS binary initial data [PRD 74, 121503(R) (2006)]
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Extended CFC approximation
Comparison with the standard CFC scheme

o AU = 270°F — 52N2 fdem(Lﬂ) "(LB)Y (CFC1)

° A(N\If) =2V (E + 25)(NT) + —f'ﬁfjm(Lﬁ)lm(L/j)ij (NW)~! (CFC2)

7 7 [ _ ij \IIG ij N
o AB + DDﬁ 167N [, + < (LB)'D; 5 (CFC3)

[Isenberg (1978)], [Wilson & Mathews (1989)]
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Extended CFC approximation
Comparison with the standard CFC scheme

o AU = 270°F — 52N2 fllme(L[ﬁ) "(LB)Y (CFC1)

° A(N\If) = 27U (E +25)(NV) + 7—Jﬂ-zfjm(Lﬁ)“"(L/jy'-j (NW)~! (CFC2)
6
o AB' + D1D 18" = 167N fip; + qj—(Lﬁ)”D (‘gﬁ) (CFC3)
[Isenberg (1978)], [Wilson & Mathews (1989)]

NB: CFC = same system as the Extended Conformal Thin Sandwich (XCTS)
for quasiequilibrium initial data [Pfeiffer & York, PRD 67, 044022 (2003)]

Eric Gourgoulhon (LUTH) Evolving the 3+1 Einstein equations Valencia, 4 Nov 2009



Extended CFC approximation
Comparison with the standard CFC scheme

5 \115 d m 2\1]
o AV = 27U F — 32Wfﬂfjm(m)l 6(Lg) I (CFC1)
% y
° A(N\I!) = 27r\I/4(E +29)(NV) + —fizfjm(L[)’)lm(L/j)” (NW)~! (CFC2)
7 7 ! 17, \IIG ij N

o AJ"+ D D3 = 167N f7p; + —(L[)’) D; 6 (CFC3)
[Isenberg (1978)], [Wilson & Mathews (1989)]
NB: CFC = same system as the Extended Conformal Thin Sandwich (XCTS)
for quasiequilibrium initial data [Pfeiffer & York, PRD 67, 044022 (2003)]

Differences between CFC/XCTS and XCFC
e CFC/XCTS = 5-components system «» XCFC = 8-components system

o CFC/XCTS = coupled system «» XCFC = hierarchically decoupled

o CFC/XCTS : /Ali' #0 — XCFC: Al ‘T set to zero as an additional
approximation (conS|stent with ;5 = fij)

@ XCFC involves the rescaled matter variables (ES]B,)
e power —1 of (NU) in rhs (CFC2) <> power +1 in (XCFC2) <« a key feature
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Extended CFC approximation

Non-uniqueness issue in XCTS-like schemes

Local uniqueness theorem

Consider the elliptic equation
Au+hu? =g (%)

where p € R and & and g are a smooth functions independent of w.

If , any solution of (k) is locally unique.
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Non-uniqueness issue in XCTS-like schemes

Local uniqueness theorem

Consider the elliptic equation
Au+hu? =g (%)

where p € R and & and g are a smooth functions independent of w.
If , any solution of (k) is locally unique.

Application: Egs. (CFC2) and (XCFC2) for u = N (all other fields fixed)

6
° (CFC2) th= _%fﬂfjm(Lﬁ)lm(Lﬁ)ij < 0 and p=—-1—= hp >0:

the theorem is not applicable: the solution may be not unique

= well known property of XCTS [Pfeiffer & York, PRL 95, 091101 (2005)],

[Baumgarte, O Murchadha & Pfeiffer, PRD 75, 044009 (2007)], [Walsh, CQG 24, 1911 (2007)]

7filfjm‘4[m14ij
w8

e (XCFC2): h=— <Oandp=1=hp<0:

the solution is unique !
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Extended CFC approximation

[llustration of the non-uniqueness issue

: 3 Collapse of a large amplitude

= 1 Teukolsky wave computed using the
original version of the FCF scheme
(which did not introduce the vector 17*)
[Bonazzola, Gourgoulhon, Grandclément & Novak,

; P S T I S S S SN S S ;
05k o oS v 5, PRD 70, 104007 (2004)]

o015k 1 Numerical code based on spectral
] methods (C++ library LORENE)
o1or 1 At t~ 0.4, the code jumped to a second
i 1 solution: the black hole formation could
005~ L —wws NOt be computed

M ADM [artbitrary units]

7\\\\\\\\\\\\\\\\\\\
0095 05 1.0 15 2.0
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http://link.aps.org/abstract/PRD/v70/e104007
http://link.aps.org/abstract/PRD/v70/e104007
http://www.lorene.obspm.fr

Extended CFC approximation

Unstable neutron star migration in XCFC

1.0 SE T =T
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Numerical computation with the XCFC version of CoCoNuT code
[Cordero-Carrién, Cerda-Duran, Dimmelmeier, Jaramillo, Novak & Gourgoulhon, PRD 79, 024017 (2009)]

Due to the non-uniqueness issue, such a calculation was not possible in CFC
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http://link.aps.org/abstract/PRD/v79/e024017

Extended CFC approximation

Gravitational collapse to a black hole in XCFC
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Numerical computation with the XCFC version of CoCoNuT code
[Cordero-Carrién, Cerda-Duran, Dimmelmeier, Jaramillo, Novak & Gourgoulhon, PRD 79, 024017 (2009)]

Due to the non-uniqueness issue, such a calculation was not possible in CFC,
even in spherical symmetry
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http://link.aps.org/abstract/PRD/v79/e024017

Extended CFC approximation

Relation to previous works

@ Shapiro & Teukolsky [ApJ 235, 199 (1980)] : full constrained code in spherical
symmetry with conformal decomposition (isotropic coordinates): could get
black formation, whereas CFC cannot !

Shapiro and Teukolsky solved the momentum constraint for \IIGK”’T = A’"",
as in XCFC (except that in XCFC the momentum constraint is solved for W
first, leading to A" = (LW)#)

On the contrary, in CFC the momentum constraint is solved for the shift
vector /7', leading to the wrong sign in the equation for N'W

XCFC in spherical symmetry = Shapiro & Teukolsky method
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Relation to previous works

@ Shapiro & Teukolsky [ApJ 235, 199 (1980)] : full constrained code in spherical
symmetry with conformal decomposition (isotropic coordinates): could get
black formation, whereas CFC cannot !

Shapiro and Teukolsky solved the momentum constraint for \IIGK”’T = A’"",
as in XCFC (except that in XCFC the momentum constraint is solved for W
first, leading to A" = (LW)#)

On the contrary, in CFC the momentum constraint is solved for the shift
vector /7', leading to the wrong sign in the equation for N'W

XCFC in spherical symmetry = Shapiro & Teukolsky method

@ Saijo [ApJ 615, 866 (2004)] : first introduction of the XCFC system in the 3D case
(without pointing out that it solves the uniqueness issue of CFC)
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Extended CFC approximation

Relation to previous works

@ Shapiro & Teukolsky [ApJ 235, 199 (1980)] : full constrained code in spherical
symmetry with conformal decomposition (isotropic coordinates): could get
black formation, whereas CFC cannot !

Shapiro and Teukolsky solved the momentum constraint for \IIGK”’T = A’"",
as in XCFC (except that in XCFC the momentum constraint is solved for W
first, leading to A" = (LW)#)

On the contrary, in CFC the momentum constraint is solved for the shift
vector /7', leading to the wrong sign in the equation for N'W

XCFC in spherical symmetry = Shapiro & Teukolsky method

@ Saijo [ApJ 615, 866 (2004)] : first introduction of the XCFC system in the 3D case
(without pointing out that it solves the uniqueness issue of CFC)

@ Rinne [CQG 25, 135009 (2008)] : fully constrained code for full GR (not
conformally flat) in axisymmetry and vacuum
Also adds a vector W to solve the momentum constraint, in addition to the
elliptic equations for the shift
Meudon-Valencia FCF : 3D generalisation of Rinne scheme (albeit in different
spatial gauge)
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Outline

@ Conclusions
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Conclusions
Conclusions and future prospects

@ A new fully constrained scheme, based on the Meudon (2004) one, has been
introduced to address certain non-uniqueness of the solution of the elliptic
part: the Meudon-Valencia FCF

@ The mathematical analysis of the hyperbolic part has been performed; that of
the entire scheme remains to be done

@ Assuming a conformally flat 3-metric, the new scheme gives rise to the XCFC
system, which cures the non-uniqueness issue of standard CFC in the strong
relativistic regime

@ Numerical implementation of XCFC has been performed, demonstrating its
capability to compute unstable NS migration and BH formation, contrary to
CFC

@ Numerical implementation of the full FCF in CoCoNuT is underway:

o see J. Novak’s talk (general settings)
o see |. Cordero’s talk (treatment of boundary conditions)
o see N. Vasset's talk (excision)
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