Constrained schemes for evolving the 3+1 Einstein equations

Eric Gourgoulhon

Laboratoire Univers et Théories (LUTH) CNRS / Observatoire de Paris / Université Paris Diderot 92190 Meudon, France

eric.gourgoulhon@obspm.fr

based on a collaboration with

Silvano Bonazzola, Pablo Cerdá-Durán, Isabel Cordero-Carrión, Jean-Louis Cornou , Harald Dimmelmeier, Philippe Grandclément, José Maria Ibáñez, José Luis Jaramillo, Jérôme Novak & Nicolas Vasset

CoCoNuT Meeting 2009

Universitat de Valencia, Spain 4-6 November 2009

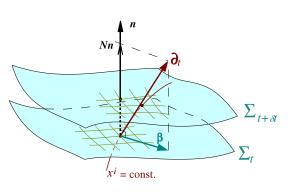
Plan

- The 3+1 Einstein equations
- 2 The Meudon-Valencia FCF scheme
- Sextended CFC approximation
- 4 Conclusions

Outline

- The 3+1 Einstein equations
- The Meudon-Valencia FCF scheme
- Extended CFC approximation
- 4 Conclusions

3+1 foliation of spacetime



Spacetime (\mathcal{M}, g) assumed to be **globally hyperbolic**: \exists a **foliation** (or **slicing**) of the spacetime manifold \mathcal{M} by a family of spacelike hypersurfaces Σ_t :

$$\mathcal{M} = \bigcup_{t \in \mathbb{R}} \Sigma_t$$

 $oldsymbol{n}$: unit normal to Σ_t

$$n_{\alpha} = -N\nabla_{\alpha}t$$

N: lapse function shift vector $\boldsymbol{\beta}$: $\boldsymbol{\partial}_t = N\boldsymbol{n} + \boldsymbol{\beta}$

Components of the metric tensor in terms of lapse and shift :

$$g_{\mu\nu} dx^{\mu} dx^{\nu} = -N^2 dt^2 + \gamma_{ij} (dx^i + \beta^i dt) (dx^j + \beta^j dt)$$

3+1 Einstein system

Thanks to the Gauss, Codazzi and Ricci equations, the Einstein equation

$${}^{4}R_{\alpha\beta} - \frac{1}{2} {}^{4}R g_{\alpha\beta} = 8\pi T_{\alpha\beta}$$

is equivalent to the system

$$ullet \left(rac{\partial}{\partial t}-\mathcal{L}_{oldsymbol{eta}}
ight)\gamma_{ij}=-2NK_{ij}$$
 (kinematical relation $oldsymbol{K}=-rac{1}{2}\mathcal{L}_{oldsymbol{n}}oldsymbol{\gamma}$)

$$\bullet \left(\frac{\partial}{\partial t} - \mathcal{L}_{\beta}\right) K_{ij} = -D_{i}D_{j}N + N \bigg\{ R_{ij} + KK_{ij} - 2K_{ik}K^{k}_{\ j} \\ + 4\pi \left[(S - E)\gamma_{ij} - 2S_{ij} \right] \bigg\}$$
 (dynamical part of Einstein equation)

$$\bullet$$
 $R+K^2-K_{ij}K^{ij}=16\pi E$ (Hamiltonian constraint)

•
$$D_j K^j_{\ i} - D_i K = 8\pi p_i$$
 (momentum constraint)

$$T_{\alpha\beta} = S_{\alpha\beta} + n_{\alpha}p_{\beta} + p_{\alpha}n_{\beta} + En_{\alpha}n_{\beta}$$

The full PDE system

Supplementary equations:

$$\begin{split} D_{i}D_{j}N &= \frac{\partial^{2}N}{\partial x^{i}\partial x^{j}} - \Gamma^{k}{}_{ij}\frac{\partial N}{\partial x^{k}} \\ D_{j}K^{j}{}_{i} &= \frac{\partial K^{j}{}_{i}}{\partial x^{j}} + \Gamma^{j}{}_{jk}K^{k}{}_{i} - \Gamma^{k}{}_{ji}K^{j}{}_{k} \\ D_{i}K &= \frac{\partial K}{\partial x^{i}} \\ \mathcal{L}_{\beta}\gamma_{ij} &= \frac{\partial \beta_{i}}{\partial x^{j}} + \frac{\partial \beta_{j}}{\partial x^{i}} - 2\Gamma^{k}{}_{ij}\beta_{k} \\ \mathcal{L}_{\beta}K_{ij} &= \beta^{k}\frac{\partial K_{ij}}{\partial x^{k}} + K_{kj}\frac{\partial \beta^{k}}{\partial x^{i}} + K_{ik}\frac{\partial \beta^{k}}{\partial x^{j}} \\ R_{ij} &= \frac{\partial \Gamma^{k}{}_{ij}}{\partial x^{k}} - \frac{\partial \Gamma^{k}{}_{ik}}{\partial x^{j}} + \Gamma^{k}{}_{ij}\Gamma^{l}{}_{kl} - \Gamma^{l}{}_{ik}\Gamma^{k}{}_{lj} \\ R &= \gamma^{ij}R_{ij} \\ \Gamma^{k}{}_{ij} &= \frac{1}{2}\gamma^{kl}\left(\frac{\partial \gamma_{lj}}{\partial x^{i}} + \frac{\partial \gamma_{il}}{\partial x^{j}} - \frac{\partial \gamma_{ij}}{\partial x^{l}}\right) \end{split}$$

A few words of history...

- G. Darmois (1927): 3+1 Einstein equations in terms of (γ_{ij}, K_{ij}) with N=1 and $\beta=0$ (Gaussian normal coordinates)
- A. Lichnerowicz (1939) : $N \neq 1$ and $\beta = 0$ (normal coordinates)
- Y. Choquet-Bruhat (1948) : $N \neq 1$ and $\beta \neq 0$ (general coordinates)
- R. Arnowitt, S. Deser & C.W. Misner (1962): Hamiltonian formulation of GR based on a 3+1 decomposition in terms of (γ_{ij},π^{ij}) NB: spatial projection of Einstein tensor instead of Ricci tensor in previous works
- J. Wheeler (1964): coined the terms *lapse* and *shift*
- J.W. York (1979): modern 3+1 decomposition based on spatial projection of *Ricci tensor*

The Cauchy problem

The first two equations of the 3+1 Einstein system can be recast as

$$\frac{\partial^2 \gamma_{ij}}{\partial t^2} = F_{ij} \left(\gamma_{kl}, \frac{\partial \gamma_{kl}}{\partial x^m}, \frac{\partial \gamma_{kl}}{\partial t}, \frac{\partial^2 \gamma_{kl}}{\partial x^m \partial x^n} \right) \tag{1}$$

allowing to formulate a **Cauchy problem:** given initial data at t=0: γ_{ij} and $\frac{\partial \gamma_{ij}}{\partial t}$, find a solution for t>0

The Cauchy problem

The first two equations of the 3+1 Einstein system can be recast as

$$\frac{\partial^2 \gamma_{ij}}{\partial t^2} = F_{ij} \left(\gamma_{kl}, \frac{\partial \gamma_{kl}}{\partial x^m}, \frac{\partial \gamma_{kl}}{\partial t}, \frac{\partial^2 \gamma_{kl}}{\partial x^m \partial x^n} \right) \tag{1}$$

allowing to formulate a **Cauchy problem:** given initial data at t=0: γ_{ij} and $\frac{\partial \gamma_{ij}}{\partial t}$, find a solution for t>0

But this Cauchy problem is subject to the constraints

- $R + K^2 K_{ij}K^{ij} = 16\pi E$ (Hamiltonian constraint)
- $D_j K^j_{\ i} D_i K = 8\pi p_i$ (momentum constraint)

Preservation of the constraints

Thanks to the Bianchi identities, it can be shown that if the constraints are satisfied at t=0, they are preserved by the evolution system (1), provided that $\nabla_{\beta}T^{\alpha\beta}=0$ is maintained

Existence and uniqueness of solutions

Question:

```
Given a set (\Sigma_0, \gamma, K, E, p), where \Sigma_0 is a three-dimensional manifold, \gamma a Riemannian metric on \Sigma_0, K a symmetric bilinear form field on \Sigma_0, E a scalar field on \Sigma_0 P a 1-form field on \Sigma_0, which obeys the constraint equations, does there exist a spacetime (\mathcal{M}, g, T) such that (g, T) fulfills Einstein equation and \Sigma_0 can be embedded as an
```

hypersurface of \mathcal{M} with induced metric γ and extrinsic curvature K?

9 / 35

Existence and uniqueness of solutions

Question:

```
Given a set (\Sigma_0, \gamma, K, E, p), where \Sigma_0 is a three-dimensional manifold, \gamma a Riemannian metric on \Sigma_0, K a symmetric bilinear form field on \Sigma_0, E a scalar field on \Sigma_0 p a 1-form field on \Sigma_0, which above the constraint equations does to
```

which obeys the constraint equations, does there exist a spacetime (\mathcal{M}, g, T) such that (g, T) fulfills Einstein equation and Σ_0 can be embedded as an hypersurface of \mathcal{M} with induced metric γ and extrinsic curvature K?

Answer:

- the solution exists and is unique in a vicinity of Σ_0 for **analytic** initial data (Cauchy-Kovalevskaya theorem) [Darmois (1927)], [Lichnerowicz (1939)]
- the solution exists and is unique in a vicinity of Σ_0 for **generic** (i.e. smooth) initial data [Choquet-Bruhat (1952)]
- there exists a unique maximal solution [Choquet-Bruhat & Geroch (1969)]

Free vs. constrained evolution schemes

Taking into account the *constraint preservation property*, various schemes can be contemplated¹:

- free evolution scheme: the constraints are not solved during the evolution (they are employed only to get valid initial data or to monitor the solution); example: BSSN scheme
- partially constrained scheme: some of the constraints are solved along with the evolution equation
- fully constrained scheme: the four constraints are solved at each step of the evolution

Free vs. constrained evolution schemes

Taking into account the *constraint preservation property*, various schemes can be contemplated¹:

- free evolution scheme: the constraints are not solved during the evolution (they are employed only to get valid initial data or to monitor the solution); example: BSSN scheme
- partially constrained scheme: some of the constraints are solved along with the evolution equation
- fully constrained scheme: the four constraints are solved at each step of the evolution

NB: the constraint preservation is a property of the exact mathematical system: it may not hold in actual numerical implementations of free schemes, due to the appearance of unstable constraint-violating modes

¹for a review see [Jaramillo, Valiente Kroon & Gourgoulhon, CQG 25, 093001 (2008)] 👍 🔻 🔊 🤄

Constrained schemes

2D (axisymmetric) codes:

- partially constrained (Hamiltonian constraint enforced):
 - [Bardeen & Piran (1983)], [Stark & Piran (1985)], [Evans (1986)]: gravitational collapse
 of a stellar core
 - [Abrahams & Evans (1993)], [Garfinkle & Duncan, PRD 63, 044011 (2001)]: evolution of Brill waves

• fully constrained:

- [Evans (1989)], [Shapiro & Teukolsky (1992)], [Abrahams, Cook, Shapiro & Teukolsky (1994)]: gravitational collapse
- [Choptuik, Hirschmann, Liebling & Pretorius, CQG 20, 1857 (2003)]: critical collapse
- [Rinne, CQG 25, 135009 (2008)]: gravitational collapse of of Brill waves

Constrained schemes

2D (axisymmetric) codes:

- partially constrained (Hamiltonian constraint enforced):
 - [Bardeen & Piran (1983)], [Stark & Piran (1985)], [Evans (1986)]: gravitational collapse of a stellar core
 - [Abrahams & Evans (1993)], [Garfinkle & Duncan, PRD 63, 044011 (2001)]: evolution of Brill waves
- fully constrained:
 - [Evans (1989)], [Shapiro & Teukolsky (1992)], [Abrahams, Cook, Shapiro & Teukolsky (1994)]: gravitational collapse
 - [Choptuik, Hirschmann, Liebling & Pretorius, CQG 20, 1857 (2003)]: critical collapse
 - [Rinne, CQG 25, 135009 (2008)]: gravitational collapse of of Brill waves
- **3D** codes: fully constrained schemes:
- Isenberg-Wilson-Mathews approximation to GR: CFC [Isenberg (1978)], [Wilson & Mathews (1989)]
 - full GR:
 - [Anderson & Matzner, Found. Phys. 35, 1477 (2005)]: evolution of a black hole
 - [Bonazzola, Gourgoulhon, Grandclément & Novak, PRD 70, 104007 (2004)], [Cordero-Carrión, Ibáñez, Gourgoulhon, Jaramillo & Novak, PRD 77, 084007 (2008)] [Cordero-Carrión, Cerdá-Durán, Dimmelmeier, Jaramillo, Novak & Gourgoulhon, PRD 79, 024017 (2009)]: the Meudon-Valencia FCF scheme

Outline

- The 3+1 Einstein equations
- 2 The Meudon-Valencia FCF scheme
- 3 Extended CFC approximation
- 4 Conclusions

Original formulation

Constrained scheme built upon maximal slicing and Dirac gauge

[Bonazzola, Gourgoulhon, Grandclément & Novak, PRD 70, 104007 (2004)]

Motivations

- to maximize the number of *elliptic* equations and minimize that of *hyperbolic* equations (elliptic equations usually more stable)
- no constraint-violating mode by construction
- recover at the steady-state limit, the equations describing stationary spacetimes

Conformal metric and dynamics of the gravitational field

Dynamical degrees of freedom of the gravitational field:

York (1972): they are carried by the conformal "metric"

$$\hat{\gamma}_{ij} := \gamma^{-1/3} \, \gamma_{ij}$$
 with $\gamma := \det \gamma_{ij}$

 $\hat{\gamma}_{ij} = tensor \ density \ of \ weight \ -2/3$

To work with tensor fields only, introduce an extra structure on Σ_t : a flat metric

 $m{f}$ such that $rac{\partial f_{ij}}{\partial t}=0$ and $\gamma_{ij}\sim f_{ij}$ at spatial infinity (asymptotic flatness)

Define $\tilde{\gamma}_{ij} := \Psi^{-4} \gamma_{ij}$ or $\gamma_{ij} =: \Psi^{4} \tilde{\gamma}_{ij}$ with $\Psi := \left(\frac{\gamma}{f}\right)^{1/12}$, $f := \det f_{ij}$

 $ilde{\gamma}_{ij}$ is invariant under any conformal transformation of γ_{ij} and verifies $\det ilde{\gamma}_{ij} = f$

Notations: $\tilde{\gamma}^{ij}$: inverse conformal metric : $\tilde{\gamma}_{ik} \tilde{\gamma}^{kj} = \delta_{ij}^{j}$

 $ilde{D}_i$: covariant derivative associated with $ilde{\gamma}_{ij}$, $ilde{D}^i := ilde{\gamma}^{ij} ilde{D}_j$

 \mathcal{D}_i : covariant derivative associated with f_{ij} , $\mathcal{D}^i := f^{ij}\mathcal{D}_i$

Dirac gauge: definition

Conformal decomposition of the metric γ_{ij} of the spacelike hypersurfaces Σ_t :

$$\gamma_{ij} =: \Psi^4 \, \tilde{\gamma}_{ij} \qquad \text{with} \qquad \tilde{\gamma}^{ij} =: f^{ij} + h^{ij}$$

where f_{ij} is a flat metric on Σ_t , h^{ij} a symmetric tensor and Ψ a scalar field defined by $\Psi:=\left(\frac{\det\gamma_{ij}}{\det f_{ij}}\right)^{1/12}$

Dirac gauge (Dirac, 1959) = divergence-free condition on $\tilde{\gamma}^{ij}$:

$$\mathcal{D}_j \tilde{\gamma}^{ij} = \mathcal{D}_j h^{ij} = 0$$

where \mathcal{D}_j denotes the covariant derivative with respect to the flat metric f_{ij} . Compare

- minimal distortion (Smarr & York 1978) : $D_j \left(\partial \tilde{\gamma}^{ij} / \partial t \right) = 0$
- ullet pseudo-minimal distortion (Nakamura 1994) : $\mathcal{D}^{j}\left(\partial ilde{\gamma}^{ij}/\partial t
 ight)=0$

Notice: Dirac gauge \iff BSSN connection functions vanish: $\tilde{\Gamma}^i=0$

Dirac gauge: motivation

Expressing the Ricci tensor of conformal metric as a second order operator: In terms of the covariant derivative \mathcal{D}_i associated with the flat metric f:

$$\tilde{\gamma}^{ik}\tilde{\gamma}^{jl}\tilde{R}_{kl} = \frac{1}{2} \left(\tilde{\gamma}^{kl} \mathcal{D}_k \mathcal{D}_l h^{ij} - \tilde{\gamma}^{ik} \mathcal{D}_k H^j - \tilde{\gamma}^{jk} \mathcal{D}_k H^i \right) + \mathcal{Q}(\tilde{\gamma}, \mathcal{D}\tilde{\gamma})$$

with
$$H^i:=\mathcal{D}_jh^{ij}=\mathcal{D}_j\tilde{\gamma}^{ij}=-\tilde{\gamma}^{kl}\Delta^i_{\ kl}=-\tilde{\gamma}^{kl}(\tilde{\Gamma}^i_{\ kl}-\bar{\Gamma}^i_{\ kl})$$

and $\mathcal{Q}(\tilde{\gamma}, \mathcal{D}\tilde{\gamma})$ is quadratic in first order derivatives $\mathcal{D}h$

Dirac gauge: $H^i = 0 \Longrightarrow$ Ricci tensor becomes an elliptic operator for h^{ij} Similar property as harmonic coordinates for the 4-dimensional Ricci tensor:

$${}^4R_{\alpha\beta} = -\frac{1}{2}g^{\mu\nu}\frac{\partial}{\partial x^{\mu}}\frac{\partial}{\partial x^{\nu}}g_{\alpha\beta} + \text{quadratic terms}$$

Dirac gauge: motivation (con't)

- ullet spatial harmonic coordinates: $\mathcal{D}_j \left| \left(rac{\gamma}{f}
 ight)^{1/2} \gamma^{ij} \right| = 0$ \implies makes the Ricci tensor R_{ij} (associated with the **physical** 3-metric γ_{ij}) an elliptic operator for γ^{ij} [Andersson & Moncrief, Ann. Henri Poincaré 4, 1 (2003)]
- ullet Dirac gauge: $\mathcal{D}_j \left| \left(rac{\gamma}{f}
 ight)^{1/3} \gamma^{ij} \right| = 0$ \implies makes the Ricci tensor R_{ij} (associated with the **conformal** 3-metric $\tilde{\gamma}_{ij}$) an elliptic operator for $\tilde{\gamma}^{ij}$

Dirac gauge: discussion

• introduced by Dirac (1959) in order to fix the coordinates in some Hamiltonian formulation of general relativity; originally defined for Cartesian coordinates only: $\frac{\partial}{\partial r^j} \left(\gamma^{1/3} \, \gamma^{ij} \right) = 0$

but trivially extended by us to more general type of coordinates (e.g. spherical) thanks to the introduction of the flat metric f_{ij} :

$$\mathcal{D}_j\left((\gamma/f)^{1/3}\gamma^{ij}\right) = 0$$

- first discussed in the context of numerical relativity by Smarr & York (1978), as a candidate for a radiation gauge, but disregarded for not being covariant under coordinate transformation $(x^i) \mapsto (x^{i'})$ in the hypersurface Σ_t , contrary to the *minimal distortion gauge* proposed by them
- Shibata, Uryu & Friedman [PRD 70, 044044 (2004)] proposed to use Dirac gauge to compute quasiequilibrium configurations of binary neutron stars beyond the CFC (conformal flatness condition) approximation
 - \rightarrow used by [Uryu, Limousin, Friedman, Gourgoulhon & Shibata, PRL 97, 171101 (2006)], [PRD, in press, arXiv:0908.0579]

Dirac gauge: discussion (con't)

Dirac gauge

- leads asymptotically to transverse-traceless (TT) coordinates (same as minimal distortion gauge). Both gauges are analogous to Coulomb gauge in electrodynamics
- turns the Ricci tensor of conformal metric $\tilde{\gamma}_{ij}$ into an elliptic operator for h^{ij} \Longrightarrow the dynamical Einstein equations become a wave equation for h^{ij}
- insures that the Ricci scalar \tilde{R} (arising in the Hamiltonian constraint) does not contain any second order derivative of h^{ij} vector β^i
- is fulfilled by conformally flat initial data : $\tilde{\gamma}_{ij} = f_{ij} \Longrightarrow h^{ij} = 0$: this allows for the direct use of many currently available initial data sets
- fully specifies (up to some boundary conditions) the coordinates in each hypersurface Σ_t , including the initial one \Rightarrow allows for the search for stationary solutions

Maximal slicing + Dirac gauge

Our choice of coordinates to solve numerically the Cauchy problem:

- choice of Σ_t foliation: maximal slicing: $K := \operatorname{tr} K = 0$
- choice of (x^i) coordinates within Σ_t : Dirac gauge: $\mathcal{D}_i h^{ij} = 0$

Note: the Cauchy problem has been shown to be locally strongly well posed for a similar coordinate system, namely constant mean curvature (K = t) and spatial harmonic coordinates $\left(\mathcal{D}_{j}\left[\left(\gamma/f\right)^{1/2}\gamma^{ij}\right]=0\right)$ [Andersson & Moncrief, Ann. Henri Poincaré 4, 1 (2003)]

Decomposition of the extrinsic curvature

$$K^{ij} = \Psi^{-10} \hat{A}^{ij}$$
 $(K=0)$ (Lichnerowicz rescaling)

$$\hat{A}^{ij} = (LW)^{ij} + \hat{A}^{ij}_{\mathrm{TT}}$$
 (York longitudinal/transverse decomposition)

$$(LW)^{ij} := \mathcal{D}^i W^j + \mathcal{D}^j W^i - rac{2}{3} \mathcal{D}_k W^k f^{ij}$$
 (conformal Killing operator)

$$f_{ij} \hat{A}_{\mathrm{TT}}^{ij} = 0$$
 and $\mathcal{D}_{j} \hat{A}_{\mathrm{TT}}^{ij} = 0$ (TT tensor)

NB: expression of \hat{A}^{ij} in terms of the shift vector β^i :

$$\hat{A}^{ij} = \frac{\Psi^6}{2N} \left[(\tilde{L}\beta)^{ij} + \frac{\partial \tilde{\gamma}^{ij}}{\partial t} \right] \qquad (\tilde{L}\beta)^{ij} := \tilde{D}^i \beta^j + \tilde{D}^j \beta^i - \frac{2}{3} \tilde{D}_k \beta^k \tilde{\gamma}^{ij}$$

Rescaled matter quantities

• From the energy-momentum tensor:

$$\hat{E} := \Psi^6 E$$

$$\hat{p}_i := \Psi^6 p_i$$

$$\hat{p}_i := \Psi^6 p_i$$
 $\hat{S} := \Psi^6 S$, $S := \gamma^{ij} S_{ij}$

Baryon number:

$$\hat{D} := \Psi^6 \Gamma n$$

 $\hat{D}:=\Psi^6\Gamma n$, n: proper number density of baryons $\Gamma=Nu^0$: fluid Lorentz factor w.r.t Eulerian observer

Equation of state: $P = P(n, \epsilon)$

Perfect fluid:

$$E = \Gamma^2(\epsilon + P) - P$$

$$S=3P+(E+P)U_iU^i \text{, with } U^i=\frac{1}{N}\left(\frac{dx^i}{dt}+\beta^i\right)=(E+P)^{-1}\gamma^{ij}p_j$$

$$\Gamma = (1 - U_i U^i)^{-1/2}$$

Part 1 of FCF scheme: evolution equations

[Cordero-Carrión, Cerdá-Durán, Dimmelmeier, Jaramillo, Novak & Gourgoulhon, PRD 79, 024017 (2009)]

• Fluid equations (conservation of baryon number and energy-momentum):

$$\frac{\partial \boldsymbol{U}}{\partial t} + \frac{\partial \boldsymbol{F}^{j}}{\partial x^{j}} = \boldsymbol{\mathcal{S}} \qquad \boldsymbol{U} := (\hat{D}, \hat{E}, \hat{p}_{i}) \quad \Longrightarrow \hat{\boldsymbol{D}}, \, \hat{\boldsymbol{E}}, \, \hat{p}_{i}$$

Dynamical Einstein equations :

$$\begin{cases} \frac{\partial h^{ij}}{\partial t} = \frac{2N}{\Psi^6} \hat{A}^{ij} + \cdots \\ \frac{\partial \hat{A}^{ij}}{\partial t} = \frac{N\Psi^2}{2} \Delta h^{ij} + \cdots \end{cases}$$

Constraints:

- ullet $\det(f^{ij}+h^{ij})=\det f^{ij}$ (unimodular) and $\mathcal{D}_jh^{ij}=0$ (Dirac gauge)
- $f_{ij}\hat{A}^{ij}=0$ and $\mathcal{D}_{j}\hat{A}^{ij}=8\pi\tilde{\gamma}^{ij}\hat{p}_{j}-\Delta^{i}{}_{kl}\hat{A}^{kl}$ (momentum constraint)
- $\implies (h^{ij}, \hat{A}^{ij})$ have only 2 degrees of freedom
- ⇒ solve only for the TT part of the above system
- \Longrightarrow this involves two scalar potentials A and \tilde{B} , from which one can reconstruct h^{ij} ($\Longrightarrow \tilde{\gamma}^{ij}$) and \hat{A}^{ij}_{TT} [Novak, Cornou & Vasset, JCP, in press,

arXiv:0905.2048]

Part 2 of FCF scheme: elliptic equations

[Cordero-Carrión, Cerdá-Durán, Dimmelmeier, Jaramillo, Novak & Gourgoulhon, PRD 79, 024017 (2009)]

Momentum constraint²:

$$\Delta W^{i} + \frac{1}{3} \mathcal{D}^{i} \mathcal{D}_{j} W^{j} + \Delta^{i}{}_{kl} (LW)^{kl} = 8\pi \tilde{\gamma}^{ij} \hat{p}_{j} - \Delta^{i}{}_{kl} \hat{A}^{kl}_{\mathrm{TT}}$$

$$\Longrightarrow W^{i} \Longrightarrow \hat{A}^{ij} = (LW)^{ij} + \hat{A}^{ij}_{\mathrm{TT}}$$

Hamiltonian constraint :

$$\tilde{\gamma}^{kl}\mathcal{D}_{k}\mathcal{D}_{l}\Psi = -2\pi \frac{\hat{E}}{\Psi} - \frac{\tilde{\gamma}_{il}\tilde{\gamma}_{jm}\hat{A}^{lm}\hat{A}^{ij}}{8\Psi^{7}} + \frac{\Psi\tilde{R}}{8} \implies \Psi \Longrightarrow P \Longrightarrow \hat{S}$$

Maximal slicing condition (+ Ham. constraint) :

$$\tilde{\gamma}^{kl}\mathcal{D}_{k}\mathcal{D}_{l}(N\Psi) = N\Psi \left[2\pi\Psi^{-2}(\hat{E} + 2\hat{S}) + \left(\frac{7\tilde{\gamma}_{il}\tilde{\gamma}_{jm}\hat{A}^{lm}\hat{A}^{ij}}{8\Psi^{8}} + \frac{\tilde{R}}{8} \right) \right]$$

$$\Longrightarrow N\Psi \Longrightarrow N$$

Preservation of Dirac gauge in time (+ momentum constraint) :

$$\tilde{\gamma}^{kl} \mathcal{D}_k \mathcal{D}_l \beta^i + \frac{1}{3} \tilde{\gamma}^{ik} \mathcal{D}_k \mathcal{D}_l \beta^l = \frac{N}{\Psi^6} \left(16\pi \tilde{\gamma}^{ij} \hat{p}_j - 2\Delta_{kl}^i \hat{A}^{kl} \right) + 2\hat{A}^{ij} \mathcal{D}_j \left(\frac{N}{\Psi^6} \right)$$

$$\Longrightarrow \beta^i$$

Mathematical analysis of the evolution part of the FCF system

If $\frac{\partial}{\partial t}$ is timelike and h^{ij} obeys to the Dirac gauge, then the evolution equations

$$\begin{cases} \frac{\partial h^{ij}}{\partial t} = \frac{2N}{\Psi^6} \hat{A}^{ij} + \cdots \\ \frac{\partial \hat{A}^{ij}}{\partial t} = \frac{N\Psi^2}{2} \Delta h^{ij} + \cdots \end{cases}$$

form a strongly hyperbolic system

[Cordero-Carrión, Ibáñez, Gourgoulhon, Jaramillo & Novak, PRD 77, 084007 (2008)]

Outline

- The 3+1 Einstein equations
- The Meudon-Valencia FCF scheme
- 3 Extended CFC approximation
- 4 Conclusions

Conformally flat limit of the FCF scheme

Hypotheses:
$$ilde{\gamma}_{ij} = f_{ij}$$
 ($\iff \quad h^{ij} = 0$) and $\hat{A}^{ij}_{\mathrm{TT}} = 0$

Conformally flat limit of the FCF scheme

Hypotheses:
$$ilde{\gamma}_{ij}=f_{ij}$$
 ($\iff \quad h^{ij}=0$) and $\hat{A}^{ij}_{\mathrm{TT}}=0$

 \implies evolution equations only for matter quantities $\implies \hat{D}$, \hat{E} , \hat{p}_i The elliptic FCF equations reduce to

$$\bullet \text{ (XCFC0) } \Delta W^i + \frac{1}{3}\mathcal{D}^i\mathcal{D}_jW^j = 8\pi f^{ij}\hat{p}_j \qquad \Longrightarrow \textbf{W^i} \Longrightarrow \hat{A}^{ij} = (LW)^{ij}$$

• (XCFC1)
$$\Delta\Psi = -2\pi \frac{\dot{E}}{\Psi} - \frac{f_{il}f_{jm}\dot{A}^{lm}\dot{A}^{ij}}{8\Psi^7} \implies \Psi \Longrightarrow P \Longrightarrow \hat{S}$$

$$\bullet \text{ (XCFC1) } \Delta \Psi = -2\pi \frac{\hat{E}}{\Psi} - \frac{f_{il}f_{jm}\hat{A}^{lm}\hat{A}^{ij}}{8\Psi^7} \quad \Longrightarrow \Psi \Longrightarrow P \Longrightarrow \hat{S}$$

$$\bullet \text{ (XCFC2) } \Delta (N\Psi) = \left[2\pi \Psi^{-2}(\hat{E} + 2\hat{S}) + \frac{7f_{il}f_{jm}\hat{A}^{lm}\hat{A}^{ij}}{8\Psi^8}\right] (N\Psi) \quad \Longrightarrow N\Psi$$

• (XCFC3)
$$\Delta \beta^i + \frac{1}{3} \mathcal{D}^i \mathcal{D}_l \beta^l = \frac{N}{\Psi^6} \left(16\pi f^{ij} \hat{p}_j \right) + 2\hat{A}^{ij} \mathcal{D}_j \left(\frac{N}{\Psi^6} \right) \implies \beta^i$$

Conformally flat limit of the FCF scheme

Hypotheses:
$$ilde{\gamma}_{ij}=f_{ij}$$
 ($\iff \quad h^{ij}=0$) and $\hat{A}^{ij}_{\mathrm{TT}}=0$

 \implies evolution equations only for matter quantities \implies \hat{D} , \hat{E} , \hat{p}_i The elliptic FCF equations reduce to

$$\bullet \text{ (XCFC0) } \Delta W^i + \frac{1}{3}\mathcal{D}^i\mathcal{D}_j W^j = 8\pi f^{ij} \hat{p}_j \qquad \Longrightarrow \textbf{W^i} \Longrightarrow \hat{A}^{ij} = (LW)^{ij}$$

• (XCFC1)
$$\Delta \Psi = -2\pi \frac{\hat{E}}{\Psi} - \frac{f_{il}f_{jm}\hat{A}^{lm}\hat{A}^{ij}}{8\Psi^7} \implies \Psi \implies P \implies \hat{S}$$

$$\bullet \text{ (XCFC2) } \Delta(N\Psi) = \left[2\pi\Psi^{-2}(\hat{E}+2\hat{S}) + \frac{7f_{il}f_{jm}\hat{A}^{lm}\hat{A}^{ij}}{8\Psi^8}\right](N\Psi) \quad \Longrightarrow N\Psi$$

• (XCFC3)
$$\Delta \beta^i + \frac{1}{3} \mathcal{D}^i \mathcal{D}_l \beta^l = \frac{N}{\Psi^6} \left(16\pi f^{ij} \hat{p}_j \right) + 2\hat{A}^{ij} \mathcal{D}_j \left(\frac{N}{\Psi^6} \right) \implies \beta^i$$

Similar to

- Saijo's system introduced to compute gravitational collapse of differentially rotating supermassive stars [Saijo, ApJ 615, 866 (2004)]
- Shibata & Uryu's system for BH-NS binary initial data [PRD 74, 121503(R) (2006)]

Comparison with the standard CFC scheme

$$\bullet \ \Delta\Psi = -2\pi\Psi^5 E - \frac{\Psi^5}{32N^2} f_{il} f_{jm} (L\beta)^{lm} (L\beta)^{ij}$$
 (CFC1)

•
$$\Delta(N\Psi) = 2\pi\Psi^4(E+2S)(N\Psi) + \frac{7\Psi^6}{32} f_{il} f_{jm} (L\beta)^{lm} (L\beta)^{ij} (N\Psi)^{-1}$$
 (CFC2)

$$\bullet \ \Delta \beta^i + \frac{1}{3} \mathcal{D}^i \mathcal{D}_l \beta^l = 16\pi N f^{ij} p_j + \frac{\Psi^6}{N} (L\beta)^{ij} \mathcal{D}_j \left(\frac{N}{\Psi^6} \right)$$
 (CFC3)

[Isenberg (1978)], [Wilson & Mathews (1989)]

Comparison with the standard CFC scheme

$$\bullet \ \Delta\Psi = -2\pi\Psi^5 E - \frac{\Psi^5}{32N^2} f_{il} f_{jm} (L\beta)^{lm} (L\beta)^{ij}$$
 (CFC1)

•
$$\Delta(N\Psi) = 2\pi\Psi^4(E+2S)(N\Psi) + \frac{7\Psi^6}{32} f_{il} f_{jm} (L\beta)^{lm} (L\beta)^{ij} (N\Psi)^{-1}$$
 (CFC2)

$$\bullet \ \Delta \beta^i + \frac{1}{3} \mathcal{D}^i \mathcal{D}_l \beta^l = 16\pi N f^{ij} p_j + \frac{\Psi^6}{N} (L\beta)^{ij} \mathcal{D}_j \left(\frac{N}{\Psi^6} \right)$$
 (CFC3)

[Isenberg (1978)], [Wilson & Mathews (1989)]

NB: CFC = same system as the Extended Conformal Thin Sandwich (XCTS) for quasiequilibrium initial data [Pfeiffer & York, PRD 67, 044022 (2003)]

Comparison with the standard CFC scheme

$$\bullet \ \Delta\Psi = -2\pi\Psi^5 E - \frac{\Psi^5}{32N^2} f_{il} f_{jm} (L\beta)^{lm} (L\beta)^{ij}$$
 (CFC1)

$$\bullet \ \Delta \beta^i + \frac{1}{3} \mathcal{D}^i \mathcal{D}_l \beta^l = 16\pi N f^{ij} p_j + \frac{\Psi^{\hat{6}}}{N} (L\beta)^{ij} \mathcal{D}_j \left(\frac{N}{\Psi^{\hat{6}}} \right) \tag{CFC3}$$

[Isenberg (1978)], [Wilson & Mathews (1989)]

NB: CFC = same system as the Extended Conformal Thin Sandwich (XCTS) for quasiequilibrium initial data [Pfeiffer & York, PRD 67, 044022 (2003)]

Differences between CFC/XCTS and XCFC

- CFC/XCTS = 5-components system \leftrightarrow XCFC = 8-components system
- CFC/XCTS = coupled system ↔ XCFC = hierarchically decoupled
- CFC/XCTS : $\hat{A}_{\mathrm{TT}}^{ij} \neq 0 \leftrightarrow$ XCFC: $\hat{A}_{\mathrm{TT}}^{ij}$ set to zero as an additional approximation (consistent with $\tilde{\gamma}_{ij} = f_{ij}$)
- XCFC involves the rescaled matter variables $(\hat{E}, \hat{S}, \hat{p}_i)$
- power -1 of $(N\Psi)$ in rhs (CFC2) \leftrightarrow power +1 in (XCFC2) \leftarrow a key feature

Non-uniqueness issue in XCTS-like schemes

Local uniqueness theorem

Consider the elliptic equation

$$\Delta u + h u^p = g \qquad (*)$$

where $p \in \mathbb{R}$ and h and g are a smooth functions independent of u. If $ph \leq 0$, any solution of (*) is locally unique.

Non-uniqueness issue in XCTS-like schemes

Local uniqueness theorem

Consider the elliptic equation

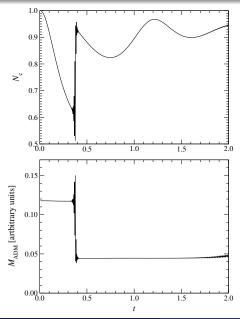
$$\Delta u + h u^p = g \qquad (*)$$

where $p \in \mathbb{R}$ and h and g are a smooth functions independent of u. If $ph \leq 0$, any solution of (*) is locally unique.

Application: Eqs. (CFC2) and (XCFC2) for $u = N\Psi$ (all other fields fixed)

- (CFC2) : $h=-\frac{7\Psi^6}{32}f_{il}f_{jm}(L\beta)^{lm}(L\beta)^{ij} \leq 0$ and $p=-1 \Longrightarrow hp \geq 0$: the theorem is not applicable: the solution may be not unique \Longrightarrow well known property of XCTS [Pfeiffer & York, PRL 95, 091101 (2005)], [Baumgarte, Ó Murchadha & Pfeiffer, PRD 75, 044009 (2007)], [Walsh, CQG 24, 1911 (2007)]
- (XCFC2) : $h=-\frac{7f_{il}f_{jm}\hat{A}^{lm}\hat{A}^{ij}}{8\Psi^8} \leq 0 \text{ and } p=1 \Longrightarrow hp \leq 0$: the solution is unique !

Illustration of the non-uniqueness issue



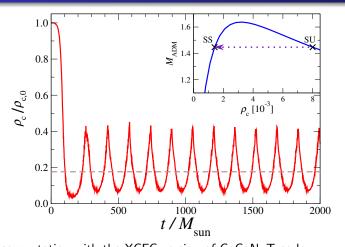
Collapse of a large amplitude Teukolsky wave computed using the original version of the FCF scheme (which did not introduce the vector W^i)

[Bonazzola, Gourgoulhon, Grandclément & Novak, PRD **70**, 104007 (2004)]

Numerical code based on spectral methods (C++ library LORENE)

At $t \simeq 0.4$, the code jumped to a second solution: the black hole formation could not be computed

Unstable neutron star migration in XCFC

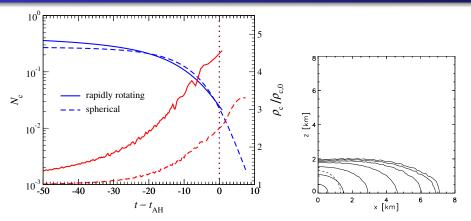


Numerical computation with the XCFC version of CoCoNuT code [Cordero-Carrión, Cerdá-Durán, Dimmelmeier, Jaramillo, Novak & Gourgoulhon, PRD 79, 024017 (2009)]

Due to the non-uniqueness issue, such a calculation was not possible in CFC

Valencia, 4 Nov 2009

Gravitational collapse to a black hole in XCFC



Numerical computation with the XCFC version of CoCoNuT code

[Cordero-Carrión, Cerdá-Durán, Dimmelmeier, Jaramillo, Novak & Gourgoulhon, PRD 79, 024017 (2009)]

Due to the non-uniqueness issue, such a calculation was not possible in CFC, even in spherical symmetry

Relation to previous works

 Shapiro & Teukolsky [ApJ 235, 199 (1980)]: full constrained code in spherical symmetry with conformal decomposition (isotropic coordinates): could get black formation, whereas CFC cannot! Shapiro and Teukolsky solved the momentum constraint for $\Psi^6 K^r_{\ r} = \hat{A}^{rr}$, as in XCFC (except that in XCFC the momentum constraint is solved for W^i first, leading to $\hat{A}^{ij} = (LW)^{ij}$) On the contrary, in CFC the momentum constraint is solved for the shift

vector β^i , leading to the wrong sign in the equation for $N\Psi$

XCFC in spherical symmetry ≡ Shapiro & Teukolsky method

Relation to previous works

- Shapiro & Teukolsky [ApJ 235, 199 (1980)]: full constrained code in spherical symmetry with conformal decomposition (isotropic coordinates): could get black formation, whereas CFC cannot! Shapiro and Teukolsky solved the momentum constraint for $\Psi^6K^r_{\ r}=\hat{A}^{rr}$, as in XCFC (except that in XCFC the momentum constraint is solved for W^i first, leading to $\hat{A}^{ij}=(LW)^{ij}$) On the contrary, in CFC the momentum constraint is solved for the shift vector β^i , leading to the wrong sign in the equation for $N\Psi$ XCFC in spherical symmetry \equiv Shapiro & Teukolsky method
- Saijo [ApJ 615, 866 (2004)]: first introduction of the XCFC system in the 3D case (without pointing out that it solves the uniqueness issue of CFC)

Relation to previous works

- Shapiro & Teukolsky [ApJ 235, 199 (1980)]: full constrained code in spherical symmetry with conformal decomposition (isotropic coordinates): could get black formation, whereas CFC cannot! Shapiro and Teukolsky solved the momentum constraint for $\Psi^6K^r_{\ r}=\hat{A}^{rr}$, as in XCFC (except that in XCFC the momentum constraint is solved for W^i first, leading to $\hat{A}^{ij}=(LW)^{ij}$) On the contrary, in CFC the momentum constraint is solved for the shift vector β^i , leading to the wrong sign in the equation for $N\Psi$
- Saijo [ApJ 615, 866 (2004)]: first introduction of the XCFC system in the 3D case (without pointing out that it solves the uniqueness issue of CFC)

XCFC in spherical symmetry ≡ Shapiro & Teukolsky method

• Rinne [CQG 25, 135009 (2008)]: fully constrained code for full GR (not conformally flat) in axisymmetry and vacuum Also adds a vector \boldsymbol{W}^i to solve the momentum constraint, in addition to the elliptic equations for the shift Meudon-Valencia FCF: 3D generalisation of Rinne scheme (albeit in different spatial gauge)

Outline

- The 3+1 Einstein equations
- The Meudon-Valencia FCF scheme
- Extended CFC approximation
- 4 Conclusions

Conclusions and future prospects

- A new fully constrained scheme, based on the Meudon (2004) one, has been introduced to address certain non-uniqueness of the solution of the elliptic part: the Meudon-Valencia FCF
- The mathematical analysis of the hyperbolic part has been performed; that of the entire scheme remains to be done
- Assuming a conformally flat 3-metric, the new scheme gives rise to the XCFC system, which cures the non-uniqueness issue of standard CFC in the strong relativistic regime
- Numerical implementation of XCFC has been performed, demonstrating its capability to compute unstable NS migration and BH formation, contrary to CFC
- Numerical implementation of the full FCF in CoCoNuT is underway:
 - see J. Novak's talk (general settings)
 - see I. Cordero's talk (treatment of boundary conditions)
 - see N. Vasset's talk (excision)

