Constraining the dense matter equation of state with gravitational wave astrophysics

Eric Gourgoulhon

Laboratoire Univers et Théories (LUTH) CNRS / Observatoire de Paris / Université Paris Diderot 92190 Meudon, France

eric.gourgoulhon@obspm.fr

http://luth.obspm.fr/~luthier/gourgoulhon/

Instytut Matematyczny Polskiej Akademii Nauk, Warsaw 22 January 2010

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

- 1 A short introduction to gravitational waves
- 2 Gravitational signal from binary neutron stars
- 3 Gravitational signal from black hole-neutron star binaries
- Other types of gravitational radiation from neutron stars

Outline

1 A short introduction to gravitational waves

2 Gravitational signal from binary neutron stars

3 Gravitational signal from black hole-neutron star binaries

Other types of gravitational radiation from neutron stars

Spacetime dynamics

- Special relativity : metric tensor g = fixed bilinear form on the spacetime affine space
- General relativity : metric tensor g = field of bilinear forms on the spacetime manifold

• • • • • • • • • • • •

Spacetime dynamics

- Special relativity : metric tensor g = fixed bilinear form on the spacetime affine space
- General relativity : metric tensor g = field of bilinear forms on the spacetime manifold

Einstein equation :
$$\boldsymbol{R} - \frac{1}{2}R\boldsymbol{g} = \frac{8\pi G}{c^4}\boldsymbol{T}$$

- \mathbf{R} = Ricci tensor = symmetric bilinear form = trace of *curvature tensor* (Riemann tensor) : " $\mathbf{R} \sim \mathbf{g} \partial^2 \mathbf{g} + \mathbf{g} \partial \mathbf{g} \partial \mathbf{g}$ "
- $R = \text{Trace}(\mathbf{R})$
- **T** = energy-momentum tensor of matter = symmetric bilinear form such that

Spacetime dynamics

- Special relativity : metric tensor g = fixed bilinear form on the spacetime affine space
- General relativity : metric tensor g = field of bilinear forms on the spacetime manifold

Einstein equation :
$$\boldsymbol{R} - \frac{1}{2}R\boldsymbol{g} = \frac{8\pi G}{c^4}\boldsymbol{T}$$

- \mathbf{R} = Ricci tensor = symmetric bilinear form = trace of *curvature tensor* (Riemann tensor) : " $\mathbf{R} \sim \mathbf{g} \partial^2 \mathbf{g} + \mathbf{g} \partial \mathbf{g} \partial \mathbf{g}$ "
- $R = \text{Trace}(\mathbf{R})$
- *T* = *energy-momentum tensor* of matter = symmetric bilinear form such that
 - $E = T(\vec{u}, \vec{u})$ is the energy density of matter as measured by an observer \mathcal{O} of 4-velocity \vec{u}
 - $p_i = -T(\vec{u}, \vec{e}_i)$ component of the matter momentum density as measured by \mathcal{O} in the direction \vec{e}_i
 - $S_{ij} = T(\vec{e_i}, \vec{e_j})$ component i of the force exerted by matter on the unit surface normal to $\vec{e_j}$

Comparing Newtonian and relativistic gravitation theories

Newtonian gravitation :

fundamental equation : Poisson equation for the gravitational potential Φ :

 $\Delta \Phi = 4\pi G \rho$

- scalar equation
- linear equation
- elliptic equation
 (⇒ instantaneous propagation)
- only source : mass density ρ

Comparing Newtonian and relativistic gravitation theories

Newtonian gravitation :

fundamental equation : Poisson equation for the gravitational potential Φ :

 $\Delta \Phi = 4\pi G \rho$

- scalar equation
- linear equation
- elliptic equation $(\Rightarrow instantaneous propagation)$
- $\bullet\,$ only source : mass density $\rho\,$

Relativistic gravitation :

fundamental equation : Einstein equation for the metric tensor g :

$$\boldsymbol{R}(\boldsymbol{g}) - \frac{1}{2}R(\boldsymbol{g})\,\boldsymbol{g} = \frac{8\pi G}{c^4}\,\boldsymbol{T}$$

- tensorial equation (10 scalar equations)
- non-linear equation
- propagation at finite speed (c)

 source : energy-momentum of matter and electromagnetic field

Comparing Newtonian and relativistic gravitation theories

Newtonian gravitation :

fundamental equation : Poisson equation for the gravitational potential Φ :

 $\Delta \Phi = 4\pi G \rho$

- scalar equation
- linear equation
- elliptic equation $(\Rightarrow instantaneous propagation)$
- $\bullet\,$ only source : mass density $\rho\,$

Relativistic gravitation :

fundamental equation : Einstein equation for the metric tensor g :

$$\boldsymbol{R}(\boldsymbol{g}) - \frac{1}{2}R(\boldsymbol{g})\,\boldsymbol{g} = \frac{8\pi G}{c^4}\,\boldsymbol{T}$$

- tensorial equation (10 scalar equations)
- non-linear equation
- propagation at finite speed (c)
- source : energy-momentum of matter and electromagnetic field

Remark : for a weak gravitational field, one of the 10 components of Einstein equation reduces to the Poisson equation (and the other 9 reduced to 0 = 0).

What is a strong gravitational field?

Relativity parameter or compacity parameter of a self-gravitating body of mass M and mean radius R:

$$\boldsymbol{\Xi} = \frac{GM}{c^2 R} \sim \frac{|E_{\rm grav}|}{Mc^2} \sim \frac{|\Phi_{\rm surf}|}{c^2} \sim \frac{v_{\rm esc}^2}{c^2}$$

- $E_{\rm grav}$: gravitational potential energy¹
- $\Phi_{\rm surf}$: gravitational potential at the surface of the body
- $v_{
 m esc}$: escape velocity from the body's surface²

	Earth	Sun	white dwarf	neutron star	black hole
Ξ	10^{-10}	10^{-6}	10^{-3}	0.2	1

% if $\Xi\gtrsim 0.1,$ general relativity must be employed to describe the body (compact object)

¹for a homogeneous ball : $E_{\text{grav}} = -\frac{3}{5} \frac{GM^2}{R}$ ²for a spherically symmetric body : $v_{\text{esc}} = \sqrt{\frac{2GM}{R}}$ Eric Gourgoulhon (LUTH) Dense matter and gravitational wave astrophysics IMPAN, Warsaw, 22 January 2010 6 / 41

Gravitational waves

Linearization of Einstein equation in weak field :

 $g = \eta + h$, $\eta =$ Minkowski metric³

Eric Gourgoulhon (LUTH)

Gravitational wave emission

• For a weakly relativistic source : quadrupole formula :

$$h_{ij}^{\rm TT}(t, \vec{x}) = \frac{2G}{c^4 r} \left[P_i^{\ k} P_j^{\ l} - \frac{1}{2} P_{ij} P^{kl} \right] \ddot{Q}_{ij} \left(t - \frac{r}{c} \right)$$

- r : distance to the source
- $P_{ij} = \delta_{ij} x^i x^j / r^2$: transverse projector
- $Q_{ij}(t) := \int_{\text{source}} \rho(t, \vec{x}) \left(x^i x^j \frac{1}{3} \vec{x} \cdot \vec{x} \, \delta_{ij} \right) d^3 \vec{x} : \text{mass quadrupole}$
- GW luminosity :

$$L \sim \frac{c^5}{G} \, s^2 \, \Xi^2 \left(\frac{v}{c} \right)^6$$

- s : asymmetry factor (s = 0 fpr spherical symmetry)
- $\Xi := GM/(c^2R)$: compacity parameter
- $\bullet \ v$: characteristic velocity of matter in the source

 $NB : c^5/G \simeq 4 \ 10^{52} \ W!$

Gravitational waves

Bi-dimensional spacelike section of a spacetime generated by a binary system of black holes

 $\begin{array}{l} \mbox{gravitational waves} = \mbox{perturbations in} \\ \mbox{spacetime curvature} \end{array}$

- reveal the dynamics of spacetime
- are generated by acceleration of matter
- far from the sources, propagate with the velocity of light
- NB : electromagnetic waves (radio waves, IR, optical, UV, X and gamma) are perturbations of the electromagnetic field which propagate *within* spacetime, whereas gravitational waves are waves of spacetime *itself*

A short introduction to gravitational waves

Detection of gravitational waves

LIGO : USA, Louisiana

LIGO : USA, Washington

VIRGO : France/Italy/Poland (Pisa)

Interferometers VIRGO (3 km) and LIGO (4 km) are currently acquiring data.

Eric Gourgoulhon (LUTH)

Dense matter and gravitational wave astrophysics IMPAN, Warsaw, 22 January 2010 10 / 41

VIRGO sensitivity curve

Eric Gourgoulhon (LUTH)

11 / 41

Event rates

Binary coalescences :

		NS-NS	BH-NS	BH-BH
predicted rate $^{(1)}$	$[\mathrm{yr}^{-1}L_{10}^{-1}]$	$5 \ 10^{-5}$	$2 \ 10^{-6}$	$4 \ 10^{-7}$
observed rate $^{(2)}$	$[\mathrm{yr}^{-1}L_{10}^{-1}]$	$< 4 \ 10^{-2}$	$< 2 \ 10^{-2}$	$< 2 \ 10^{-3}$
detection range	LIGO S5 ⁽²⁾	30 Mpc	50 Mpc	80 Mpc

 $\begin{array}{l} L_{10} = 10^{10} L_{\odot} \mbox{ (blue solar luminosity); our galaxy : $\sim 1.7 \, L_{10}$ \\ (^{1)}$ [Kalogera, Belczynski, Kim, O'Shaughnessy & Willems, Phys. Rep. 442, 75 (2007)] \\ (^{2)}$ from 1st year of LIGO S5 data, Nov. 2005 - Nov. 2006 \\ [Abbott et al., PRD$ **79** $, 122001 (2009)] \\ \end{array}$

Core collapse supernovae :

rate $\sim 2 \ 10^{-2} \ {\rm yr}^{-1} L_{10}^{-1}$

Outline

A short introduction to gravitational waves

2 Gravitational signal from binary neutron stars

3 Gravitational signal from black hole-neutron star binaries

Other types of gravitational radiation from neutron stars

Gravitational signal from binary neutron stars

Gravitational radiation from a binary system

$$h_{+} = \frac{2}{c^{4}d} (G\mathcal{M})^{5/3} \left(\frac{2\pi}{P}\right)^{2/3} (1 + \cos^{2} i) \cos\left(4\pi \frac{t}{P} + \varphi_{0}\right)$$
$$h_{\times} = \frac{4}{c^{4}d} (G\mathcal{M})^{5/3} \left(\frac{2\pi}{P}\right)^{2/3} \cos i \sin\left(4\pi \frac{t}{P} + \varphi_{0}\right)$$

Chirp signal

[Boyle et al., PRD 78, 104020 (2008)]

A panel of different E0S

3 nuclear matter EOS :

• BPAL12 : phenomenological soft extreme of nucleonic EOS [Bombacci et

al. 1995]

• AkmalPR : n,p,e, μ with 2-body (Argonne A18) and 3-body (Urbana UIX) nucleon interactions [Akmal,

Pandharipande & Ravenhall 1998]

• GlendNH3 : n,p,e, μ with hyperons for $\rho > 2\rho_{\rm nuc}$ [Glendenning 1985]

3 strange matter EOS : MIT bag model •SQSB56 : $m_{\rm s}c^2 = 200$ MeV, $\alpha = 0.2, B = 56$ MeV/fm³ •SQSB60 : $m_{\rm s}c^2 = 0, \alpha = 0,$ B = 60 MeV/fm³ •SQSB40 : $m_{\rm s}c^2 = 100$ MeV, $\alpha = 0.6, B = 40$ MeV/fm³

16 / 41

Inspiralling sequences for different EOS

Mass-shedding limit

for $M_1=M_2=1.35\,M_\odot$ and GlendNH3, AkmaIPR and BPLA12 EOS :

Binding energy along the sequence :

[Bejger, Gondek-Rosińska, Gourgoulhon, Haensel, Taniguchi & Zdunik, A&A 431, 297 (2005)] [Limousin, Gondek-Rosińska & Gourgoulhon, PRD 71, 064012 (2005)] [Gondek-Rosińska, Bejger, Bulik, Gourgoulhon, Haensel, Limousin, Taniguchi & Zdunik, ASR 39, 271 (2007)]

Beyond the IWM approximation (1/2)

IWM approximation : conformally flat 3-metric, solving 5 Einstein equations WL approximation : waveless scheme, full 3-metric, solving 10 Einstein equations

[Uryu, Limousin, Friedman, Gourgoulhon & Shibata, PRD 80, 124004 (2009)]

$$\begin{split} M &= 1.35 \, M_{\odot} \\ \text{piecewise polytropic EOS} \\ [\text{Read et al., PRD 79, 124033 (2009)}] \\ \gamma &= 1.35 \rightarrow 3 \\ 2\text{H}: \quad M/R = 0.13 \\ \text{HB}: \quad M/R = 0.17 \\ 2\text{B}: \quad M/R = 0.21 \end{split}$$

Beyond the IWM approximation (2/2)

Number of orbital cycles

[Uryu, Limousin, Friedman, Gourgoulhon & Shibata, PRD 80, 124004 (2009)]

The merger Small mass : hypermassive neutron star remnant (bar shape, short living)

[Shibata & Taniguchi, PRD 73, 064027 (2006)]

Eric Gourgoulhon (LUTH)

The merger Slightly larger mass : hypermassive neutron star remnant (bar shape, short living)

EOS : Akmal, Pandharipande & Ravenhall (1998), $M_1 = M_2 = 1.4 \, M_{\odot}$

[Kiuchi, Sekiguchi, Shibata & Taniguchi, PRD 80, 064037 (2009)]

Eric Gourgoulhon (LUTH)

The merger Larger mass : prompt black hole formation

[Shibata & Taniguchi, PRD 73, 064027 (2006)]

The merger Larger mass : prompt black hole formation

EOS : polytropic $\gamma=2$, $M_1=M_2=1.5\,M_{\odot}$

[Baiotti, Giacomazzo & Rezzola, PRD **78**, 084033 (2008)] [movie from numrel@aei]

Image: A match a ma

Gravitational wave signal

GW Fourier spectrum

 $\begin{array}{ll} \leftarrow & {\sf EOS: {\sf APR}} \\ & M_1 = M_2 = 1.3\,M_\odot \; {\rm (solid)} \\ & M_1 = M_2 = 1.4\,M_\odot \; {\rm (dashed)} \\ & {\sf dotted \; line: 2-{\sf PN}} \end{array}$

 $M_{\rm crit}$: total mass for prompt black hole formation \exists peak at $f \sim 2-3 \text{ kHz} \Rightarrow$ $M_{\rm tot} < M_{\rm crit}$ No peak \Rightarrow prompt BH formation \Rightarrow soft EOS FPS EOS : $M_{\rm crit} = 2.5 M_{\rm sol}$ SLy EOS : $M_{\rm crit} = 2.7 M_{\rm sol}$ APR EOS : $M_{\rm crit} = 2.9 M_{\rm sol}$ In addition, the frequency of the peak depends on the EOS [Shibata, PRL 94, 201101 (2005)] [Shibata & Taniguchi, PRD 73, 064027 (2006)]

GW Fourier spectrum

distance d = 100 Mpc

[Rezzolla, Baiotti, Link & Font, arXiv/1001.3074]

Measuring the EOS stiffness

Measuring departure from point-particle limit

⇒ the GW phase accumulates more rapidly for smaller value of NS compactness

 $\delta R \sim 1 \ {
m km} imes (100 \ {
m Mpc}/d)$ in broadband advanced LIGO

 $M_1 = M_2 = 1.35 M_{\odot}, d = 100 \text{ Mpc}$ PP = point particle, 2H : M/R = 0.13HB : M/R = 0.17, 2B : M/R = 0.21

[Markakis, Read, Shibata, Uryu, Creighton, Friedman & Lackey, J. Phys.: Conf. Ser. 189 012024 (2009)]
[Read, Markakis, Shibata, Uryu, Creighton & Friedman, PRD 79, 124033 (2009)]

< □ > < 向

Outline

A short introduction to gravitational waves

2 Gravitational signal from binary neutron stars

3 Gravitational signal from black hole-neutron star binaries

Other types of gravitational radiation from neutron stars

Gravitational signal from black hole-neutron star binaries

Black hole-neutron star binaries

The most favorable binary coalescence for VIRGO / LIGO?

Sources of short gamma-ray burst?

[Grandclément, PRD 74, 124002 (2006)]

Image: A matrix and a matrix

Black hole-neutron star merger

EOS : polyt. $\gamma = 2$, M/R = 0.145, mass ratio 3 (A), 2 (B) and 1 (C) :

[Etienne, Faber, Liu, Shapiro, Taniguchi & Baumgarte, PRD 77, 084002 (2008)]

Gravitational signal from black hole-neutron star binaries

Gravitational wave signal

[Shibata & Taniguchi, PRD 77, 084015 (2008)]

GW Fourier spectrum

Outline

A short introduction to gravitational waves

2 Gravitational signal from binary neutron stars

3 Gravitational signal from black hole-neutron star binaries

Other types of gravitational radiation from neutron stars

Neutron star formation in core-collapse supernovae

[Dimmelmeier, Ott, Marek & Janka, PRD 78, 064056 (2008)]

• EOS :

red : Shen (1998) blue : Lattimer & Swesty (1991)

- Progenitor mass :
 - s11 = $11 M_{\odot}$,
 - s15 = $15\,M_\odot$,
 - s20 = $20 M_{\odot}$,
 - $s40 = 40 \, M_{\odot}$
- Rotation profile : A1 = uniform, A2 = moderately
 - differential, A3 = strongly differential
- *T*/|*W*| : O1 = small, O15 = large

Neutron star formation in core-collapse supernovae

[Dimmelmeier, Ott, Marek & Janka, PRD 78, 064056 (2008)]

• EOS :

red : Shen (1998) blue : Lattimer & Swesty (1991)

- Progenitor mass :
 - $\mathrm{s11}=11\,M_\odot\text{,}$
 - s15 = $15\,M_\odot$,
 - $s20 = 20 M_{\odot}$,
 - $s40 = 40 M_{\odot}$
- Rotation profile : A1 = uniform, A2 = moderately differential, A3 = strongly differential
- T/|W| : O1 = small, O15 = large

Back bending instability

Electromagnetic radiation of an isolated rotating neutron star \Rightarrow angular momentum loss \Rightarrow increase of central pressure If \exists phase transition at high pressure EOS softening \Rightarrow back bending in the (Ω, J) curve \Rightarrow migration from unstable to stable configuration (minicollapse)

[Dimmelmeier, Bejger, Haensel & Zdunik, MNRAS 396, 2269 (2009)]

• MUn EoS : transition from normal baryon matter $(\rho < \rho_1)$ to quark matter $(\rho > \rho_2)$ via a mixed baryon-quark phase

 microphysical EoS : first order phase transition from normal baryon matter to kaon-condensed matter

[Dimmelmeier, Bejger, Haensel & Zdunik, MNRAS 396, 2269 (2009)]

Evolution of central density during the migration from the unstable configuration to the stable one :

[Dimmelmeier, Bejger, Haensel & Zdunik, MNRAS 396, 2269 (2009)]

Other types of gravitational radiation from neutron stars

Phase-transition-induced mini-collapse of neutron stars

Gravitational wave signal

Detectability

- Long quasi-periodic signal
- Promising candidates : young magnetars (strong angular momentum loss)
- Event rate : $10^{-2}~{\rm yr}^{-1}$ in our Galaxy (VIRGO, LIGO) ; $1~{\rm yr}^{-1}$ in the Virgo cluster (ET)

[Dimmelmeier, Bejger, Haensel & Zdunik, MNRAS 396, 2269 (2009)]

Other types of gravitational radiation from neutron stars

Phase-transition-induced mini-collapse of neutron stars

Another study : phase transition from hadronic matter to deconfined quark matter in the core \Rightarrow compact hybrid quark star

[Abdikamalov, Dimmelmeier, Rezzolla & Miller, MNRAS 392, 52 (2009)]