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The 341 formalism of general relativity



341 formalism

History: Lichnerpwicz (1944), Choquet-Bruhat (1952), Arnowitt, Deser & Misner
(1962), York & O Murchadha (1974), and many others...

Basics: Foliation of spacetime by a family of spacelike hypersurfaces (),  ; on each
hypersurface, pick a coordinate system (xi)i€{1’2,3}

= (") ueq0,1,2,3} = (t,z',2°, 2°) = coordinate system on spacetime ( / — time
coordinate, without any particular physical significance)

n : future directed unit normal to X :
n=—Ndt, N : lapse function

e; = 0/0t : time vector of the natural
basis associated with the coordinates (z+)

N : lapse function
3 : shift vector

}et:Nn—i—,B

Geometry of the hypersurfaces >;:
— induced metricy =g+ n®n

— extrinsic curvature : K = —§£n'y

Guv dzt dx” = —N?dt* + v;; (dx' + B'dt) (dz? + 3 dt)




Choice of coordinates and 3+1 formalism
() = (t,z") = (t,z', 22, 2°)
Choice of lapse function N <= choice of the slicing (3;)

Choice of shift vector 3 <= choice of spatial coordinates (xz) in each
hypersurface 3; (via the choice of e;)

A widely chosen foliation : maximal slicing : K :=trK =0



3+1 decomposition of Einstein equation

Orthogonal projection of Einstein equation onto XJ; and along the normal to >; :

e Hamiltonian constraint: R+ K?— Kz-jKij = 167FE
e Momentum constraint : D;KY — D'K = 8rJ’
e Dynamical equations :

5Kij

_ f,BKij p— _D’LDJN—|_N [le — QKZ‘].CKkj —|—KK@']‘ —1—471'((3— E)’yij — 252)}

ot

E:=T(n,n)=T,,n"n", Ji ==y, " T n”, Sij =% Ty, S := S,
D; : covariant derivative associated with v, R;; : Ricci tensor of D;, R := R’

oy

5+ DB + DI =2NK"

Kinematical relation between ~ and K:

[Choquet-Bruhat 1952]



Conformal metric

York (1972) : of the gravitational field carried by the

conformal “metric”
-1/3 ..

Yij =Y Vij with v := det

¥i; = tensor density of weight —2/3

To work with tensor fields only, introduce an extra structure on X;: a flat metric f such

that % = 0 and ~;; ~ f;; at spatial infinity (asymptotic flatness)

1/12
Define 5/7'] — \11_4 Vi or Yij =: \114 5/7’] with | U := <%> . f :— det fw

7vi; Is invariant under any conformal transformation of ~;; and verifies det ¥;; = f

Notations:  4%: inverse conformal metric : 7;; 7% = 0,7

~

D; : covariant derivative associated with 7;;, D' := 3% D,
D; : covariant derivative associated with f;;, D" := f"D,



Conformal decomposition

Relation between the Ricci tensor R of « at the Ricci tensor R of y:
Rij = Rij = 2D:D; W + 4D;n @ D;In @ — 2 (D* Dy In W + 2D4 In @ D* In W) 45

Trace: R=U"4 (R — 8Dkl~?k InW — 81~)k In ¥ DFIn \I!>
Conformal representation of the traceless part of the extrinsic curvature:

)y o1 y
AY = Ut (K9—§K’7‘7>

1
Indices lowered with the conformal metric: A;; := %;ﬂﬂAkl -y (Kz-j — §K%j)



Conformal decomposition of Einstein equations
. . . ~ ~ \Ij ~ 5 i K2
Hamiltonian constraint — D, D'V = gR — U (2 E + SAUA J — 17
N . 2 .. |
Momentum constraint — D;AY +6AYD;In V¥ — §D"K = 8 UJ!

Trace of the evolution equation for K —

OK sy i K
E—ﬁzDK’_—\IJ (DiDZNqLQDiln\I!D@N)+N[47T(E+S)+Az‘jz4”+?]7

combined with the Hamiltonian constr. — equation for | Q := V2N

3 K2> 0K

D, D'Q = \116[ (47TS+ SAGAY : e + 8°D,; K]

1 ~ - - - -
+ P2 [N (ZR+ 2D, In¥ D*In m) +2D; ln\I!DZN]



Conformal decomposition of Einstein equations (con’t)

Traceless part of the evolution equation for K —

DAY
ot

2
3

~ iy o~ 1~ =~ iy
Dyf" AY = — @6 (D@DJQ — -DyD*Q ny)

— LaAY
& 3

+\114{N (a%ﬂfzm + 8D In W DY In qf) 44 (D@' InU DIN + DI In W D%N)
1 3 _ 3 5 _ g
= [N (R + 8D, In UDFIn \If) + 8D, 1In \IID’“N} fw}

+N [KA” + 29 AF AT — 81 (qﬂsw = gsw)]



Conformal decomposition of the kinematical relation between ~
and K

Relation between the extrinsic curvature and the time derivative of the metric:

5"Vij i Qj Y ij
o+ D'B+ DIt = aNK"
) A
o trace part — - = F'D,U + = (Diﬂ’ _ NK)
575

e traceless part — = ANAY — (LB)Y

ot

with the conformal Killing operator acting on the shift vector being defined as

- - . 2. o
(LB)7 := D?B" + D'B — S DB" 5
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Solving the constraint equations

11
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General remarks

Solving the constraint equations = get (7, K) for the Cauchy problem of
the 341 formalism

quasilinear elliptic equation for the conformal factor W
fix the divergence of A" (with respect to D)

the constraint equations are preserved by the evolution equations
Consequently one may choose between

e a free evolution schemes (constraint equations used only to check the numerical
solution)
e a constrained evolution schemes (solve the constraint equations at each step)

cf. T. Baumgarte's talk



Methods to solve the constraint equations

Conformal transverse-traceless method (York & O Murchadha) [this talk]
Conformal thin sandwich (York) [this talk]
Gluing techniques (Isenberg, Mazzeo, Pollack, Corvino, Schoen)

Quasi-spherical (Bartnik, Sharples)

13



2.1

The conformal transverse-traceless method

14



The conformal transverse-traceless (CTT) method

York (1979), variant of O Murchadha & York (1974)

Split K% into a traceless part K}/ and a trace part : K" = K}/ + gfy”
Motivated by the identity D; K% = U~ 10D (W10K7),

introduce a conformal traceless extrinsic curvature AV by KY = ¢g—10 4%
NB: AW = ¥b4Y

Split A% into a longitudinal and transverse part: | AY = (LX)¥ + A%,

2 ~
with W.=DIX"+ DX — §D kX" 59 (conformal Killing operator)

(LX)
and D, flé‘j =0  (transversality with respect to 7)

N o K .
Finally: | K7 = w10 (LX)Y + Afy| + 59"

3

15
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Constraint equations in the CTT framework

Hamiltonian constraint ™\, (Lichnerowicz equation)

o /2 K2 1~ ~..
DZD’L\IJ = gR \115 (27TE — ﬁ) — gAijAm \11_7 (].)

Momentum constraint \,

A R N 2
DiDF X 4 gDszXk + R" X7 =870 )" + §\IJ6D"K (2)

(45, K, A2.) and (E, J?), with
® 7i; symmetric, positive definite
° ATJT symmetric, transverse and traceless with respect to 7;;

solve (1) and (2) to get ¥ and X"; the valid initial data is then

. - K .
v = Wy and K9 = w0 (LX) + A + 5y



Remarks about the CTT constraint equations

e The Hamiltonian constraint (1) is a quasilinear elliptic equation for W
e The momentum constraint (2) is a linear vector elliptic equation for X"

e If one chooses , K =0 and (2) becomes independent from W :
1 _ _
Dy D" X" + gpzpkxk + R, X7 =8rJ"

(provided one selects J¢ := W10J% as the matter freely specifiable data)

17
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Boundary conditions

Topology of the initial data manifold > :

° %o ~ R?

o Yo ~ R?\ some balls (half of Misner-Lindquist topology)
or g ~ R?\ some points (punctures) (Brill-Linquist topology)

Example: Misner-Lindquist topology for two black holes:

1 S gL
v, O e U e
Constraint equations (1) and (2) = elliptic equations = have

to be supplied at the inner boundaries and outer boundary (spatial infinity) of ¥ to
yield a unique solution |
4 =1 and X'

T o0 }r—>oo =0

(asymptotic flatness for 7;; o~ fij)

S:  for example, ¥ such that & = apparent horizon
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Global quantities as surface integrals at spatial infinity

for r — oo (Cartesian components):
¢ vii=fi; +O(r™') <= ¥=1land ;= fi; +O(~") (NB: f9%,=1+0(r?))
® Dyvi; = O(?‘_2) — DpV = O(?“_Z) and Dy7y;; = 0(7“_2) (no grav. wave at spatial inf.)
o k¥ = O(T_Q)

o quasi-isotropic gauge : additional condition: D77;; = O(r™3) [York 1979]

1 ' 7 i
° Mapm = T6r o (Dj%'j — f? Di’}/jk) dS

1 |
* In the quasi-isotropic gauge: Mapym = —2—]{ D,V dS* (function of U only)
™ ©.@)

o P} o projections along three independent translational
Killing vectors of f, ;) :

. 1 .
: J — o : J k
PjADMg i)~ ] %OO(KJIC Kf]k) (7) S
o . projections
along three independent rotational Killing vectors of f, 7, :
: 1
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Conformally flat initial data

As a part of the freely specifiable data, choose | ¥;; = fi; | (flat metric)

Consequently D, = D, and R@'j =0

Choose also | K = 0 | (maximal slicing)

Then the Hamiltonian constraint (1) becomes
5 L s Zij g7
AV = —2nW°E — gAijAj )
and the momentum constraint (2) reduces to
i Lo k 7i
AX" + §D D X" =8nJ

where A = fijDiDj is the flat space Laplacian



The Bowen-York solution

In addition to 7;; = f;; and K = 0, choose F' = ( and J" = 0 (vacuum spacetime), as
well as A+, = 0.

Then
i, L k
AX" + §D D X" =0 (4)
4) [Bowen & York, PRD 21, 2047 (1980)] :
. 1 . It 1 . .
For a single black hole : X}, = —— (713@ + P ) - € pSat
r r

with * = (z,y,2), r° == 2* + y° + 2°

P* = ADM linear momentum

Two constant vector parameters : ;
S* = angular momentum

21


http://cornell.mirror.aps.org/abstract/PRD/v21/i8/p2047_1

The Bowen-York solution (con’t)

choose Si. perpendicular to PZ and choose Cartesian coordinate system
(x,y, z) such that P* = (0, P,0) and S* = (0,0, S). Then

v Pzy | v
Yoo = Tt os
P y? T
Xngo — 47“ (7—|— 7“2) - Sﬁ
; Pxz
devo T s

Agyo (LX BYO)

y 3 g j 3 /. - .
Agy, = 2,3 [szj + Py’ (5” — xrf ) Pkazk] + 5 (e" SFrted + ¢ le’%%")

There remains to solve (numerically) the non-linear elliptic equation (3) to get W.



Static Bowen-York solution = Schwarzschild solution

Static case: P* =0 and S* =0
— X*=0and AY = (

Hamiltonian constraint (3) - AWV =0

M
Non trivial spherically symmetric solution : ¥ =1 + o
-

Hence one recovers Schwarzschild solution in isotropic coordinates:

M 4
Yij = <1 +2—T) fij

23



Non-conformally flat initial data

There does not exist any conformally flat axisymmetric slice of Kerr spacetime [Garat &
Price, PRD 61, 124011 (2000)]

Matzner, Huq & Shoemaker (1998) [PrRD 59, 024015],
Marronetti & Matzner (2000) [PRL 85, 5500] :

linear combination of

¥ =Ff+2B1H £ @£+ 2BoHo by ® £y

with  £; : null vector of a single Kerr-Schild metric
Mr:
Hi = — 2Z : 2
re 4 a; cos? 0;
B; : attenuation functions

24


http://publish.aps.org/abstract/PRD/v61/e124011
http://publish.aps.org/abstract/PRD/v61/e124011
http://publish.aps.org/abstract/PRD/v59/e024015
http://publish.aps.org/abstract/PRL/v85/p5500

2.2

The conformal thin sandwich method

25



The conformal thin sandwich (CTS) method

York (1999) [PrL 82, 1350], Pfeiffer & York (2003), [PRD 67, 044022

Use the same conformal decomposition of the extrinsic curvature as in the 3+1
evolution equations:

3
and rewrite the traceless kinematical relation between ~ and K as

1

AV —
2N

(@07 4

077
ot

with 4% =

i = y (conformal thin sandwich),
instead of A2, in the CTT formulation.


http://publish.aps.org/abstract/PRL/v82/p1350
http://publish.aps.org/abstract/PRD/v67/e044022

Equations in the CTS framework

Hamiltonian constraint ™\

. K?
D, D'V = —R — P (27TE+ “A AV — 12) (5)

Momentum constraint \,
O o
DyD*G + SD'Dy3* + R 367 — (L)Y Dy In(NW™F) =
: 2 .. ~ .. o~
2N (87T\I!4J7’ + gDzK> — D;u"” +u" Dy In(NW¥~9) (6)

Trace of the evolution equation for K \, (K := dK/dt)

. ~ . . K? - .
D;D'N +2D;In¥ D'N = ¥4 {N [47T(E+S)+A7;jA” +?] +B’DiK—K} (7)

%-,’&ij:}yij,K,K and (E, J*
J



Equations in the CTS framework (con’t)

(33,47 = 5", K, K) and (E, J') with
® 7;; symmetric, positive definite
e "7 symmetric and traceless with respect to 7;;

solve (5), (6) and (7) to get ¥, 5* and N; the valid initial data is then
\If_4

N ’ - 1 K.
’Yij:‘lf4’yij and K”:W{(Lﬂ)”-yuw} + — A

3

28



Comparing CTT and CFS

e CTT : choose some transverse traceless part A, of the extrinsic curvature K, i.e.

some I —

e CTS : choose some time derivative u"/ of the conformal metric ¥/, i.e. some
—

Advantage of CTT : mathematical theory well developed (at least for constant mean
curvature (K = const) slices)

Advantage of CTS : better suited to the description of quasi-stationary spacetimes (—
quasiequilibrium initial data) :

o -
Py Killing vector = u"” =0

Lrecall the relation "7 = VYK~ — K') between K% and the ADM canonical momentum

29



Numerical comparison of CTT and CFS for binary balck holes

[Pfeiffer, Cook & Teukolsky, PRD 66, 024047 (2002)]

Initial slice ¥ = R” \ two balls

Choice of freely specifiable pieces:

* ~ = superposition of two boosted Kerr-Schild metrics

* K = K{®+ K§°

% for CTT : A’ from a linear superposition of two Kerr-Schild extrinsic curvatures
* for CFS : 4% =0

Fix the total angular momentum and the proper separation between the two apparent
horizons

2

significant differences (5%) in the ADM mass among the two methods
choice of the freely speciable part of the extrinsic curvature more important than the
choice of the conformal metric (even if a flat 4 is chosen)

2Such computations have also been performed recently by [Bonning et al., gr-qc/0305071]

30


http://publish.aps.org/abstract/PRD/v66/e024047
http://arxiv.org/abs/gr-qc/0305071

3

Compact binaries in circular orbits

31
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Astrophysically relevant initial data

Position of the problem: Among all the possible solutions (g, y, K) of the
constraint equations, how to pick those which correspond to a binary system in a nearly
circular orbit ?

Basically two approaches have been employed in numerical studies:

e the effective potential approach, based on CTT [binary black holes]

e the helical Killing vector approach, based of CTS [binary black holes, binary
neutron stars|



3.1

The Effective Potential approach

33



The Effective Potential approach (Cook 1994)

Procedure to get a

e Solve only for the vacuum constraint equations on a spacelike surface
Yo with a non-trivial topology (for instance the Misner-Lindquist topology or the
Brill-Lindquist topology)

e Define the binding energy by £/ = Mapy — M1 — M

e Define a circular orbit as an extremum of E with respect to proper separation [ at
fixed angular momentum and BH individual mass:

OF

- — 0
ol My ,Mso,J

oF

1,4V12,

34



Ambiguities of the effective potential approach

Contrary to the ADM mass, the individual masses M; and M5 of each black hole are
ill-defined quantities in GR.
[PRD 50, 5025 (1994)] : define the individual mass M; from the

A; and and via the
A, 4rS?
M? = " -
’ 167 * A;

Christodoulou formula only established for a single stationary black hole
(Kerr spacetime)
moreover with A; the area of the horizon, not the apparent one
The individual spin S; suffers from the same lack of unambiguous definition
as the individual mass

No rigorous fundations for the effective potential formulas

35


http://cornell.mirror.aps.org/abstract/PRD/v50/i8/p5025_1

Numerical implementations of the effective potential approach

All based on CTT with (i) conformally flat metric and (ii) Bowen-York extrinsic
curvature:

KU = \Ij_lo [A]ZBJYO(PM Sl,.’l’}i — xi) + A’Zléon(P% 527xi — 3312)]

oo

e % E\» e
o Cook 1994 [PRD 50, 5025 (1994)] : Misner-Lindquist topology

e Pfeiffer, Teukolsky & Cook 2000 [PRD 62, 104018 (2000)] : /cdem

e Baumgarte 2000 [PRD 62, 024018 (2000)] : Erill-Lindquist topology

36


http://cornell.mirror.aps.org/abstract/PRD/v50/i8/p5025_1
http://publish.aps.org/abstract/PRD/v62/e104018
http://publish.aps.org/abstract/PRD/v62/e024018

Discrepancy between Effective Potential + Bowen York and
post-Newtonian results

Binding energy along an evolutionary sequence of equal-mass binary black holes:

Non resum. 3PN, cor ot (Blanchet 2002)

1 -—-- EOB 3PN, irrot (Damour et al. 2000)
- N s IVP-conf, irrot (Cook 1994, Pfeiffer et al. 2000)
-0.011 N, ; -
i \\ 7 4
E 5 N
= B J
A /
2 - Y K4 1
s -0.015- s
3 e
<
-0.02- .
1 1 1 1 | 1 1 1 1 | 1 1 1 1 |IIO |
0 0.05 0.1 0.15
QM.

Irr

at the 3-PN level:
e Damour, Jaranowski & Schafer 2000 [PRD 62, 084011 (2000)] :

e Blanchet 2002 [PRD 65, 124009 (2002)] :


http://publish.aps.org/abstract/PRD/v62/e084011
http://publish.aps.org/abstract/PRD/v65/e124009

3.2

The helical Killing vector approach

38



Binary systems in quasiequilibrium

Problem treated: Binary black holes or neutron stars in the pre-coalescence stage

= the notion of has still some meaning

Basic idea: Construct an , but full spacetime (i.e. )
representing 2 orbiting compact objects. Previous numerical treatments: 3-dimensional
(initial value problem on a spacelike 3-surface) 4-dimensional approach = rigorous
definition of orbital angular velocity

e Binary NS :

* corotating stars : [Baumgarte et al., PRL 79, 1182 (1997)], [Baumgarte et al., PRD 57, 7299 (1998)],
[Marronetti, Mathews & Wilson, PRD 58, 107503 (1998)]

* irrotational stars : [Bonazzola, Gourgoulhon & Marck, PRL 82, 892 (1999)], [Gourgoulhon et al., PRD 63,
064029 (2001)], [Marronetti, Mathews & Wilson, PRD 60, 087301 (2000)], [Uryu & Eriguchi, PRD 61, 124023
(2000)], [Uryu & Eriguchi, PRD 62, 104015 (2000)], [Taniguchi & Gourgoulhon, PRD 66, 104019 (2002)], [Taniguchi
& Gourgoulhon, gr-qc/0309045 (2003)]

* arbitrary spins : [Marronetti & Shapiro, gr-qc/0306075]

e Binary BH :

* corotating BH : [Gourgoulhon, Grandclément & Bonazzola, PRD 65, 044020 (2002)], [Grandclément,
Gourgoulhon & Bonazzola, PRD 65, 044021 (2002)],

% arbitrary spin : [Cook, PRD 65, 084003 (2002)]

39
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http://publish.aps.org/abstract/PRD/v58/e107503
http://prola.aps.org/abstract/PRL/v82/i5/p892_1
http://publish.aps.org/abstract/PRD/v63/e064029
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http://publish.aps.org/abstract/PRD/v60/e087301
http://publish.aps.org/abstract/PRD/v61/e124023
http://publish.aps.org/abstract/PRD/v61/e124023
http://publish.aps.org/abstract/PRD/v62/e104015
http://publish.aps.org/abstract/PRD/v66/e104019
http://arxiv.org/abs/gr-qc/0309045
http://arxiv.org/abs/gr-qc/0309045
http://arxiv.org/abs/gr-qc/0306075
http://publish.aps.org/abstract/PRD/v65/e044020
http://publish.aps.org/abstract/PRD/v65/e044021
http://publish.aps.org/abstract/PRD/v65/e044021
http://publish.aps.org/abstract/PRD/v65/e084003

40
Helical symmetry

when the two objects are sufficiently far apart, the radiation
reaction can be neglected
Gravitational radiation reaction circularizes the orbits

Spa cetime POSSESSES sOMeE

L:

(i) timelike near the system,

(ii) spacelike far from it, but such that 3
a smaller T" > 0 such that the separation
between any point P and and its image
x7(P) under the symmetry group is timelike
[Bonazzola, Gourgoulhon & Marck, PRD 56, 7740 (1997)]
[Friedman, Uryu & Shibata, PRD 65, 064035 (2002)]

[\



http://prola.aps.org/abstract/PRD/v56/i12/p7740_1
http://publish.aps.org/abstract/PRD/v65/e064035

Helical symmetry: discussion

Helical symmetry is exact

® In and in

e in general relativity for a non-axisymmetric system (binary) only with

But a spacetime with a helical Killing vector and standing gravitational waves
in full GR [Gibbons & Stewart 1983].

We have used a truncated version of GR (the
approximation, which will be described below) which (i) admits the helical Killing

vector and (ii) is asymptotically flat.

41



Helical symmetry and conformal thin sandwich

| 0
Choose coordinates (¢, ") adapted to the helical Killing vector: i 2

— the “velocity” part of the freely specifiable data of the CTS approach are fully
determined:

.. 0K
= 875 =0 and K—E—

0

Remaining free specifiable data: choose

e 7;; = fi; (conformal flatness)

e K =0 (maximal slicing)

42



Helical symmetry and conformal thin sandwich (con’t)

CTS equations for 7;; = f;; and K =0 :

1 .
AV = —P° (27TE + gAz-jA%?)

1. . L
A+ gpzpkﬁ’f = 167NV + (LB)YD; In(NU %)

AN = NU* [Ar(E + S) + A;jAY] — 2D, In W D'N

where

e D; is the covariant derivative associated with the flat metric f
o A:= fYD;D; is the flat Laplacian

o (LB)Y =D + DIF — Dyt f

P R
o AV =S(LB)Y
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Helical symmetry and IWM approximation

waveless approximation to General

Relativity based on a conformally flat spatial metric: | v = U f
[Isenberg (1978)], [Wilson & Mathews (1989)]

= spacetime metric : ds® = —N2dt* + U f;.(dx" + 'dt)(dx? + 3 dt)

Amounts to solve only 5 of the 10 Einstein equations:

e Hamiltonian constraint

e momentum constraint (3 equations)

e trace of the evolution equation for the extrinsic curvature

CTS equations

Remaining (non CTS) equation: trace part of the kinematical relation between ~ and K

oV
ith — =0
WI It | |
Diﬁz — —GQZDZ' In W



Spacetime manifold

Topology :  for binary NS : R*
for binary BH : R x Misner-Lindquist

a @Pl = _O—.\ / /
; NEF = N

2

Canonical mapping: [I: (t,71,01,01) — (t,ﬁﬂl,wl
1

) Isometry

45
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Fluid equation of motion

Neutron star fluid = perfect fluid : T = (e + p)u ® u + pg.

Carter-Lichnerowicz equation of motion for zero-temperature fluids:

u-dw =20 (1) w := hu : co-momentum 1-form

V-T=0+ { V-(nu)y=0 (2 dw: vorticity 2-form

with n = baryon number density and h = (e + p)/(mpn) specific enthalpy.

Cartan identity : Killing vector £ — £yw=0=£¢-dw+d(£-w) (3)

Two cases with a first integral : | £-w = const | (4)
o u=XM: (3)+ (1) < (4) ; (2) automatically satisfied
) dw =0< w=VVU: (3) < (4); (1) automatically satisfied

(2) & “V .V +V

n
c— . W:O
h i)V



Astrophysical relevance of the two rotation states

(also called ) : the
viscosity of neutron star matter is far too low to ensure synchronization of the stellar

spins with the orbital motion [Kochanek, ApJ 398, 234 (1992)], [Bildsten & Cutler, ApJ 400, 175 (1992)]
—

good approximation for neutron stars which are not initially
millisecond rotators, because then g, < {251, at the late stages.

47



Rotation state in the binary BH case

rotation synchronized with the orbital motion ( )

e the only rotation state fully compatible with the helical symmetry
[Friedman, Uryu & Shibata, PRD 65, 064035 (2002)]

e for close systems, black hole “effective viscosity” might be very
efficient in synchronizing the spins with the orbital motion
[e.g. Price & Whelan, PRL 87, 231101 (2001)]

the two horizons are associated with £:
E-E\le() and £-£|H2:0.

[cf. the rigidity theorem for a Kerr black hole|

48


http://publish.aps.org/abstract/PRD/v65/e064035
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Boundary conditions

isometry condition on .,.: asymptotic flatness:
ov v ov v
+ =0 —+ — =0 U — 1 when r — o0
87“1 27“1 S 87“2 27“2 So
corotating black holes: definition of £:
0
=0 =0 ()—— when r — o0
/3’31 /3’32 B — 900 W —
isometry condition on N: asymptotic flatness:

N|51:O N|52:O N — 1 when r — o0

49



Additional equations in the fluid case (binary NS)

Baryon number conservation for irrotational flows:
nAT + Vi ViU = -
— singular (n = 0 at the stellar surface) elliptic equation to be solved for W.

I
First integral of fluid motion £ - w = const writes hNF_ = const (D)
0

with I':  Lorentz factor between fluid co-moving observer and co-orbiting observer
(= 1 for synchronized binaries)
['op: Lorentz factor between co-orbiting observer and asymptotically
inertial observer
— solve (5) for the specific enthalpy h.

From h compute the fluid proper energy density e, pressure p and baryon number n via
an equation of state:
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Determination of ()2 : NS case

First integral of fluid motion:

I
hNF_O = const
The Lorentz factor I'y contains {2: at the Newtonian limit, InI'y is nothing but the

1
centrifugal potential: InT'y ~ 5(9 X 1),

At each step of the iterative procedure, () and the location of the rotation axis are then
determined so that the stellar centers (density maxima) remain at fixed coordinate
distance from each other.
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[The only quantity “felt” at the O(r~1) level by a distant observer is the total mass of

the system.]

A priori

Hence

Note

Determination of () : BH case

O(r—1) part of the metric (r — oo) same as Schwarzschild

M
AV and N~1-—2

U~ 1
+ 2r T

(virial assumption) <= Mapy = Mk

(virial assumption) <= U?N ~ 1+ %
-
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Link with the classical virial theorem

Einstein equations =-

AN e .

Aln(¥?N) = ¢ 47rS-i+§Ai~AZJ ! V:InNVIn N + V, In(U2N )V In(U2N
vyt 2

No monopolar 1/r term in V2N <

—4

/ {47TS,L-Z—|—ZAZ']'A” — [ViInNV'InN + V;In(V°N)V* In(U°N) }}xp‘l\/ fdx
2t

= 0
Newtonian limit is the classical virial theorem:

2Exin + 3P + Egrav =0
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Defining an evolutionary sequence: BH case

An evolutionary sequence is defined by:

dMapwm

=
dJ

sequence

This is equivalent to requiring the of each black hole, by
virtue of the First law of thermodynamics for binary black holes :

1
dMapyn = QdJ + 8— (Kll dA1 + Ko dAQ)
7A8

recently established by Friedman, Uryu & Shibata [PRD 65, 064035 (2002)].

Note: Within the helical symmetry framework, a minimum in Mapy along a sequence
at fixed horizon area locates a change of orbital stability [Friedman, Uryu & Shibata,
PRD 65, 064035 (2002)].


http://publish.aps.org/abstract/PRD/v65/e064035
http://publish.aps.org/abstract/PRD/v65/e064035
http://publish.aps.org/abstract/PRD/v65/e064035

An overview of the numerical techniques employed in Meudon

Multidomain three-dimensional
Spherical-type coordinates (7,6, )

Expansion functions: r : Chebyshev; 6 : cosine/sine or associated Legendre functions;
@ : Fourier

Domains = spherical shells + 1 nucleus (contains r = 0)

Entire space (R?) covered: compactification of the outermost shell
Adaptative coordinates : domain decomposition with spherical topology
Multidomain PDEs: patching method (strong formulation)

Numerical implementation: C++ codes based on LORENE
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Double

Domain decomposition

[Taniguchi, Gourgoulhon & Bonazzola, Phys. Rev. D 64, 064012 (2001) |

domain decomposition , _
Surface fitted coordinates:

Fuy(0, ) and Gy(0,¢) chosen so that
¢ = 1 & surface of the star
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57
Test for binary BH : conservation of the horizon area along a

sequence

Ir

21*17%16
o—o 33*21*20
1e-03 — 7]

1e-04 — 7]

Relative change of the irreducible mass M.

| | | | | | | | | | |
0.05 0.075 01 0125 0.15 0.175 0.2
Orbital velocity QM.

Relative change of the horizon area along an evolutionary sequence



Test for

binary BH: recovering Kepler's third law

2 [ [ | [ |
i (G—© HKV (Grandclément et al. 2002)

1.8 —— 3PN corot (Blanchet 2002)

' 3PN irrot (Blanchet 2002)
1.6
1.4
1.2

Kepler's Third Law (Newtonian)
S —
! | ! | ! | ! |

O'82 4 6 8 10

B -2/3
d/M_=@QM,)

irr

Check of the determination of €2 at large separation.
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ISCO configuration

[Grandclément, Gourgoulhon, Bonazzola, PRD 65, 044021 (2002)]
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ISCO configuration

[Grandclément, Gourgoulhon, Bonazzola, PRD 65, 044021 (2002)]
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Comparison with Post-Newtonian computations

Binding energy along an evolutionary sequence of equal-mass binary black holes

EOB 2PN, corot (Damour €t al. 2002)
1 1 EOB 3PN, corot (Damour et al. 2002)
Non resum. 3PN, corot (Blanchet 2002)

-0.01+ R\ —— HKYV, corot (Grandclement et al. 2002)
' R\ .—-. EOB 3PN, irrot (Damour et al. 2000)

. i N IVP-conf, irrot (Cook 1994, Pfeiffer et al. 2000)
> i | |
< -0.015- i

= - i

a

< B 4

-0.02 1 i
I I I I I | I I I I | I I I |||§D |
0 0.05 0.1 0.15
Q I\/Iirr

[Damour, Gourgoulhon, Grandclément, PRD 66, 024007 (2002)]


http://publish.aps.org/abstract/PRD/v66/e024007

Location of the ISCO

Y
<

- 900e

EOB 1PN, corot (Damour et al. 2002)
EOB 2PN, corot (Damour et al. 2002)
EOB 3PN, corot (Damour et al. 2002)

EOB 1PN, irrot (Buonanno & Damour 1999)
EOB 2PN, irrot (Buonanno & Damour 1999)

IVP-conf, irrot (Cook 1994, Pfeiffer et al. 2000)

-0-01 T T T T T T T T T T T T
! Non resum. 3PN, cor ot (Blanchet 2002)
EE : , r )
- i >) EOB 3PN, irrot (Damour et al. 2000)
~ -0.015- %)
£ i ~ Q) Non resum. 3PN, irrot (Blanchet 2002)
EI B O . IVP-punct, irrot (Baumgarte 2000)
E -
2 - S /2. IVP-conf, S=0.08 (Pfeiffer et al. 2000)
é -0.02 B IVP-conf, S=0.17 (Pfeiffer et al. 2000)
P i A . HKYV, corot (Grandclement et al. 2002)
) i v =
< -0.025 = —
S L ]
=
m B i
_0'08 i 1 1 1 1 | 1 1 1 1 | 1 1 1 1 | 1 1 1 1 | 1 1 1 1 |
.05 0.1 0.15 0.2 0.25

Orbital velocity Q M,

[Damour, Gourgoulhon, Grandclément, PRD 66, 024007 (2002)]

f =320

Gravitational wave frequency:
QM;,. 20 Mg H
0.1 My,
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Results for binary NS

Baryon density (y=0)

Isocontour of baryon density for an
irrotational binary system constructed
upon a polytropic EOS with ~ = 2.
The compactness of the left star is
M/R = 0.14 and that of the right star
is M/R =0.16

[Taniguchi & Gourgoulhon, PRD 66, 104019 (2002)]


http://publish.aps.org/abstract/PRD/v66/e104019

Comparing binary NS and binary BH sequences

y=1.8 M/R=0.08 corot.
0 . . . y=1.8 M/R=0.08irrot.
B — y=2 M/R=0.12 corot.
-0.002 1~ — - y=2 M/R=0.12 irrot.
L — y=2.5 M/R=0.16 corot.
-0.004 | — - y=2.5 M/R=0.16 irrot.
i — y=2.5 M/R=0.20 corot.
=3 B — - y=2.5 M/R=0.20 irrot.
= 0.006 \\ 3PN EOB corot. (Damour et al. 2002)
:B i \ 3PN EOB irrot. (Damour et al. 2000)
s -0.008 - \\ 3PN non resum. corot. (Blanchet 2002)

' i \\/ 3PN non resum. irrot. (Blanchet 2002)
s -0.01 \‘\ — corot. binary BH (Grandclement et al. 2002)
&)
< B ]

= -0012 —
-0.014 —
-0.016 - -
| | | | | | | | | | | | |
0 0.02 0.04 0.06 0.08 0.1 0.12 0.14

QM,

[Taniguchi & Gourgoulhon, gr-qc/0309045 (2003)]


http://arxiv.org/abs/gr-qc/0309045

Source of the discrepancy between CTT+BY+EP and CTS+HKYV

CTT+BY+EP = Conformal Transverse Traceless decomposition of the constraints +
Bowen-York extrinsic curvature + Effective Potential determination of the orbits

CTS+HKV = Conformal Thin Sandwich decomposition of the constraints + Helical
Killing Vector

both CTT+BY+EP and CTS+HKYV methods employ a
, so this cannot be the reason why CTT+BY-+EP is far from post-Newtonian
results.

Two main differences between CTT+BY+EP and CTS+HKV approaches:

e Criterion for a circular orbit and determination of the orbital angular velocity (2

e Extrinsic curvature of the ¢ = const hypersurface
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The source of discrepancy lies in the extrinsic curvature

CTT+BY+EP definition of circular orbit and €2 lacks of rigor, due to the ad hoc

definition of the binding energy. This is unavoidable, due to the intrinsic
character of CTT+BY-+EP :

On the contrary CTS+HKYV is intrinsically , and its definition of ) is
unambiguous.

However, despite these differences, it turns out that the two ways of determining €2 for
circular orbits yield the same result

e for irrotational black holes with the Bowen-York extrinsic curvature (Shibata 2002).

e for a simple analytical model of a spherical shell of collisionless particles (Skoge &
Baumgarte 2002 [PRD 66, 107501 (2002)])
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Conclusions and future prospects

Among the two methods CTT and CTS to solve the constraint equations, CTS is
more appropriate to get quasiequilibrium initial data

The classical Bowen-York extrinsic curvature does not represent well binary black
holes in quasiequilibrium orbital motion

The helical Killing vector approach results in very good agreement with post-
Newtonian computations

Next computational step: relaxing the conformal flatness hypothesis, while keeping
the helical symmetry

Also for future work: implement new inner boundary conditions (instead of the
isometry condition), such as apparent horizon boundary [Maxwell, gr-qc/0307117], [Dain,
gr-qc/0308009] == connection with

67


http://arxiv.org/abs/gr-qc/0307117
http://arxiv.org/abs/gr-qc/0308009
http://arxiv.org/abs/gr-qc/0308009

	3+1 formalism
	Solving the constraint equations
	Conformal transverse-traceless method
	Conformal thin sandwich method

	Compact binaries in circular orbits
	Effective Potential approach
	Helical Killing vector approach


