
A generalized Damour-Navier-Stokes equation applied to
trapping horizons

Eric Gourgoulhon

Laboratoire de l’Univers et de ses Théories (LUTH)
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Introduction

Concept of black hole viscosity

Hartle (1973): introduced the concept of black hole viscosity when
studying the response of the event horizon to external perturbations

Damour (1979): 2-dimensional Navier-Stokes like equation for the event
horizon =⇒ shear viscosity and bulk viscosity

Thorne and Price (1986): membrane paradigm for black holes
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Introduction

Shall we restrict the analysis to the event horizon ?

Event horizon = extremely global and teleological concept

Location of the event horizon requires the knowledge of the full spacetime (in
particular of the full future of an initial Cauchy surface)
Not appropriate for 3+1 numerical relativity

Recently local characterization of black hole have been introduced

Hayward (1994): future trapping horizon = hypersurface foliated by
marginally trapped 2-surfaces

Ashtekar, Beetle & Fairhurst (1999): isolated horizon = null hypersurface
whose intrinsic and extrinsic geometry is not evolving along its null generators

Ashtekar & Krishnan (2003): dynamical horizon = spacelike hypersurface
foliated by marginally trapped 2-surfaces = spacelike future trapping horizon

Extend the concept of viscosity to these hypersurfaces ?
NB: event horizon = null hypersurface

future trapping horizon = null or spacelike hypersurface
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Geometry of hypersurface foliations by spacelike 2-surfaces

Foliation of a hypersurface by spacelike 2-surfaces

hypersurface H = submanifold of
spacetime (M, g) of codimension 1

H can be

 spacelike
null
timelike

H =
⋃
t∈R

St

St = spacelike 2-surface

⇐= 3+1 perspective

intrinsic viewpoint adopted here (i.e. not
relying on extra-structure such as a 3+1
foliation)
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Geometry of hypersurface foliations by spacelike 2-surfaces

Orthogonal projector on St

St spacelike ⇐⇒ induced metric q positive definite
q not degenerate =⇒ orthogonal decomposition of the tangent space at any
p ∈M:

Tp(M) = Tp(St)⊕ Tp(St)
⊥

q: induced metric on St, components: qαβ

~q: orthogonal projector onto St, components: qα
β
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Geometry of hypersurface foliations by spacelike 2-surfaces

Projection operator ~q∗

A : tensor of covariance type (m,n)
~q∗A : tensor of same covariance type, defined by

(~q∗A)α1...αm

β1...βn
:= qα1

µ1
. . . qαm

µm
qν1

β1
. . . qνn

βn
Aµ1...µm

ν1...νn

Remark: for a vector: ~q∗v = ~q(v)
for a 1-form, ~q∗ω = ω ◦ ~q

Definition: a tensor A is tangent to St iff ~q∗A = A.
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Geometry of hypersurface foliations by spacelike 2-surfaces

Evolution vector

Vector field h on H defined by

(i) h is tangent to H
(ii) h is orthogonal to St

(iii) Lh t = hµ∂µt = 〈dt,h〉 = 1

NB: (iii) =⇒ the 2-surfaces St are Lie-dragged
by h
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Geometry of hypersurface foliations by spacelike 2-surfaces

Lie derivatives along h

Since the 2-surfaces St are Lie-dragged by h, so are their tangent vectors:

∀v ∈ T (St), Lh v ∈ T (St)

i.e. Lh = internal operator on T (St)

Extension to 1-forms in T ∗(St):

∀v ∈ T (St), 〈Lh ω,v〉 := Lh 〈ω,v〉 − 〈ω,Lh v〉.

Extension to any tensor A tangent to St by tensor products
Definition:

SLh A := ~q∗Lh A = ~q∗Lh ~q∗A
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Geometry of hypersurface foliations by spacelike 2-surfaces

Norm of h and type of H

Definition: C :=
1

2
h · h

H is spacelike ⇐⇒ C > 0 ⇐⇒ h is spacelike
H is null ⇐⇒ C = 0 ⇐⇒ h is null
H is timelike ⇐⇒ C < 0 ⇐⇒ h is timelike.
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Geometry of hypersurface foliations by spacelike 2-surfaces

Expansion and shear along normal vectors

Let v be a vector field on H everywhere normal to St.

Deformation tensor of St along v: Θ(v) := ~q∗∇v or Θ
(v)
αβ := ∇νvµ qµ

αqν
β

v normal to a 2-surface (St) =⇒ Θ(v) is a symmetric bilinear form

Prop: Θ(v) =
1

2
~q∗Lv q

Decomposition into traceless part (shear σ(v)) and trace part (expansion θ(v) ):

Θ(v) = σ(v) +
1

2
θ(v) q with θ(v) := qµνΘ(v)

µν = Lv ln
√

q, q := det qab

Prop: Lv
Sε = θ(v) Sε with Sε surface element of (St, q) : Sε =

√
q dx2 ∧ dx3
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Geometry of hypersurface foliations by spacelike 2-surfaces

Frames normal to St

Two natural types of choice for a vector basis of
Tp(St)

⊥ :

1 an orthonormal basis (n, s) (n = timelike, s
= spacelike):
n · n = −1, s · s = 1, n · s = 0

2 a pair linearly independent future-directed
null vectors (`,k):
` · ` = 0, k · k = 0, ` · k =: −eσ

Degrees of freedom:

1 boost :

{
n′ = cosh η n + sinh η s
s′ = sinh η n + cosh η s

, η ∈ R

2 rescaling :

{
`′ = λ `, λ > 0
k′ = µk, µ > 0

Orthogonal projector: ~q = 1 + 〈n, .〉n− 〈s, .〉 s = 1 + e−σ〈k, .〉 ` + e−σ〈`, .〉k
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Geometry of hypersurface foliations by spacelike 2-surfaces

Example of normal frames

H = event horizon of Schwarzschild
black hole
St = slice of constant
Eddington-Finkelstein time
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Geometry of hypersurface foliations by spacelike 2-surfaces

Second fundamental tensor of St

Tensor K of type (1, 2) relating the covariant derivative of a vector tangent to St

taken by the spacetime connection ∇ to that taken by the connection D in St

compatible with the induced metric q:

∀(u,v) ∈ T (St)
2, ∇uv = Duv + K(u,v)

Prop:
Kα

βγ = ∇µqα
ν qµ

βqν
γ

Kα
βγ = nα Θ

(n)
βγ − sα Θ

(s)
βγ = e−σ

(
kα Θ

(`)
βγ + `α Θ

(k)
βγ

)
Remark: for a hypersurface of normal n and extrinsic curvature K,
Kα

βγ = −nαKβγ
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Geometry of hypersurface foliations by spacelike 2-surfaces

Normal fundamental forms

Extrinsic geometry of St not entirely specified by K (contrary to the hypersurface
case)

K involves only the deformation tensors Θ(.) of the normals to St =⇒ K encodes
only the part of the variation of St’s normals which is parallel to St

Variation of the two normals with respect to each other: encoded by the normal
fundamental forms (also called external rotation coefficients or connection on
the normal bundle, or if H is null, Há́iček 1-form):

1 Ω(n) := s ·∇~q n or Ω(n)
α := sµ∇νnµ qν

α

Ω(s) := n ·∇~q s

2 Ω(`) :=
1

k · `
k ·∇~q ` or Ω(`)

α :=
1

kρ`ρ
kµ∇ν`µ qν

α

Ω(k) :=
1

k · `
` ·∇~q k
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Geometry of hypersurface foliations by spacelike 2-surfaces

Basic properties of the normal fundamental forms

From the definition: Ω(s) = −Ω(n) and Ω(k) = −Ω(`) + Dσ

Relation between the (n, s)-type and the (`,k)-type:
Ω(`) = Ω(n) [` = n + s] and Ω(k) = −Ω(n) [k = n− s]

The normal fundamental forms are not unique

(contrary to the second fundamental tensor K)
Dependence of the normal frame

1 (n, s) 7→ (n′, s′) =⇒ Ω(n′) = Ω(n) + Dη

2 (`,k) 7→ (`′,k′) =⇒ Ω(`′) = Ω(`) + D lnλ
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Geometry of hypersurface foliations by spacelike 2-surfaces

“Surface-gravity” 1-forms

If the vector fields (`,k) are extended away from St, define the 1-form

κ(`) :=
1

k · `
k ·∇p ` or κ(`)

α :=
1

kρ`ρ
kµ∇ν`µ pν

α

where p is the orthogonal projector complementary to ~q: 1 = ~q + p.

NB: Since p is a projector in a direction transverse to St, the 1-form κ(`) is not
intrinsic to the 2-surface St: it depends on the choice of ` away from St

If ` is extended along one of the two families of light rays emanating radially from
St, then ` is pre-geodesic: ∇` ` = ν(`) `, with the inaffinity parameter (surface

gravity if ` = null Killing vector of Kerr spacetime) given by the 1-form κ(`)

applied to `:
ν(`) = 〈κ(`), `〉
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Geometry of hypersurface foliations by spacelike 2-surfaces

Normal null frame associated with the evolution vector

The foliation (St)t∈R entirely fixes the
ambiguities in the choice of the null normal
frame (`,k), via the evolution vector h:
there exists a unique normal null frame (`,k)
such that

h = `− Ck and ` · k = −1
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The generalized Damour-Navier-Stokes equation

Original Damour-Navier-Stokes equation

Hyp: H = null hypersurface (particular case: black hole event horizon)
Then h = ` (C = 0) reminder

Damour (1979) has derived from Einstein equation the relation

SL` Ω(`) + θ(`)Ω(`) = Dν(`) −D · ~σ(`) +
1

2
Dθ(`) + 8π~q∗T · `

or equivalently
SL` π + θ(`)π = −DP + 2ηD · ~σ(`) + ξDθ(`) + f

with π := − 1

8π
Ω(`) momentum surface density

P :=
ν(`)

8π
pressure

η :=
1

16π
shear viscosity

ξ := − 1

16π
bulk viscosity

f := −~q∗T · ` external force surface density (T = stress-energy tensor)
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The generalized Damour-Navier-Stokes equation

Generalization to the non-null case

Starting remark: in the null case, ` plays two different roles:

evolution vector along H (e.g. term SL` )

normal to H (e.g. term ~q∗T · `)

When H is no longer null, these two roles have to be taken by two different
vectors:

evolution vector: obviously h reminder

vector normal to H: a natural choice is m := ` + Ck
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The generalized Damour-Navier-Stokes equation

Generalized Damour-Navier-Stokes equation

Starting point of the calculation: contracted Ricci identity applied to the vector
m and projected onto St:

(∇µ∇νmµ −∇ν∇µmµ) qν
α = Rµνmµqν

α

Final result:

SLh Ω(`) + θ(h) Ω(`) = D〈κ(`),h〉 −D · ~σ(m) +
1

2
Dθ(m) − θ(k)DC + 8π~q∗T ·m

Ω(`) : normal fundamental form of St associated with null normal ` reminder

θ(h), θ(m) and θ(k): expansion scalars of St along the vectors h, m and k
respectively reminder

D : covariant derivative within (St, q)

κ(`) : “surface-gravity” 1-form associated with the null vector ` reminder

σ(m) : shear tensor of St along the vector m reminder

C : half the scalar square of h reminder
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The generalized Damour-Navier-Stokes equation

Null limit

In the null limit,
h = m = ` and C = 0

and we recover the original Damour-Navier-Stokes equation:

SL` Ω(`) + θ(`)Ω(`) = Dν(`) −D · ~σ(`) +
1

2
Dθ(`) + 8π~q∗T · `
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The generalized Damour-Navier-Stokes equation

Behavior under a change of normal fundamental form

` 7→ `′ = λ` =⇒ Ω(`′) = Ω(`) + D lnλ and κ(`′) = κ(`) + ∇p lnλ

=⇒ generalized Damour-Navier-Stokes equation:

SLh Ω(`′) + θ(h) Ω(`′) = D〈κ(`′),h〉 −D · ~σ(m) +
1

2
Dθ(m) + θ(`)D lnλ

−θ(k) (DC + CD lnλ) + 8π~q∗T ·m

Choice: `′ = ˜̀ = null geodesic vector along the light rays emanating radially from
St (d ˜̀= 0), then DC + CD lnλ = 0 and the equation reduces to

SLh Ω( ˜̀) + θ(h) Ω( ˜̀) = D〈κ( ˜̀),h〉 −D · ~σ(m) +
1

2
Dθ(m) + θ(`)D lnλ + 8π~q∗T ·m
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The generalized Damour-Navier-Stokes equation

Application to future trapping horizons

Definition (Hayward 1994) : H is a future trapping horizon iff θ(`) = 0 and
θ(k) < 0.
The generalized Damour-Navier-Stokes equation reduces then to

SLh Ω( ˜̀) + θ(h) Ω( ˜̀) = D〈κ( ˜̀),h〉 −D · ~σ(m) +
1

2
Dθ(m) + 8π~q∗T ·m

NB: It has exactly the same structure than Damour’s original equation reminder :
apart from substitutions of ` by either h or m, it does not contain any extra term
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Application to angular momentum flux law

Generalized angular momentum

Definition [Booth & Fairhurst, gr-qc/0505049)]: Let ϕ be a vector field on H which

is tangent to St

has closed orbits

has vanishing divergence with respect to the induced metric: D ·ϕ = 0

The generalized angular momentum associated with ϕ is then defined by

J(ϕ) := − 1

8π

∮
St

〈Ω(`),ϕ〉 Sε,

Remark 1: does not depend upon the choice of null vector `, thanks to the
divergence-free property of ϕ
Remark 2:

coincides with Ashtekar & Krishnan’s definition for a dynamical horizon

coincides with Brown-York angular momentum if H is timelike and ϕ a
Killing vector
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Application to angular momentum flux law

Angular momentum flux law

Under the supplementary hypothesis that ϕ is transported along the evolution
vector h : Lh ϕ = 0, the generalized Damour-Navier-Stokes equation leads to

d

dt
J(ϕ) = −

∮
St

T (m,ϕ) Sε− 1

16π

∮
St

[
~~σ(m) : Lϕ q − 2θ(k)ϕ ·DC

]
Sε

Two interesting limiting cases:

H = null hypersurface : C = 0 and m = ` :

d

dt
J(ϕ) = −

∮
St

T (`,ϕ)Sε− 1

16π

∮
St

~~σ(`) : Lϕ q Sε

i.e. Eq. (6.134) of the Membrane Paradigm book (Thorne, Price &
MacDonald 1986)

H = future trapping horizon :

d

dt
J(ϕ) = −

∮
St

T (m,ϕ)Sε− 1

16π

∮
St

~~σ(m) : Lϕ q Sε
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