Enrico Barausse
 (IAP/CNRS, Paris, France)

Gravitational-wave emission in shift-symmetric Horndeski theories

Meudon, Mini-workshop on "Gravitation and scalar fields" October 6 ${ }^{\text {th }}, 2015$
based on EB \& K. Yagi arXiv:1509.04539

Outline

- Modifications of GR and the equivalence principle
- Binary pulsars as tests of the "strong" equivalence principle (i.e. the universality of free fall for objects with strong internal gravity)
- How to calculate the deviations from the strong equivalence principle in modified gravity theories
- The case of shift-symmetric Horndeski gravity

Beyond GR: how?

Lovelock's theorem

In a 4-dimensional spacetime, the only divergence-free symmetric rank-2 tensor constructed only from the metric $g_{\mu v}$ and its derivatives up to second differential order, and preserving diffeomorphism invariance, is the Einstein tensor plus a cosmological term, i.e. $G_{\mu \nu}+\Lambda g_{\mu \nu}$

Figure adapted from Berti et al 2015 Generic way to
modify $G R$ is to add extra fields!

How to couple extra fields?

- Satisfy weak equivalence principle (i.e. universality of free fall for bodies with weak self-gravity) by avoiding coupling extra fields to matter

$$
S_{m}\left(\psi, g_{\mu \nu}\right)
$$

- But extra fields usually couple non-minimally to metric, so gravity mediates effective interaction between matter and new field in strong gravity regimes (Nordvedt effect)
- Equivalence principle violated for strongly gravitating bodies
- For strongly gravitating bodies, gravitational binding energy gives large contribution to total mass, but binding energy depends on extra fields!
$m_{\text {inertial }} / m_{\text {gravitational }}$ depends on local field value and may be $\neq 1$

Strong-equivalence principle violations by thought experiments (Dicke 1969)

Energy balance gives $(-g+a)\left(N n-E_{b}\right)=-\frac{d E_{b}}{d h}=-\frac{d E_{b}}{d U} \frac{d U}{d h}=-\frac{d E_{b}}{d U} g$ $m_{i n} a=m_{g r a v} g \quad m_{i n}=N m-E_{b}, \quad m_{g r a v}=m_{i n}-\frac{d E_{b}}{d U}$

A few examples

- Brans-Dicke, scalar-tensor theories: $G_{\text {eff }} \propto G_{N} / \varphi$, but φ in which star is immersed depends on cosmology, presence of other star $\mathrm{m}_{\text {inertial }} / \mathrm{m}_{\text {gravitational }}$ changes with time
- Lorentz-violating gravity (Einstein-aether, Horava): preferred frame exists for gravitational physics gravitational mass of strongly gravitating bodies depends on velocity wrt preferred frame minertial $\neq m_{\text {gravitational }}$ for binary pulsars because v changes with time
- If gravitational mass depends on fields, deviations from GR motion already at geodesics level

$$
S=\sum_{n} \int m_{n}(\psi) d s \quad u_{n}^{\mu} \nabla_{\mu}\left(m_{n} u^{\nu}\right) \sim \mathcal{O}\left(s_{n}\right) \quad s_{n} \equiv \frac{\partial m_{n}}{\partial \psi}
$$

Strong-equivalence principle violations in the dissipative sector

- Whenever strong-equivalence principle is violated, monopolar and dipolar radiation may be produced
- In electromagnetism, no monopolar radiation because electric charge conservation is implied by Maxwell eqs
- In GR, no monopolar or dipolar radiation because energy and linear momentum conservation is implied by Einstein eqs
e.g. $\quad M_{1} \sim \int \rho x^{i} d^{3} x \quad h \sim \frac{G}{c^{3}} \dot{M}_{1} \sim \frac{G}{c^{3}} \frac{P}{r}$
- In alternative theories, effective coupling matter-extra fields in strong gravity regimes energy and momentum transfer between bodies and extra field

$$
\begin{aligned}
& h \sim \frac{G}{c^{3}} \dot{M}_{1} \sim \frac{G}{c^{3}} \frac{d}{d t}\left(m_{1}(\psi) x_{1}+m_{2}(\psi) x_{2}\right) \sim \frac{G}{c^{3}} \mathcal{O}\left(s_{1}-s_{2}\right) \\
& \text { 1.5 PN effect vs 2.5 PN in GR! Testable with binary pulsars! }
\end{aligned}
$$

Binary pulsars

- Binary system of stars on circular orbits has time changing mass quadrupole $\longleftarrow \mathrm{GW}$ emission
- GWs carry energy and angular momentum away from system, binding energy gets more and more negative and binary shrinks
- Indirect detection by binary pulsar systems (e.g. Hulse-Taylor pulsar)
- Violations of strong equivalence principle and dipolar fluxes regulated by "sensitivities"

$$
s_{Q_{A}}=\left.\frac{1}{M} \frac{\partial M}{\partial Q_{A}}\right|_{N, \Sigma}
$$

How to calculate sensitivites

$S=\int \mathcal{L}\left(Q_{A}, \partial_{\mu} Q_{A}\right) d^{4} x \Longrightarrow \partial_{\mu}\left(\frac{\partial \mathcal{L}}{\partial\left(\partial_{\mu} Q_{A}\right)}\right)-\frac{\partial \mathcal{L}}{\partial Q_{A}}=0$
Use invariance under time shifts to write canonical mass for solution with $\pi_{A} \partial_{t} Q_{A}=0$, with $\pi_{A}=\partial \mathcal{L} / \partial\left(\partial_{t} Q_{A}\right)$
(e.g. stationary solution)

$$
M=\int d^{3} x\left(\pi_{A} \partial_{t} Q_{A}-\mathcal{L}\right)=-\int d^{3} x \mathcal{L}
$$

Compute mass difference between two neighbouring stellar solutions with same baryonic mass and entropy, but different local values of the field
$\delta M=-\int d^{3} x \partial_{t}\left(\pi_{A} \delta Q_{A}\right)-\int d^{2} S_{i} \frac{\partial \mathcal{L}}{\partial\left(\partial_{i} Q_{A}\right)} \delta Q_{A}$ [Use field eqs to get rid of bulk terms]
(Essentially same technique used by Damour \& Esposito Farese for ST theories)

How to calculate sensitivites

$$
\mathcal{L}=\mathcal{L}_{g}+\mathcal{L}_{m}\left(\psi_{B}, \partial_{\mu} \psi_{B}, g_{\mu \nu}\right)+\mathcal{L}_{\phi}\left(\phi_{A}, \partial_{\mu} \phi_{A}, g_{\mu \nu}, \partial_{\alpha} g_{\mu \nu}\right)
$$

$$
\begin{aligned}
& \mathcal{L}_{g}=\sqrt{-g} g^{\mu \nu}\left(\Gamma_{\mu \lambda}^{\alpha} \Gamma_{\nu \alpha}^{\lambda}-\Gamma_{\mu \nu}^{\lambda} \Gamma_{\lambda \alpha}^{\alpha}\right) /(16 \pi G) \\
& \mathcal{L}_{m}=\mathcal{L}_{\text {fluid }}=-\sqrt{-g} \rho(n, \sigma)-\varphi \partial_{\mu} J^{\mu}-\theta \partial_{\mu}\left(\sigma J^{\mu}\right)-\alpha_{A} \partial_{\mu}\left(\beta_{A} J^{\mu}\right)
\end{aligned}
$$

$$
J^{\mu}=\sqrt{-g} n U^{\mu}
$$

How to calculate sensitivites

$\mathcal{L}=\mathcal{L}_{g}+\mathcal{L}_{m}\left(\psi_{B}, \partial_{\mu} \psi_{B}, g_{\mu \nu}\right)+\mathcal{L}_{\phi}\left(\phi_{A}, \partial_{\mu} \phi_{A}, g_{\mu \nu}, \partial_{\alpha} g_{\mu \nu}\right)$

$$
\begin{aligned}
\delta M=-\int d^{2} S_{i} \frac{\partial \mathcal{L}_{g}}{\partial\left(\partial_{i} g_{\mu \nu}\right)} \delta g_{\mu \nu} & -\int d^{3} x \partial_{t}\left(\pi_{\psi_{B}} \delta \psi_{B}\right)-\int d^{2} S_{i} \frac{\partial \mathcal{L}_{m}}{\partial\left(\partial_{i} \psi_{B}\right)} \delta \psi_{B} \\
& -\int d^{2} S_{i} \frac{\partial \mathcal{L}_{\phi}}{\partial\left(\partial_{i} \phi_{A}\right)} \delta \phi_{A}-\int d^{2} S_{i} \frac{\partial \mathcal{L}_{\phi}}{\partial\left(\partial_{i} g_{\mu \nu}\right)} \delta g_{\mu \nu}
\end{aligned}
$$

How to calculate sensitivites

$$
\begin{gathered}
\mathcal{L}=\mathcal{L}_{g}+\mathcal{L}_{m}\left(\psi_{B}, \partial_{\mu} \psi_{B}, g_{\mu \nu}\right)+\mathcal{L}_{\phi}\left(\phi_{A}, \partial_{\mu} \phi_{A}, g_{\mu \nu}, \partial_{\alpha} g_{\mu \nu}\right) \\
\left.\delta M=-\int d^{2} S\right\rangle\left\langle\mathcal{L}_{g}\right. \\
\left.-\int d_{\mu \nu}\right) \\
\\
\left.-\int d_{\mu \nu}-\int d^{3} x \partial_{i} \frac{\partial \mathcal{L}_{\phi}}{\partial\left(\partial_{i} \phi_{A}\right)} \delta \psi_{B}\right)-\int d^{2} S_{i} \frac{\partial \mathcal{L}_{m}}{\partial\left(\partial_{i} \psi_{B}\right)} \delta \psi_{B} \\
-\int d^{2} S_{i} \frac{\partial \mathcal{L}_{\phi}}{\partial\left(\partial_{i} g_{\mu \nu}\right)} \delta g_{\mu \nu} \\
S_{i} \frac{\partial \mathcal{L}_{g}}{\partial\left(\partial_{i} g_{\mu \nu}\right)} \delta g_{\mu \nu}=0 \quad \text { if } g_{\mu \nu}=\eta_{\mu \nu}+\mathcal{O}(1 / r), \delta g_{\mu \nu}=\mathcal{O}(1 / r)
\end{gathered}
$$

How to calculate sensitivites

$$
\begin{gathered}
\mathcal{L}=\mathcal{L}_{g}+\mathcal{L}_{m}\left(\psi_{B}, \partial_{\mu} \psi_{B}, g_{\mu \nu}\right)+\mathcal{L}_{\phi}\left(\phi_{A}, \partial_{\mu} \phi_{A}, g_{\mu \nu}, \partial_{\alpha} g_{\mu \nu}\right) \\
\delta M=-\int d^{2} S_{\nu} \frac{\partial \mathcal{L}_{g}}{\partial\left(g_{\mu \nu}\right)} \delta g_{\mu \nu}-\int d^{3} x \partial_{t}\left(\pi_{\psi_{B}} \delta \psi_{B}\right)-\int d^{2} S_{i} \frac{\partial \mathcal{L}_{m}}{\delta\left(\partial 火_{B}\right)} \delta \psi_{B} \\
-\int d^{2} S_{i} \frac{\partial \mathcal{L}_{\phi}}{\partial\left(\partial_{i} \phi_{A}\right)} \delta \phi_{A}-\int d^{2} S_{i} \frac{\partial \mathcal{L}_{\phi}}{\partial\left(\partial_{i} g_{\mu \nu}\right)} \delta g_{\mu \nu} \\
-\int d^{2} S_{i} \frac{\partial \mathcal{L}_{g}}{\partial\left(\partial_{i} g_{\mu \nu}\right)} \delta g_{\mu \nu}=0 \quad \text { if } g_{\mu \nu}=\eta_{\mu \nu}+\mathcal{O}(1 / r), \delta g_{\mu \nu}=\mathcal{O}(1 / r)
\end{gathered}
$$

$$
-\int d^{2} S_{i} \frac{\partial \mathcal{L}_{m}}{\partial\left(\partial_{i} \psi_{B}\right)} \delta \psi_{B}=0
$$

by adopting coordinate comoving with the fluid

How to calculate sensitivites

$$
\begin{gathered}
\mathcal{L}=\mathcal{L}_{g}+\mathcal{L}_{m}\left(\psi_{B}, \partial_{\mu} \psi_{B}, g_{\mu \nu}\right)+\mathcal{L}_{\phi}\left(\phi_{A}, \partial_{\mu} \phi_{A}, g_{\mu \nu}, \partial_{\alpha} g_{\mu \nu}\right) \\
\delta M=-\int d^{2} S \frac{\mathcal{L}_{g}}{\partial\left(g_{\mu \nu}\right)} \delta g_{\mu \nu}-\int d^{3} x \partial_{t}\left(\alpha_{\psi_{B}} \delta \psi_{B}\right)-\int d^{2} S_{i} \frac{\partial \mathcal{L}_{m}}{\left.\partial \partial_{i}\right)} \delta \psi_{B} \\
-\int d^{2} S_{i} \frac{\partial \mathcal{L}_{\phi}}{\partial\left(\partial_{i} \phi_{A}\right)} \delta \phi_{A}-\int d^{2} S_{i} \frac{\partial \mathcal{L}_{\phi}}{\partial\left(\partial_{i} g_{\mu \nu}\right)} \delta g_{\mu \nu} \\
-\int d^{2} S_{i} \frac{\partial \mathcal{L}_{g}}{\partial\left(\partial_{i} g_{\mu \nu}\right)} \delta g_{\mu \nu}=0 \text { if } g_{\mu \nu}=\eta_{\mu \nu}+\mathcal{O}(1 / r), \delta g_{\mu \nu}=\mathcal{O}(1 / r)
\end{gathered}
$$

$$
-\int d^{2} S_{i} \frac{\partial \mathcal{L}_{m}}{\partial\left(\partial_{i} \psi_{B}\right)} \delta \psi_{B}=0
$$

by adopting coordinate comoving with the fluid

$$
-\int d^{3} x \partial_{t}\left(\pi_{\psi_{B}} \delta \psi_{B}\right)=-(h-\sigma T) U_{t} \delta N-T U_{t} \delta \Sigma=0
$$

if baryon number N and entropy Σ are the same for the two neighboring solutions

How to calculate sensitivites

$$
\mathcal{L}=\mathcal{L}_{g}+\mathcal{L}_{m}\left(\psi_{B}, \partial_{\mu} \psi_{B}, g_{\mu \nu}\right)+\mathcal{L}_{\phi}\left(\phi_{A}, \partial_{\mu} \phi_{A}, g_{\mu \nu}, \partial_{\alpha} g_{\mu \nu}\right)
$$

$$
\delta M=-\int d^{2} S_{i} \frac{\partial \mathcal{L}_{\phi}}{\partial\left(\partial_{i} \phi_{A}\right)} \delta \phi_{A}-\int d^{2} S_{i} \frac{\partial \mathcal{L}_{\phi}}{\partial\left(\partial_{i} g_{\mu \nu}\right)} \delta g_{\mu \nu}
$$

Expression applied to FJBD and DEF scall
(Damour \& Esposito Fare -) and to Loren
(Yagi, Blas, EB \& Yunes, :

Can we generalize to Lagrangian $\mathcal{L}_{\phi}\left(\phi_{A}, \partial_{\mu} \phi_{A}, \partial_{\mu} \partial_{\nu} \phi, g_{\mu \nu}, \partial_{\alpha} g_{\mu \nu}\right)$?

Lagrangian order reduction

$$
S=\int \mathcal{L}\left(Q_{A}, \partial_{\mu} Q_{A}, \partial_{\nu} \partial_{\mu} Q_{A}\right) d^{4} x
$$

Define $X_{A \mu} \equiv \partial_{\mu} Q_{A}$ and enforce definition by Lagrange multipliers

$$
S=\int\left[\mathcal{L}\left(Q_{A}, X_{A \mu}, \partial_{\nu} X_{A \mu}\right)+\lambda^{A \mu}\left(X_{A \mu}-\partial_{\mu} Q_{A}\right)\right] d^{4} x
$$

Two actions are equivalent, and same procedure as before gives

$$
\begin{array}{r}
\delta M=-\int d^{2} S_{i} \frac{\partial \mathcal{L}_{\phi}}{\partial\left(\partial_{i} \phi_{A}\right)} \delta \phi_{A}-\int d^{2} S_{i} \frac{\partial \mathcal{L}_{\phi}}{\partial\left(\partial_{i} g_{\mu \nu}\right.} \delta g_{\mu \nu}-\int d^{2} S_{i} \frac{\partial \mathcal{L}_{\phi}}{\partial\left(\partial_{i} \partial_{j} \phi_{A}\right)} \partial_{j} \delta \phi_{A} \\
\left.-\int d^{2} S_{i} \frac{\partial \mathcal{L}_{\phi}}{\partial\left(\partial_{i} \partial j g_{\mu \nu}\right)} \partial_{j} \delta g_{\mu \nu}+\int d^{2} S_{i} \partial_{j}\left(\frac{\partial \mathcal{L}_{\phi}}{\partial\left(\partial_{i} \partial_{j} \phi_{A}\right)}\right)\right) \phi_{A}+\int d^{2} S_{i} \partial_{j}\left(\frac{\partial \mathcal{L}_{\phi}}{\partial\left(\partial_{i} \partial_{j} g_{\mu \nu}\right.}\right) \delta g_{\mu \nu}
\end{array}
$$

Horndeski theories

(aka generalized galileons)

- Most generic scalar-tensor theories with 2nd-order field eqs

$$
\begin{gathered}
\mathcal{L}_{\phi}=\frac{\sqrt{-g}}{16 \pi G}\left\{K(\phi, X)-G_{3}(\phi, X) \square \phi+G_{4}(\phi, X) R+\partial_{X} G_{4}(\phi, X)\left[(\square \phi)^{2}-\left(\nabla_{\mu} \nabla_{\nu} \phi\right)^{2}\right]\right. \\
\left.+G_{5}(\phi, X) G_{\mu \nu} \nabla^{\mu} \nabla^{\nu} \phi-\frac{1}{6} \partial_{X} G_{5}(\phi, X)\left[(\square \phi)^{3}-3(\square \phi)\left(\nabla_{\mu} \nabla_{\nu} \phi\right)^{2}+2\left(\nabla_{\mu} \nabla_{\nu} \phi\right)^{3}\right]\right\} \\
X \equiv-\nabla_{\mu} \phi \nabla^{\mu} \phi / 2 \quad\left(\nabla_{\mu} \nabla_{\nu} \phi\right)^{2} \equiv \nabla_{\mu} \nabla^{\nu} \phi \nabla_{\nu} \nabla^{\mu} \phi \quad\left(\nabla_{\mu} \nabla_{\nu} \phi\right)^{3} \equiv \nabla_{\mu} \nabla^{\rho} \phi \nabla_{\rho} \nabla^{\nu} \phi \nabla_{\nu} \nabla^{\mu} \phi
\end{gathered}
$$

- Galileon interactions also arise in massive gravity
- Very non-linear field eqs allow Vainshtein mechanism

$$
\begin{aligned}
& \square \phi+\partial_{X} G_{3}\left[(\square \phi)^{2}-\left(\nabla_{\mu} \nabla_{\nu} \phi\right)^{2}-R_{\mu \nu} \nabla^{\mu} \phi \nabla^{\nu} \phi\right]+\ldots=\ldots \\
& \frac{d \phi}{d r} \propto \frac{r^{3}}{r_{V}^{3}}\left[\sqrt{1+\frac{r_{V}^{3}}{r^{3}}}-1\right] \frac{G M(r)}{r^{2}}
\end{aligned}
$$

Scalar effects only arise for r>> rv (Vainhstein radius)

Shift symmetric Horndeski theories

$$
\begin{array}{r}
\mathcal{L}_{\phi}=\frac{\sqrt{-g}}{16 \pi G}\left\{K(X)-G_{3}(X) \square \phi+G_{4}(X) R+G_{4 X}\left[(\square \phi)^{2}-\left(\nabla_{\mu} \nabla_{\nu} \phi\right)^{2}\right]\right. \\
\left.+G_{5}(X) G_{\mu \nu} \nabla^{\mu} \nabla^{\nu} \phi-\frac{G_{5 X}}{6}\left[(\square \phi)^{3}-3(\square \phi)\left(\nabla_{\mu} \nabla_{\nu} \phi\right)^{2}+2\left(\nabla_{\mu} \nabla_{\nu} \phi\right)^{3}\right]+\chi \phi \mathcal{G}\right\}
\end{array}
$$

- Invariant under shift symmetry $\phi \rightarrow \phi+$ const
- Assume analytic K, G_{3}, G_{4}, G_{5} [i.e. $K(X)=X+O(X)^{2}$, $\left.\mathrm{G}_{\mathrm{i}}=\mathrm{O}(\mathrm{X})(\mathrm{i}=1,2,3)\right] \ldots$
- ...but include Gauss-Bonnet term $\chi \phi \mathcal{G}$ (which comes from $\log |X|$ divergence in G5)

Shift symmetric Horndeski theories

$$
\begin{aligned}
& \mathcal{L}_{\phi}=\frac{\sqrt{-g}}{16 \pi G}\left\{K(X)-G_{3}(X) \square \phi+G_{4}(X) R+G_{4 X}\left[(\square \phi)^{2}-\left(\nabla_{\mu} \nabla_{\nu} \phi\right)^{2}\right]\right. \\
& \left.+G_{5}(X) G_{\mu \nu} \nabla^{\mu} \nabla^{\nu} \phi-\frac{G_{5 X}}{6}\left[(\square \phi)^{3}-3(\square \phi)\left(\nabla_{\mu} \nabla_{\nu} \phi\right)^{2}+2\left(\nabla_{\mu} \nabla_{\nu} \phi\right)^{3}\right]+\chi \phi \mathcal{G}\right\} \\
& K(X)=X+O(X)^{2}, G_{i}=O(X)(\mathrm{i}=1,2,3)
\end{aligned}
$$

Shift symmetric Horndeski theories

- $\mathcal{L}_{\phi}=\frac{\sqrt{-g}}{16 \pi G}\left\{K(X)-G_{3}(X) \square \phi+G_{4}(X) R+G_{4 X}\left[(\square \phi)^{2}-\left(\nabla_{\mu} \nabla_{\nu} \phi\right)^{2}\right]\right.$ $\left.+G_{5}(X) G_{\mu \nu} \nabla^{\mu} \nabla^{\nu} \phi-\frac{G_{5 X}}{6}\left[(\square \phi)^{3}-3(\square \phi)\left(\nabla_{\mu} \nabla_{\nu} \phi\right)^{2}+2\left(\nabla_{\mu} \nabla_{\nu} \phi\right)^{3}\right]+\chi \phi \mathcal{G}\right\}$
$K(X)=X+O(X)^{2}, G_{i}=O(X)(i=1,2,3)$
- Evaluate $\delta M=-\int d^{2} S_{i} \frac{\partial \mathcal{L}_{\phi}}{\partial\left(\partial_{i} \phi_{A}\right)} \delta \phi_{A}-\int d^{2} S_{i} \frac{\partial \mathcal{L}_{\phi}}{\partial\left(\partial_{i} g_{\mu \nu}\right)} \delta g_{\mu \nu}-\int d^{2} S_{i} \frac{\partial \mathcal{L}_{\phi}}{\partial\left(\partial_{i} \partial_{j} \phi_{A}\right)} \partial_{j} \delta \phi_{A}$ $-\int d^{2} S_{i} \frac{\partial \mathcal{L}_{\phi}}{\partial\left(\partial_{i} \partial_{j} g_{\mu \nu}\right)} \partial_{j} \delta g_{\mu \nu}+\int d^{2} S_{i} \partial_{j}\left(\frac{\partial \mathcal{L}_{\phi}}{\partial\left(\partial_{i} \partial_{j} \phi_{A}\right)}\right) \delta \phi_{A}+\int d^{2} S_{i} \partial_{j}\left(\frac{\partial \mathcal{L}_{\phi}}{\partial\left(\partial_{i} \partial_{j} g_{\mu \nu}\right)}\right) \delta g_{\mu \nu}$ using $\quad \phi=\mathcal{O}(1 / r), \quad g_{\mu \nu}=\eta_{\mu \nu}+\mathcal{O}(1 / r) \Longrightarrow \delta g_{\mu \nu} \sim \delta \phi \sim \mathcal{O}(1 / r)$

Shift symmetric Horndeski theories

- $\mathcal{L}_{\phi}=\frac{\sqrt{-g}}{16 \pi G}\left\{K(X)-G_{3}(X) \square \phi+G_{4}(X) R+G_{4 X}\left[(\square \phi)^{2}-\left(\nabla_{\mu} \nabla_{\nu} \phi\right)^{2}\right]\right.$
$\left.+G_{5}(X) G_{\mu \nu} \nabla^{\mu} \nabla^{\nu} \phi-\frac{G_{5 X}}{6}\left[(\square \phi)^{3}-3(\square \phi)\left(\nabla_{\mu} \nabla_{\nu} \phi\right)^{2}+2\left(\nabla_{\mu} \nabla_{\nu} \phi\right)^{3}\right]+\chi \phi \mathcal{G}\right\}$
$K(X)=X+O(X)^{2}, G_{i}=O(X)(i=1,2,3)$
- Evaluate $\delta M=-\int d^{2} S_{i} \frac{\partial \mathcal{L}_{\phi}}{\partial\left(\partial_{i} \phi_{A}\right)} \delta \phi_{A}-\int d^{2} S_{i} \frac{\partial \mathcal{L}_{\phi}}{\partial\left(\partial_{i} g_{\mu \nu}\right)} \delta g_{\mu \nu}-\int d^{2} S_{i} \frac{\partial \mathcal{L}_{\phi}}{\partial\left(\partial_{i} \partial_{j} \phi_{A}\right)} \partial_{j} \delta \phi_{A}$

$$
-\int d^{2} S_{i} \frac{\partial \mathcal{L}_{\phi}}{\partial\left(\partial_{i} \partial_{j} g_{\mu \nu}\right)} \partial_{j} \delta g_{\mu \nu}+\int d^{2} S_{i} \partial_{j}\left(\frac{\partial \mathcal{L}_{\phi}}{\partial\left(\partial_{i} \partial_{j} \phi_{A}\right)}\right) \delta \phi_{A}+\int d^{2} S_{i} \partial_{j}\left(\frac{\partial \mathcal{L}_{\phi}}{\partial\left(\partial_{i} \partial_{j} g_{\mu \nu}\right)}\right) \delta g_{\mu \nu}
$$

$$
\text { using } \quad \phi=\mathcal{O}(1 / r), \quad g_{\mu \nu}=\eta_{\mu \nu}+\mathcal{O}(1 / r) \Longrightarrow \delta g_{\mu \nu} \sim \delta \phi \sim \mathcal{O}(1 / r)
$$

- E.g. contribution of K to first term:

$$
\delta M \sim \int d^{2} S_{i} \frac{\partial \mathcal{L}_{\phi}}{\partial\left(\partial_{i} \phi\right)} \delta \phi \sim r^{2}|\nabla \phi| \frac{1}{r} \sim \frac{1}{r} \rightarrow 0 \quad \text { as } \quad r \rightarrow \infty
$$

Shift symmetric Horndeski theories

- $\mathcal{L}_{\phi}=\frac{\sqrt{-g}}{16 \pi G}\left\{K(X)-G_{3}(X) \square \phi+G_{4}(X) R+G_{4 X}\left[(\square \phi)^{2}-\left(\nabla_{\mu} \nabla_{\nu} \phi\right)^{2}\right]\right.$
$\left.+G_{5}(X) G_{\mu \nu} \nabla^{\mu} \nabla^{\nu} \phi-\frac{G_{5 X}}{6}\left[(\square \phi)^{3}-3(\square \phi)\left(\nabla_{\mu} \nabla_{\nu} \phi\right)^{2}+2\left(\nabla_{\mu} \nabla_{\nu} \phi\right)^{3}\right]+\chi \phi \mathcal{G}\right\}$
$K(X)=X+O(X)^{2}, G_{i}=O(X)(i=1,2,3)$
- Evaluate $\delta M=-\int d^{2} S_{i} \frac{\partial \mathcal{L}_{\phi}}{\partial\left(\partial_{i} \phi_{A}\right)} \delta \phi_{A}-\int d^{2} S_{i} \frac{\partial \mathcal{L}_{\phi}}{\partial\left(\partial_{i} g_{\mu \nu}\right)} \delta g_{\mu \nu}-\int d^{2} S_{i} \frac{\partial \mathcal{L}_{\phi}}{\partial\left(\partial_{i} \partial_{j} \phi_{A}\right)} \partial_{j} \delta \phi_{A}$

$$
\begin{gathered}
-\int d^{2} S_{i} \frac{\partial \mathcal{L}_{\phi}}{\partial\left(\partial_{i} \partial_{j} g_{\mu \nu}\right)} \partial_{j} \delta g_{\mu \nu}+\int d^{2} S_{i} \partial_{j}\left(\frac{\partial \mathcal{L}_{\phi}}{\partial\left(\partial_{i} \partial_{j} \phi_{A}\right)}\right) \delta \phi_{A}+\int d^{2} S_{i} \partial_{j}\left(\frac{\partial \mathcal{L}_{\phi}}{\partial\left(\partial_{i} \partial_{j} g_{\mu \nu}\right)}\right) \delta g_{\mu \nu} \\
\text { using } \quad \phi=\mathcal{O}(1 / r), \quad g_{\mu \nu}=\eta_{\mu \nu}+\mathcal{O}(1 / r) \Longrightarrow \delta g_{\mu \nu} \sim \delta \phi \sim \mathcal{O}(1 / r)
\end{gathered}
$$

- E.g. contribution of K to first term:

$$
\delta M \sim \int d^{2} S_{i} \frac{\partial \mathcal{L}_{\phi}}{\partial\left(\partial_{i} \phi\right)} \delta \phi \sim r^{2}|\nabla \phi| \frac{1}{r} \sim \frac{1}{r} \rightarrow 0 \quad \text { as } \quad r \rightarrow \infty
$$

- Similar reasoning shows that all terms vanish, i.e. $\delta M=0$

Shift symmetric Horndeski theories

- $\mathcal{L}_{\phi}=\frac{\sqrt{-g}}{16 \pi G}\left\{K(X)-G_{3}(X) \square \phi+G_{4}(X) R+G_{4 X}\left[(\square \phi)^{2}-\left(\nabla_{\mu} \nabla_{\nu} \phi\right)^{2}\right]\right.$
$\left.+G_{5}(X) G_{\mu \nu} \nabla^{\mu} \nabla^{\nu} \phi-\frac{G_{5 X}}{6}\left[(\square \phi)^{3}-3(\square \phi)\left(\nabla_{\mu} \nabla_{\nu} \phi\right)^{2}+2\left(\nabla_{\mu} \nabla_{\nu} \phi\right)^{3}\right]+\chi \phi \mathcal{G}\right\}$
$K(X)=X+O(X)^{2}, G_{i}=O(X)(i=1,2,3)$
- Evaluate $\delta M=-\int d^{2} S_{i} \frac{\partial \mathcal{L}_{\phi}}{\partial\left(\partial_{i} \phi_{A}\right)} \delta \phi_{A}-\int d^{2} S_{i} \frac{\partial \mathcal{L}_{\phi}}{\partial\left(\partial_{i} g_{\mu \nu}\right)} \delta g_{\mu \nu}-\int d^{2} S_{i} \frac{\partial \mathcal{L}_{\phi}}{\partial\left(\partial_{i} \partial_{j} \phi_{A}\right)} \partial_{j} \delta \phi_{A}$

$$
\begin{gathered}
-\int d^{2} S_{i} \frac{\partial \mathcal{L}_{\phi}}{\partial\left(\partial_{i} \partial_{j} g_{\mu \nu}\right)} \partial_{j} \delta g_{\mu \nu}+\int d^{2} S_{i} \partial_{j}\left(\frac{\partial \mathcal{L}_{\phi}}{\partial\left(\partial_{i} \partial_{j} \phi_{A}\right)}\right) \delta \phi_{A}+\int d^{2} S_{i} \partial_{j}\left(\frac{\partial \mathcal{L}_{\phi}}{\partial\left(\partial_{i} \partial_{j} g_{\mu \nu}\right)}\right) \delta g_{\mu \nu} \\
\text { using } \quad \phi=\mathcal{O}(1 / r), \quad g_{\mu \nu}=\eta_{\mu \nu}+\mathcal{O}(1 / r) \Longrightarrow \delta g_{\mu \nu} \sim \delta \phi \sim \mathcal{O}(1 / r)
\end{gathered}
$$

- E.g. contribution of K to first term:

$$
\delta M \sim \int d^{2} S_{i} \frac{\partial \mathcal{L}_{\phi}}{\partial\left(\partial_{i} \phi\right)} \delta \phi \sim r^{2}|\nabla \phi| \frac{1}{r} \sim \frac{1}{r} \rightarrow 0 \quad \text { as } \quad r \rightarrow \infty
$$

- Similar reasoning shows that all terms vanish, i.e. $\delta M=0$

Sensitivities of stars vanish!

PN expansion for shift-symmetric Horndeski theories

- Define inner, near and far zones
- Inner zone must be >> star and << $\lambda_{G W}$
- In near and far zone, fields decay as $1 / r$ and stars described as point particles with mass $m(\phi)=m+\frac{\partial m}{\partial \phi} \delta \phi+\ldots=m+s \delta \phi+\ldots$
- Expand dynamics in orders of v / c

$$
\begin{aligned}
\square_{\eta} \bar{h}^{\mu \nu} & =-16 \pi G\left[\left(1-\bar{h}^{\alpha}{ }_{\alpha}\right) T^{\mu \nu}+\tau^{\mu \nu}\right]+\ldots \\
\square_{\eta} \delta \phi & =\mathcal{O}\left(s_{\phi}^{(1)}, s_{\phi}^{(2)}\right)-\chi \delta \mathcal{G}+\ldots
\end{aligned}
$$

$$
\bar{h}^{\mu \nu}=\eta^{\mu \nu}-\sqrt{-g} g^{\mu \nu}
$$

$$
\partial_{\mu} \bar{h}^{\mu \nu}=0 \quad \tau^{\mu \nu}=\mathcal{O}\left(\bar{h}^{2}\right)
$$

- No monopolar or dipolar emission, same quadrupole as GR
- Deviations from GR at 3PN (2PN) order in the dissipative (conservative) sector

What assumptions are we making?

- Shift symmetry for the total action (i.e. no conformal coupling of the scalar to matter):

If no shift symmetry, $\phi=\phi_{\infty}+\frac{\alpha}{r}+\ldots \Rightarrow \delta \phi=\delta \phi_{\infty}+O(1 / r)$

$$
\delta M \sim \int d^{2} S_{i} \frac{\partial \mathcal{L}_{\phi}}{\partial\left(\partial_{i} \phi\right)} \delta \phi \sim r^{2}|\nabla \phi| \delta \phi_{\infty} \propto \alpha \delta \phi_{\infty} \Rightarrow s_{\phi} \propto \alpha
$$

NB: Conformal coupling is present in FJBD, DEF and massive gravity: in those cases sensitivities can NOT be neglected

- No direct scalar-matter coupling: non-crucial as long as coupling is shift-symmetric, e.g. matter coupled to disformal metric $g_{\mu \nu}+\kappa \partial_{\mu} \phi \partial_{\nu} \phi$

What assumptions are we making?

- If Vainshtein screening present, Vainshtein radius $r_{V} \ll \lambda_{\in}$:
r_{v} is "effective" star radius, i.e. if $r_{V} \ll \lambda_{G W}$ finite size effects at high PN orders

$\lambda_{\mathrm{GW}} \sim 10^{9} \mathrm{~km}$ for binary pulsars, and $10^{3} \mathrm{~km}$ for LIGO sources
- If $r v \geqslant \lambda_{G} w$, PN formalism is not applicable, i.e. dynamics is nonperturbative (or "strongly coupled"). Problematic because binary pulsars' dynamics is perturbative

Unclear how to even do calculation. Possible approach: WKB approximation (de Rham, Tolley and Wesley 2013; Chu \& Trodden 2013), but conclusion that all multipoles radiate with comparable strength hard to reconcile with binary pulsars

What assumptions are we making?

Neglect cosmological-expansion effects:

- In all scalar-tensor theories, where sensitivities for stars and BHs affected by scalar field's cosmological expansion (Jacobson, Charmousis, Babichev, Esposito Farese, etc)
- A more subtle effect in Horndenski/beyond Horndenski theories:
- Screening works for spatial but not time derivatives
- Time derivatives change GW-matter coupling in the quadrupole formula $\left(G_{g w}\right)$, and $G W$ propagation speed C_{T}
$\gamma_{P P N}=\frac{1+\alpha_{H}}{c_{T}^{2}} \quad G_{g w}=\left(\frac{1+\alpha_{H}}{c_{T}}\right)^{2} G_{N}$
α_{H} and c_{T} are theory's parameters ($\alpha_{H}=0$ in Horndenski)

Jimenez, Piazza, Velten 2015

Possible smoking-gun scalar effects?

- Like pornography, "When you see it, you know it"! (Supreme Court Justice Potter Stewart, 1964)
- Abrupt waveform termination/earlier plunge than in GR for LIGO NS-NS sources, in DEF scalar tensor theories

EB, Palenzuela,
Ponce \& Lehner 2014

- Caused by induced scalarization of one (spontaneously scalarized) star on the other, by dynamical scalarization of an initially non-scalarized binary

Spontaneous/dynamical scalarization as "phase transitions"

Figure from Esposito-Farese, gr-qc/0402007

Conclusions

- Modifications of GR generally introduce violations of the strong equivalence principle via the sensitivities, i.e. free fall of bodies with strong internal gravity is not universal
- Binary pulsars test strong equivalence principle and are the most dreaded theory killer
- Sensitivities can be calculated from asymptotic behavior of solutions for isolated stars
- In Horndeski theories, sensitivities are NOT zero in general, but vanish if shift-symmetry imposed on scalar and on matter-scalar coupling, provided that the dynamics is perturbative and cosmological-expansion effects can be neglected
- If Vainshtein screening present, counter-intuitive result that deviations from GR are screened if Vainshtein radius is small

