Enrico Barausse (IAP/CNRS, Paris, France)

Gravitational-wave emission in shift-symmetric Horndeski theories

> Meudon, Mini-workshop on "Gravitation and scalar fields" October 6th, 2015

based on EB & K. Yagi arXiv:1509.04539

PCIG11-GA-2012-321608

Outline

- Modifications of GR and the equivalence principle
- Sinary pulsars as tests of the "strong" equivalence principle (i.e. the universality of free fall for objects with strong internal gravity)
- How to calculate the deviations from the strong equivalence principle in modified gravity theories
- The case of shift-symmetric Horndeski gravity

Beyond GR: how?

Lovelock's theorem

In a 4-dimensional spacetime, the only divergence-free symmetric rank-2 tensor constructed only from the metric $g_{\mu\nu}$ and its derivatives up to second differential order, and preserving diffeomorphism invariance, is the Einstein tensor plus a cosmological term, i.e. $G_{\mu\nu} + \Lambda g_{\mu\nu}$

Figure adapted from Berti et al 2015

Generic way to modify GR is to add extra fields!

How to couple extra fields?

- Satisfy weak equivalence principle (i.e. universality of free fall for bodies with weak self-gravity) by avoiding coupling extra fields to matter $S_m(\psi,g_{\mu\nu})$
- But extra fields usually couple non-minimally to metric, so gravity mediates effective interaction between matter and new field in strong gravity regimes (Nordvedt effect)
- Sequivalence principle violated for strongly gravitating bodies
- For strongly gravitating bodies, gravitational binding energy gives large contribution to total mass, but binding energy depends on extra fields!

 $m_{inertial}/m_{gravitational}$ depends on local field value and may be $\neq 1$

Strong-equivalence principle violations by thought experiments (Dicke 1969)

Energy balance gives $(-g+a)(Nn-E_b) = -\frac{dE_b}{dh} = -\frac{dE_b}{dU}\frac{dU}{dh} = -\frac{dE_b}{dU}g$

 $m_{in}a = m_{qrav}g$

 $m_{in} = Nm - E_b, \quad m_{grav} = m_{in} - E_b,$

 dE_b

dU

A few examples

- Brans-Dicke, scalar-tensor theories: $G_{eff} \propto G_N/\phi$, but ϕ in which star is immersed depends on cosmology, presence of other star minertial/mgravitational changes with time
- Lorentz-violating gravity (Einstein-aether, Horava): preferred frame exists for gravitational physics
 gravitational mass of strongly gravitating bodies depends on velocity wrt preferred frame
 minertial ≠mgravitational for binary pulsars because v changes with time
- If gravitational mass depends on fields, deviations from GR motion already at geodesics level

$$S = \sum_{n} \int m_{n}(\psi) ds \qquad u_{n}^{\mu} \nabla_{\mu}(m_{n} u^{\nu}) \sim \mathcal{O}(s_{n}) \qquad s_{n} \equiv \frac{\partial m_{n}}{\partial \psi}$$

sensitivities or charges, i.e. response to change in field boundary conditions

Strong-equivalence principle violations in the dissipative sector

- Whenever strong-equivalence principle is violated, monopolar and dipolar radiation may be produced
- In electromagnetism, no monopolar radiation because electric charge conservation is implied by Maxwell eqs
- In GR, no monopolar or dipolar radiation because energy and linear momentum conservation is implied by Einstein eqs

e.g.
$$M_1 \sim \int \rho x^i d^3 x$$
 $h \sim \frac{G}{c^3} \dot{M}_1 \sim \frac{G}{c^3} \frac{P}{r}$ not a wavel

In alternative theories, effective coupling matter-extra fields in strong gravity regimes energy and momentum transfer between bodies and extra field

$$h \sim \frac{G}{c^3} \dot{M}_1 \sim \frac{G}{c^3} \frac{d}{dt} \left(m_1(\psi) x_1 + m_2(\psi) x_2 \right) \sim \frac{G}{c^3} \mathcal{O}(s_1 - s_2)$$

1.5 PN effect vs 2.5 PN in GR! Testable with binary pulsars!

Binary pulsars

- GWs carry energy and angular momentum away from system, binding energy gets more and more negative and binary shrinks
- Indirect detection by binary pulsar systems (e.g. Hulse-Taylor pulsar)
- Violations of strong equivalence principle and dipolar fluxes regulated by "sensitivities"

2004 The Trustees of Amherst College. www.amherst.edu ~gsgreenstein/progs/animations/pulsar_beacon

 $S = \int \mathcal{L}(Q_A, \partial_\mu Q_A) d^4 x \quad \Longrightarrow \quad \partial_\mu \left(\frac{\partial \mathcal{L}}{\partial (\partial_\mu Q_A)} \right) - \frac{\partial \mathcal{L}}{\partial Q_A} = 0$

Use invariance under time shifts to write canonical mass for solution with $\pi_A \partial_t Q_A = 0$, with $\pi_A = \partial \mathcal{L} / \partial (\partial_t Q_A)$ (e.g. stationary solution)

$$M = \int d^3x \left(\pi_A \partial_t Q_A - \mathcal{L} \right) = - \int d^3x \mathcal{L}$$

Compute mass difference between two neighbouring stellar solutions with same baryonic mass and entropy, but different local values of the field

$$\delta M = -\int d^3x \partial_t \left(\pi_A \delta Q_A\right) - \int d^2 S_i \frac{\partial \mathcal{L}}{\partial(\partial_i Q_A)} \delta Q_A$$

[Use field eqs to get rid of bulk terms]

(Essentially same technique used by Damour & Esposito Farese for ST theories)

 $\mathcal{L} = \mathcal{L}_g + \mathcal{L}_m(\psi_B, \partial_\mu \overline{\psi_B}, g_{\mu\nu}) + \mathcal{L}_\phi(\phi_A, \partial_\mu \phi_A, g_{\mu\nu}, \partial_\alpha g_{\mu\nu})$ Lagrangian for extra d

$$\begin{split} \mathcal{L}_g &= \sqrt{-g} g^{\mu\nu} (\Gamma^{\alpha}_{\mu\lambda} \Gamma^{\lambda}_{\nu\alpha} - \Gamma^{\lambda}_{\mu\nu} \Gamma^{\alpha}_{\lambda\alpha}) / (16\pi G) \quad \text{Einstein Lagrangian} \\ \mathcal{L}_m &= \mathcal{L}_{\text{fluid}} = -\sqrt{-g} \rho(n,\sigma) - \varphi \partial_{\mu} J^{\mu} - \theta \partial_{\mu} (\sigma J^{\mu}) - \alpha_A \partial_{\mu} (\beta_A J^{\mu}) \\ J^{\mu} &= \sqrt{-g} n U^{\mu} \end{split}$$

with Einstein Lagrangian canonical mass = ADM mass

 $\mathcal{L} = \mathcal{L}_g + \mathcal{L}_m(\psi_B, \partial_\mu \psi_B, g_{\mu\nu}) + \mathcal{L}_\phi(\phi_A, \partial_\mu \phi_A, g_{\mu\nu}, \partial_\alpha g_{\mu\nu})$

$$\delta M = -\int d^2 S_i \frac{\partial \mathcal{L}_g}{\partial (\partial_i g_{\mu\nu})} \delta g_{\mu\nu} - \int d^3 x \partial_t \left(\pi_{\psi_B} \delta \psi_B \right) - \int d^2 S_i \frac{\partial \mathcal{L}_m}{\partial (\partial_i \psi_B)} \delta \psi_B - \int d^2 S_i \frac{\partial \mathcal{L}_\phi}{\partial (\partial_i \phi_A)} \delta \phi_A - \int d^2 S_i \frac{\partial \mathcal{L}_\phi}{\partial (\partial_i g_{\mu\nu})} \delta g_{\mu\nu}$$

$$\mathcal{L} = \mathcal{L}_g + \mathcal{L}_m(\psi_B, \partial_\mu \psi_B, g_{\mu\nu}) + \mathcal{L}_\phi(\phi_A, \partial_\mu \phi_A, g_{\mu\nu}, \partial_\alpha g_{\mu\nu})$$

$$\delta M = -\int d^2 S_i \frac{\partial \mathcal{L}_g}{\partial (\partial_i g_{\mu\nu})} \delta g_{\mu\nu} - \int d^3 x \partial_t \left(\pi_{\psi_B} \delta \psi_B\right) - \int d^2 S_i \frac{\partial \mathcal{L}_m}{\partial (\partial_i \psi_B)} \delta \psi_B$$

$$-\int d^2 S_i \frac{\partial \mathcal{L}_\phi}{\partial (\partial_i \phi_A)} \delta \phi_A - \int d^2 S_i \frac{\partial \mathcal{L}_\phi}{\partial (\partial_i g_{\mu\nu})} \delta g_{\mu\nu}$$

 $-\int d^2 S_i \frac{\partial \mathcal{L}_g}{\partial (\partial_i g_{\mu\nu})} \delta g_{\mu\nu} = 0 \quad \text{if} \quad g_{\mu\nu} = \eta_{\mu\nu} + \mathcal{O}(1/r) \,, \ \delta g_{\mu\nu} = \mathcal{O}(1/r)$

$$\mathcal{L} = \mathcal{L}_g + \mathcal{L}_m(\psi_B, \partial_\mu \psi_B, g_{\mu\nu}) + \mathcal{L}_\phi(\phi_A, \partial_\mu \phi_A, g_{\mu\nu}, \partial_\alpha g_{\mu\nu})$$

$$\delta M = -\int d^2 S_i \frac{\partial \mathcal{L}_g}{\partial (\partial_i g_{\mu\nu})} \delta g_{\mu\nu} - \int d^3 x \partial_t \left(\pi_{\psi_B} \delta \psi_B\right) - \int d^2 S_i \frac{\partial \mathcal{L}_m}{\partial (\partial_i \psi_B)} \delta \psi_B$$

$$-\int d^2 S_i \frac{\partial \mathcal{L}_\phi}{\partial (\partial_i \phi_A)} \delta \phi_A - \int d^2 S_i \frac{\partial \mathcal{L}_\phi}{\partial (\partial_i g_{\mu\nu})} \delta g_{\mu\nu}$$

 $-\int d^2 S_i \frac{\partial \mathcal{L}_g}{\partial (\partial_i g_{\mu\nu})} \delta g_{\mu\nu} = 0 \quad \text{if} \quad g_{\mu\nu} = \eta_{\mu\nu} + \mathcal{O}(1/r) \,, \, \delta g_{\mu\nu} = \mathcal{O}(1/r)$

$$-\int d^2 S_i \frac{\partial \mathcal{L}_m}{\partial (\partial_i \psi_B)} \delta \psi_B = 0$$

by adopting coordinate comoving with the fluid

$$\mathcal{L} = \mathcal{L}_{g} + \mathcal{L}_{m}(\psi_{B}, \partial_{\mu}\psi_{B}, g_{\mu\nu}) + \mathcal{L}_{\phi}(\phi_{A}, \partial_{\mu}\phi_{A}, g_{\mu\nu}, \partial_{\alpha}g_{\mu\nu})$$

$$\delta M = -\int d^{2}S_{i}\frac{\partial\mathcal{L}_{g}}{\partial(\partial_{i}g_{\mu\nu})}\delta g_{\mu\nu} - \int d^{3}x\partial_{t}(\phi_{A}, \partial_{\mu}\phi_{A}, g_{\mu\nu}, \partial_{\alpha}g_{\mu\nu}) - \int d^{2}S_{i}\frac{\partial\mathcal{L}_{m}}{\partial(\partial_{i}\psi_{B})}\delta\psi_{B}$$

$$-\int d^{2}S_{i}\frac{\partial\mathcal{L}_{\phi}}{\partial(\partial_{i}\phi_{A})}\delta\phi_{A} - \int d^{2}S_{i}\frac{\partial\mathcal{L}_{\phi}}{\partial(\partial_{i}g_{\mu\nu})}\delta g_{\mu\nu}$$

 $-\int d^2 S_i \frac{\partial \mathcal{L}_g}{\partial (\partial_i g_{\mu\nu})} \delta g_{\mu\nu} = 0 \quad \text{if} \quad g_{\mu\nu} = \eta_{\mu\nu} + \mathcal{O}(1/r) \,, \ \delta g_{\mu\nu} = \mathcal{O}(1/r)$

$$-\int d^2 S_i \frac{\partial \mathcal{L}_m}{\partial (\partial_i \psi_B)} \delta \psi_B = 0$$

by adopting coordinate comoving with the fluid

 $-\int d^3x \partial_t \left(\pi_{\psi_B} \delta \psi_B\right) = -(h - \sigma T) U_t \delta N - T U_t \delta \Sigma = 0$

if baryon number N and entropy \sum are the same for the two neighboring solutions

 $\mathcal{L} = \mathcal{L}_g + \mathcal{L}_m(\psi_B, \partial_\mu \psi_B, g_{\mu\nu}) + \mathcal{L}_\phi(\phi_A, \partial_\mu \phi_A, g_{\mu\nu}, \partial_\alpha g_{\mu\nu})$

$$\delta M = -\int d^2 S_i \frac{\partial \mathcal{L}_{\phi}}{\partial (\partial_i \phi_A)} \delta \phi_A - \int d^2 S_i \frac{\partial \mathcal{L}_{\phi}}{\partial (\partial_i g_{\mu\nu})} \delta g_{\mu\nu}$$

Expression applied to FJBD and DEF scalar tensor theories (Damour & Esposito Farese) and to Lorentz-violating gravity (Yagi, Blas, EB & Yunes, 2014)

Can we generalize to Lagrangian $\mathcal{L}_{\phi}(\phi_A, \partial_{\mu}\phi_A, \partial_{\mu}\partial_{\nu}\phi, g_{\mu\nu}, \partial_{\alpha}g_{\mu\nu})$?

Lagrangian order reduction

$$S = \int \mathcal{L}(Q_A, \partial_\mu Q_A, \partial_\nu \partial_\mu Q_A) d^4x$$

Define $X_{A\mu} \equiv \partial_{\mu}Q_A$ and enforce definition by Lagrange multipliers

$$S = \int \left[\mathcal{L}(Q_A, X_{A\mu}, \partial_{\nu} X_{A\mu}) + \lambda^{A\mu} (X_{A\mu} - \partial_{\mu} Q_A) \right] d^4x$$

Two actions are equivalent, and same procedure as before gives

$$\delta M = -\int d^2 S_i \frac{\partial \mathcal{L}_{\phi}}{\partial (\partial_i \phi_A)} \delta \phi_A - \int d^2 S_i \frac{\partial \mathcal{L}_{\phi}}{\partial (\partial_i g_{\mu\nu})} \delta g_{\mu\nu} - \int d^2 S_i \frac{\partial \mathcal{L}_{\phi}}{\partial (\partial_i \partial_j \phi_A)} \partial_j \delta \phi_A \\ \int d^2 S_i \frac{\partial \mathcal{L}_{\phi}}{\partial (\partial_i \partial_j g_{\mu\nu})} \partial_j \delta g_{\mu\nu} + \int d^2 S_i \partial_j \left(\frac{\partial \mathcal{L}_{\phi}}{\partial (\partial_i \partial_j \phi_A)} \right) \delta \phi_A + \int d^2 S_i \partial_j \left(\frac{\partial \mathcal{L}_{\phi}}{\partial (\partial_i \partial_j g_{\mu\nu})} \right) \delta g_{\mu\nu}$$

Horndeski theories (aka generalized galileons)

Most generic scalar-tensor theories with 2nd-order field eqs

 $\mathcal{L}_{\phi} = \frac{\sqrt{-g}}{16\pi G} \Big\{ K(\phi, X) - G_3(\phi, X) \Box \phi + G_4(\phi, X) R + \partial_X G_4(\phi, X) \left[(\Box \phi)^2 - (\nabla_\mu \nabla_\nu \phi)^2 \right] \\ + G_5(\phi, X) G_{\mu\nu} \nabla^\mu \nabla^\nu \phi - \frac{1}{6} \partial_X G_5(\phi, X) \Big[(\Box \phi)^3 - 3 (\Box \phi) (\nabla_\mu \nabla_\nu \phi)^2 + 2 (\nabla_\mu \nabla_\nu \phi)^3 \Big] \Big\} \\ X \equiv -\nabla_\mu \phi \nabla^\mu \phi / 2 \quad (\nabla_\mu \nabla_\nu \phi)^2 \equiv \nabla_\mu \nabla^\nu \phi \nabla_\nu \nabla^\mu \phi \quad (\nabla_\mu \nabla_\nu \phi)^3 \equiv \nabla_\mu \nabla^\rho \phi \nabla_\rho \nabla^\nu \phi \nabla_\nu \nabla^\mu \phi$

Galileon interactions also arise in massive gravity

• Very non-linear field eqs allow Vainshtein mechanism $\Box \phi + \partial_X G_3 [(\Box \phi)^2 - (\nabla_\mu \nabla_\nu \phi)^2 - R_{\mu\nu} \nabla^\mu \phi \nabla^\nu \phi] + ... = ...$ $\frac{d\phi}{dr} \propto \frac{r^3}{r_V^3} \left[\sqrt{1 + \frac{r_V^3}{r^3}} - 1 \right] \frac{GM(r)}{r^2}$

Scalar effects only arise for $r > r_V$ (Vainhstein radius)

Shift symmetric Horndeski theories

 $\mathcal{L}_{\phi} = \frac{\sqrt{-g}}{16\pi G} \Big\{ K(X) - G_3(X) \Box \phi + G_4(X) R + G_{4X} \left[(\Box \phi)^2 - (\nabla_{\mu} \nabla_{\nu} \phi)^2 \right] \\ + G_5(X) G_{\mu\nu} \nabla^{\mu} \nabla^{\nu} \phi - \frac{G_{5X}}{6} \left[(\Box \phi)^3 - 3 (\Box \phi) (\nabla_{\mu} \nabla_{\nu} \phi)^2 + 2 (\nabla_{\mu} \nabla_{\nu} \phi)^3 \right] + \chi \phi \mathcal{G} \Big\}$

 \bullet Invariant under shift symmetry $\phi \rightarrow \phi + \text{const}$

Assume analytic K, G₃, G₄, G₅ [i.e. K(X)=X+O(X)², G_i=O(X) (i=1,2,3)]...

In the second secon

Shift symmetric Horndeski theories $\mathcal{L}_{\phi} = \frac{\sqrt{-g}}{16\pi G} \Big\{ K(X) - G_3(X) \Box \phi + G_4(X) R + G_{4X} \Big[(\Box \phi)^2 - (\nabla_{\mu} \nabla_{\nu} \phi)^2 \Big] + G_5(X) G_{\mu\nu} \nabla^{\mu} \nabla^{\nu} \phi - \frac{G_{5X}}{6} \Big[(\Box \phi)^3 - 3 (\Box \phi) (\nabla_{\mu} \nabla_{\nu} \phi)^2 + 2 (\nabla_{\mu} \nabla_{\nu} \phi)^3 \Big] + \chi \phi \mathcal{G} \Big\}$ $\mathsf{K}(\mathsf{X}) = \mathsf{X} + \mathsf{O}(\mathsf{X})^2, \ \mathsf{G}_{i} = \mathsf{O}(\mathsf{X}) \ (i = 1, 2, 3)$ Shift symmetric Horndeski theories $\mathcal{L}_{\phi} = \frac{\sqrt{-g}}{16\pi G} \Big\{ K(X) - G_3(X) \Box \phi + G_4(X) R + G_{4X} \Big[(\Box \phi)^2 - (\nabla_{\mu} \nabla_{\nu} \phi)^2 \Big] + G_5(X) G_{\mu\nu} \nabla^{\mu} \nabla^{\nu} \phi - \frac{G_{5X}}{6} \Big[(\Box \phi)^3 - 3 (\Box \phi) (\nabla_{\mu} \nabla_{\nu} \phi)^2 + 2 (\nabla_{\mu} \nabla_{\nu} \phi)^3 \Big] + \chi \phi \mathcal{G} \Big\}$ $\mathsf{K}(\mathsf{X}) = \mathsf{X} + \mathsf{O}(\mathsf{X})^2, \ \mathsf{G}_{i} = \mathsf{O}(\mathsf{X}) \ (i=1,2,3)$

Sevaluate
$$\delta M = -\int d^{2}S_{i} \frac{\partial \mathcal{L}_{\phi}}{\partial(\partial_{i}\phi_{A})} \delta\phi_{A} - \int d^{2}S_{i} \frac{\partial \mathcal{L}_{\phi}}{\partial(\partial_{i}g_{\mu\nu})} \delta g_{\mu\nu} - \int d^{2}S_{i} \frac{\partial \mathcal{L}_{\phi}}{\partial(\partial_{i}\partial_{j}\phi_{A})} \partial_{j}\delta\phi_{A}$$

$$-\int d^{2}S_{i} \frac{\partial \mathcal{L}_{\phi}}{\partial(\partial_{i}\partial_{j}g_{\mu\nu})} \partial_{j}\delta g_{\mu\nu} + \int d^{2}S_{i}\partial_{j} \left(\frac{\partial \mathcal{L}_{\phi}}{\partial(\partial_{i}\partial_{j}\phi_{A})}\right) \delta\phi_{A} + \int d^{2}S_{i}\partial_{j} \left(\frac{\partial \mathcal{L}_{\phi}}{\partial(\partial_{i}\partial_{j}g_{\mu\nu})}\right) \delta g_{\mu\nu}$$
using
$$\phi = \mathcal{O}(1/r), \quad g_{\mu\nu} = \eta_{\mu\nu} + \mathcal{O}(1/r) \Longrightarrow \delta g_{\mu\nu} \sim \delta\phi \sim \mathcal{O}(1/r)$$

Shift symmetric Horndeski theories $\mathcal{L}_{\phi} = \frac{\sqrt{-g}}{16\pi G} \Big\{ K(X) - G_3(X) \Box \phi + G_4(X) R + G_{4X} \Big[(\Box \phi)^2 - (\nabla_{\mu} \nabla_{\nu} \phi)^2 \Big] + G_5(X) G_{\mu\nu} \nabla^{\mu} \nabla^{\nu} \phi - \frac{G_{5X}}{6} \Big[(\Box \phi)^3 - 3 (\Box \phi) (\nabla_{\mu} \nabla_{\nu} \phi)^2 + 2 (\nabla_{\mu} \nabla_{\nu} \phi)^3 \Big] + \chi \phi \mathcal{G} \Big\}$ $\kappa(\mathsf{X}) = \mathsf{X} + \mathsf{O}(\mathsf{X})^2, \ \mathsf{G}_i = \mathsf{O}(\mathsf{X}) \ (i = 1, 2, 3)$

Sevaluate
$$\delta M = -\int d^{2}S_{i} \frac{\partial \mathcal{L}_{\phi}}{\partial(\partial_{i}\phi_{A})} \delta\phi_{A} - \int d^{2}S_{i} \frac{\partial \mathcal{L}_{\phi}}{\partial(\partial_{i}g_{\mu\nu})} \delta g_{\mu\nu} - \int d^{2}S_{i} \frac{\partial \mathcal{L}_{\phi}}{\partial(\partial_{i}\partial_{j}\phi_{A})} \partial_{j}\delta\phi_{A}$$

$$-\int d^{2}S_{i} \frac{\partial \mathcal{L}_{\phi}}{\partial(\partial_{i}\partial_{j}g_{\mu\nu})} \partial_{j}\delta g_{\mu\nu} + \int d^{2}S_{i}\partial_{j} \left(\frac{\partial \mathcal{L}_{\phi}}{\partial(\partial_{i}\partial_{j}\phi_{A})}\right) \delta\phi_{A} + \int d^{2}S_{i}\partial_{j} \left(\frac{\partial \mathcal{L}_{\phi}}{\partial(\partial_{i}\partial_{j}g_{\mu\nu})}\right) \delta g_{\mu\nu}$$
using
$$\phi = \mathcal{O}(1/r), \quad g_{\mu\nu} = \eta_{\mu\nu} + \mathcal{O}(1/r) \Longrightarrow \delta g_{\mu\nu} \sim \delta\phi \sim \mathcal{O}(1/r)$$

E.g. contribution of K to first term:

$$\delta M \sim \int d^2 S_i \frac{\partial \mathcal{L}_{\phi}}{\partial (\partial_i \phi)} \delta \phi \sim r^2 |\nabla \phi| \frac{1}{r} \sim \frac{1}{r} \to 0 \quad \text{as} \quad r \to \infty$$

Shift symmetric Horndeski theories $\mathcal{L}_{\phi} = \frac{\sqrt{-g}}{16\pi G} \Big\{ K(X) - G_3(X) \Box \phi + G_4(X) R + G_{4X} \Big[(\Box \phi)^2 - (\nabla_{\mu} \nabla_{\nu} \phi)^2 \Big] + G_5(X) G_{\mu\nu} \nabla^{\mu} \nabla^{\nu} \phi - \frac{G_{5X}}{6} \Big[(\Box \phi)^3 - 3 (\Box \phi) (\nabla_{\mu} \nabla_{\nu} \phi)^2 + 2 (\nabla_{\mu} \nabla_{\nu} \phi)^3 \Big] + \chi \phi \mathcal{G} \Big\}$ $\kappa(\mathsf{X}) = \mathsf{X} + \mathsf{O}(\mathsf{X})^2, \ \mathsf{G}_i = \mathsf{O}(\mathsf{X}) \ (i = 1, 2, 3)$

• Evaluate
$$\delta M = -\int d^2 S_i \frac{\partial \mathcal{L}_{\phi}}{\partial(\partial_i \phi_A)} \delta \phi_A - \int d^2 S_i \frac{\partial \mathcal{L}_{\phi}}{\partial(\partial_i g_{\mu\nu})} \delta g_{\mu\nu} - \int d^2 S_i \frac{\partial \mathcal{L}_{\phi}}{\partial(\partial_i \partial_j \phi_A)} \partial_j \delta \phi_A$$

 $-\int d^2 S_i \frac{\partial \mathcal{L}_{\phi}}{\partial(\partial_i \partial_j g_{\mu\nu})} \partial_j \delta g_{\mu\nu} + \int d^2 S_i \partial_j \left(\frac{\partial \mathcal{L}_{\phi}}{\partial(\partial_i \partial_j \phi_A)} \right) \delta \phi_A + \int d^2 S_i \partial_j \left(\frac{\partial \mathcal{L}_{\phi}}{\partial(\partial_i \partial_j g_{\mu\nu})} \right) \delta g_{\mu\nu}$
using $\phi = \mathcal{O}(1/r)$, $g_{\mu\nu} = \eta_{\mu\nu} + \mathcal{O}(1/r) \Longrightarrow \delta g_{\mu\nu} \sim \delta \phi \sim \mathcal{O}(1/r)$

E.g. contribution of K to first term: $\delta M \sim \int d^2 S_i \frac{\partial \mathcal{L}_{\phi}}{\partial(\partial_i \phi)} \delta \phi \sim r^2 |\nabla \phi| \frac{1}{r} \sim \frac{1}{r} \to 0 \quad \text{as} \quad r \to \infty$

Similar reasoning shows that all terms vanish, i.e. $\delta M=0$

Shift symmetric Horndeski theories $\mathcal{L}_{\phi} = \frac{\sqrt{-g}}{16\pi G} \Big\{ K(X) - G_3(X) \Box \phi + G_4(X) R + G_{4X} \Big[(\Box \phi)^2 - (\nabla_{\mu} \nabla_{\nu} \phi)^2 \Big] + G_5(X) G_{\mu\nu} \nabla^{\mu} \nabla^{\nu} \phi - \frac{G_{5X}}{6} \Big[(\Box \phi)^3 - 3 (\Box \phi) (\nabla_{\mu} \nabla_{\nu} \phi)^2 + 2 (\nabla_{\mu} \nabla_{\nu} \phi)^3 \Big] + \chi \phi \mathcal{G} \Big\}$ $\kappa(\mathsf{X}) = \mathsf{X} + \mathsf{O}(\mathsf{X})^2, \ \mathsf{G}_i = \mathsf{O}(\mathsf{X}) \ (i = 1, 2, 3)$

• Evaluate
$$\delta M = -\int d^2 S_i \frac{\partial \mathcal{L}_{\phi}}{\partial(\partial_i \phi_A)} \delta \phi_A - \int d^2 S_i \frac{\partial \mathcal{L}_{\phi}}{\partial(\partial_i g_{\mu\nu})} \delta g_{\mu\nu} - \int d^2 S_i \frac{\partial \mathcal{L}_{\phi}}{\partial(\partial_i \partial_j \phi_A)} \partial_j \delta \phi_A$$

 $-\int d^2 S_i \frac{\partial \mathcal{L}_{\phi}}{\partial(\partial_i \partial_j g_{\mu\nu})} \partial_j \delta g_{\mu\nu} + \int d^2 S_i \partial_j \left(\frac{\partial \mathcal{L}_{\phi}}{\partial(\partial_i \partial_j \phi_A)} \right) \delta \phi_A + \int d^2 S_i \partial_j \left(\frac{\partial \mathcal{L}_{\phi}}{\partial(\partial_i \partial_j g_{\mu\nu})} \right) \delta g_{\mu\nu}$
using $\phi = \mathcal{O}(1/r)$, $g_{\mu\nu} = \eta_{\mu\nu} + \mathcal{O}(1/r) \Longrightarrow \delta g_{\mu\nu} \sim \delta \phi \sim \mathcal{O}(1/r)$

• E.g. contribution of K to first term: $\delta M \sim \int d^2 S_i \frac{\partial \mathcal{L}_{\phi}}{\partial(\partial_i \phi)} \delta \phi \sim r^2 |\nabla \phi| \frac{1}{r} \sim \frac{1}{r} \to 0$ as $r \to \infty$

Similar reasoning shows that all terms vanish, i.e. δM=0
Sensitivities of stars vanish!

PN expansion for shift-symmetric Horndeski theories

 Define inner, near and far zones
 Inner zone must be >> star and << λ_{GW}
 In near and far zone, fields decay as 1/r and stars described as point particles with mass m(φ) = m + ∂m/∂φ δφ + ... = m + sδφ + ...

Expand dynamics in orders of v/c

$$\bar{h}^{\mu\nu} = \eta^{\mu\nu} - \sqrt{-g}g^{\mu\nu}$$

 No monopolar or dipolar emission, same quadrupole as GR
 Deviations from GR at 3PN (2PN) order in the dissipative (conservative) sector

What assumptions are we making?

Shift symmetry for the total action (i.e. no conformal coupling of the scalar to matter): crucial!

If no shift symmetry, $\phi = \phi_{\infty} + \frac{\alpha}{r} + ... \Rightarrow \delta \phi = \delta \phi_{\infty} + O(1/r)$

$$\delta M \sim \int d^2 S_i \frac{\partial \mathcal{L}_{\phi}}{\partial (\partial_i \phi)} \delta \phi \sim r^2 |\nabla \phi| \delta \phi_{\infty} \propto \alpha \delta \phi_{\infty} \Rightarrow s_{\phi} \propto \alpha$$

NB: Conformal coupling is present in FJBD, DEF and massive gravity: in those cases sensitivities can NOT be neglected

• No direct scalar-matter coupling: non-crucial as long as coupling is shift-symmetric, e.g. matter coupled to disformal metric $g_{\mu\nu} + \kappa \partial_{\mu} \phi \partial_{\nu} \phi$

What assumptions are we making?

• If Vainshtein screening present, Vainshtein radius $r_V << \lambda_{GW}$: crucial!

Needed to use PN formalism!

 r_V is "effective" star radius, i.e. if $r_V << \lambda_{GW}$ finite size effects at high PN orders

 $\lambda_{GW} \sim 10^9$ km for binary pulsars, and 10^3 km for LIGO sources

• If $r_V \ge \lambda_{GW}$, PN formalism is not applicable, i.e. dynamics is nonperturbative (or "strongly coupled"). Problematic because binary pulsars' dynamics is perturbative

Unclear how to even do calculation. Possible approach: WKB approximation (de Rham, Tolley and Wesley 2013; Chu & Trodden 2013), but conclusion that all multipoles radiate with comparable strength hard to reconcile with binary pulsars

What assumptions are we making?

Neglect cosmological-expansion effects: potentially important

- In all scalar-tensor theories, where sensitivities for stars and BHs affected by scalar field's cosmological expansion (Jacobson, Charmousis, Babichev, Esposito Farese, etc)
- A more subtle effect in Horndenski/beyond Horndenski theories:
 Screening works for spatial but not time derivatives
 Time derivatives change GW-matter coupling in the quadrupole formula (G_{gw}), and GW propagation speed c_T

$$\gamma_{PPN} = \frac{1 + \alpha_H}{c_T^2} \qquad G_{gw} = \left(\frac{1 + \alpha_H}{c_T}\right)^2 G_N$$

 $\alpha_{\rm H}$ and $c_{\rm T}$ are theory's parameters ($\alpha_{\rm H}$ = 0 in Horndenski)

Jimenez, Piazza, Velten 2015

Possible smoking-gun scalar effects?

- Like pornography, "When you see it, you know it"!
 (Supreme Court Justice Potter Stewart, 1964)
- Abrupt waveform termination/earlier plunge than in GR for LIGO NS-NS sources, in DEF scalar tensor theories

EB, Palenzuela, Ponce & Lehner 2014

Caused by induced scalarization of one (spontaneously scalarized) star on the other, by dynamical scalarization of an initially non-scalarized binary

Spontaneous/dynamical scalarization as "phase transitions"

Figure from Esposito-Farese, gr-qc/0402007

Conclusions

- Modifications of GR generally introduce violations of the strong equivalence principle via the sensitivities, i.e. free fall of bodies with strong internal gravity is not universal
- Binary pulsars test strong equivalence principle and are the most dreaded theory killer
- Sensitivities can be calculated from asymptotic behavior of solutions for isolated stars
- In Horndeski theories, sensitivities are NOT zero in general, but vanish if shift-symmetry imposed on scalar and on matter-scalar coupling, provided that the dynamics is perturbative and cosmological-expansion effects can be neglected
- If Vainshtein screening present, counter-intuitive result that deviations from GR are screened if Vainshtein radius is small