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@ Modifications of GR and the equivalence principle

@ Binary pulsars as tests of the “strong” equivalence
principle (i.e. the universality of free fall for objects
with strong internal gravity)

@ How to calculate the deviations from the strong
equivalence principle in modified gravity theories

@ The case of shift-symmetric Horndeski gravity



Lovelocks theorem

In a 4-dimensional spacetime, the only divergence-free symmetric rank-2 tensor constructed only from the

metric guv and its derivatives up to second differential order, and preserving diffeomorphism invariance, is
the Einstein tensor plus a cosmological term, i.e. Guy +A guy
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How to couple extra fields?

Satisfy weak equivalence principle (i.e. universality of free fall
for bodies with weak self-gravity) by avoiding coupling extra

fields to matter
Sm (¥, Guv)

But extra fields usually couple non-minimally to metric, so
gravity mediates effective interaction between matter and
new field in strong gravity regimes (Nordvedt effect)

Equivalence principle violated for strongly gravitating bodies

For strongly gravitating bodies, gravitational binding energy
gives large contribution to fotal mass, but binding energy
depends on extra fields!

Minertial/Mgravitational depends on local field value and may be #1



Strong-equivalence principle violations
by thought experiments (Dicke 1969)

o0 0
- ,
0 O Some “particles” undergo nuclear
® ® ® Reaction and transfer energy
|Eb|(h+dh) , enough to break it

~N'=N - |E,|(h+dh)/m J

particles

Raise to height/h+dh: work

Lower particles one by one: against gravity |s -a [m N-|E,|(h)] dh

each follows geodesics,
S0 energy gained is

m N'/g dh ~ (N - |E_|(h)/m) g dh

N particles of mass m
E=m N

o .. Colla
ollapse:
® ® |E,|(h) released as heat

—

Energy balance gives (—g+a)(Nn — Ep) = dcib i3 Cif]b Cfl(;i ¥ 6213)

dEy

::> minQ = mg'ra'vg Min = Nm — Eba Mgrav = Min — ﬁ

g



A few examples

@ Brans-Dicke, scalar-tensor theories: Gesr x Gn/p, but ¢ in which
star is immersed depends on cosmology, presence of other star

|::> minerﬁm/mgmvimﬁona[ changes with time

@ Lorentz-violating gravity (Einstein-aether, Horava):
preferred frame exists for gravitational physics
gravitational mass of strongly gravitating bodies depends on

velocity wrt preferred frame I::>miner’rial #Mgravitational fOT
binary pulsars because v changes with fime

@ If gravitational mass depends on fields, deviations from GR motion
already at geodesics level

e Dy,

o Z /n‘z..n('t’«’)db' ugv“(mnul/) ~ (O (Sn) Sn — Ow



Strong-equivalence principle violations
in the dissipative sector

Whenever strong-equivalence principle is violated, monopolar and
dipolar radiation may be produced

In electromagnetism, no monopolar radiation because electric
charge conservation is implied by Maxwell eqs

In GR, no monopolar or dipolar radiation because energy and linear
momentum conservation is implied by Einstein egs

. G - (.

In alternative theories, effective coupling matter-extra fields in

strong gravity regimes =====>> energy and momentum transfer
between bodies and extra field

G .. G d G
h ~ gl\/ll i (mq(Y)x1 + mao(Y)xs) ~ g(’)(sl — S9)



Binary pulsars

Binary system of stars on circular orbits has time changing mass

quadrupole m===">> GW emission

GWs carry energy and angular momentum away from system,
binding energy gets more and more negative and binary shrinks

Indirect detection by binary pulsar systems (e.g. Hulse-Taylor pulsar)

Violations of strong equivalence principle and dipolar fluxes regulated
by “sensitivities”

General Relativity prediction/
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How to calculate sensitivites

0

5= [L@u0.00t =B 0 (5m0)- 30

§0.04)) 0%+

Use invariance under time shifts to write canonical mass
for solution with 740,Q4 =0, with 74 = 9L£/0(8:Q4)
(e.g. stationary solution)

e / Er (r A0, ) / Pl

Compute mass difference between two neighbouring

stellar solutions with same baryonic mass and entropy,
but different local values of the field

0L 6Q 4 [Use field egs to get rid
(0:Q ) of bulk terms]

5 N / AP0, (146Q 4) — / S

(Essentially same technique used by Damour & Esposito Farese for ST theories)



How to calculate sensitivites

L =5 »Cg _|_ »Cm(wB) a,u,wByg/,Ll/) _|_ £¢(¢A7 8M¢A7g,ul/7 aagp,y)

Ly =v=99" (T%Tha — T5,T%)/ (167G
) 79

Ly, = Lanid' =7+ —gp(n,ale @0, J " — 00, (e 10, (34" )

JH = /—gnU"

with Einstein Lagrangian canonical mass = ADM mass



How to calculate sensitivites

L=Ly+ Len(¥B, 0,08, Guv) + Lp(D4,0ub A5 Gprs O Gpuv)

o, 0L

SM =t =SS 6 ,,—/d36 0 —/dQSZ-
/ 0(0i9uv) e ikahe S, 0(0:YB)

oL oL
i S. 2y Gk / 2 S ¢
/ 0(0;da) 30 0(0ig.v)



How to calculate sensitivites

L — Lg P Lm(wBa C%IDB, g,uu) A £¢(¢Aa a,u¢A7 !JW, 8aguv)

oL
o 3 ) 2¢a m
0G0 /d 0 (T, 00 B) /d SZ(?(@Z@DB)(SwB

oL oL
_ | ¢2s, i kg —/4251- 2 vl
/ 8(82¢A) ¢A a(a’iguu) i




How to calculate sensitivites

L — Lg P Lm(wBy 8,u¢Bag,LLV) g Eqb((bAa au¢Aag/JJV7 gLLV)

by adopting coordinate
comoving with the fluid

oL {aR Ty
i S. 2y Gk / 2 S ¢
/ a(az¢A) ¢A a(aig,uu



How to calculate sensitivites

s Eg i Lm(wBa 8,u¢Ba g,ul/) +£¢(¢A7 a,UJ¢A’ Guv; g/“/) ;

/ 2 0L by adopting coordinate
b i3

comoving with the fluid

i / BB, (m on) = (b~ o T)U O I,0% = 0

if baryon number N and entropy > are the same
for the two neighboring solutions



How to calculate sensitivites

L — Lg o »Cm(le, 5’M¢B, g,uu) ot L¢(¢A7 a,u¢A7 g,uVa 8aguv)

Can we generalize to Lagrangian Lg(¢4,0,94,0.0.0; 9w OaGuw) ?



Lagrangian order reduction

= / (000,04, 00,0 1 )dba

Define X4, = 0,Q4 and enforce definition by
Lagrange multipliers

i / £(Q, X, 8 Xa) & A (X 4 = 8,0 4)] do

Two actions are equivalent, and same procedure
as before gives

oL oL oL
5M:—/d25 Gl —/d2s Liiiaf ,,—/CFS?; iR
0(0ipa) “ 0(0iguv) < 0(0;0;¢04) "’ *

oL OL oL
_ | d28, LLiSts ,,+/d25i8-< ¢ )5 +/d2sa ( ¢ )5 ;
/ a(aiajgw/) gg ¢ a(aiaj¢A) P4 a(aiajgﬂl/) g'u




Horndeski theories
(aka generalized galileons)

® Most generic scalar-tensor theories with 2nd-order field eqgs

o= Q {K(¢,X) - G3(¢, X)0p + Ga(6, X)R + x Ga(9, X) | (09)° — (VuV0)’
+G3(, X)Gyu VIV* — =0xGs(6,X) [(D6)" ~ 3(06) (VuV,9)® +2(VuVu0)’] }
X = =V, V¥¢/2 (VuVu0)? =V, V'V, VA (V,V,0)’ = V. VP4V, V/$V, Vi
@ Galileon interactions also arise in massive gravity

@ Very non-linear field eqgs allow Vainshtein mechanism
6+ 0xG3[(09)? — (VuVio) — Ru VFV @] + ... = ...

3 3
dp r \/1_|_7“_V_1 GM(r)

r3 r2

Scalar effects only arise for r>> rv (Vainhstein radius)



Shift symmetric Horndeski theories

£s = YLLK(X) - Ga(X)Dp + Ga(X)R+ Gux [(09) — (V. V,0']
Gsx

+G5(X)G o V496 — Z2X[(09)° = 3(09) (VuV.9)® +2(9,V,0)"] + x99 |

@ Invariant under shift symmetry ¢ — ¢ + const

@ Assume analytic K, Gs3, G,, Gs [i.e. K(X)=X+0(X)?,
Gi=0(X) (i=1,2,3)]...

o ..but include Gauss-Bonnet term X®Y
(which comes from log |X| divergence in G5)



Shift symmetric Horndeski theories

o L= LIK(X)=Go(X)06+GuX)R + Gax [(06) - (VuWitY]

~ 167G
Gsx [(

+G5(X)G, V¥ 6 — 22X (O6)° = 3(06) (V,.Vu9)” +2(V,.V,9)°| +x9G }

K(X)=X+0(X)?, Gi=0(X) (i=1,2,3)




Shift symmetric Horndeski theories

o Lo=YLIK(X)=Ga(X)06+Cu(X)R+Gux [(09)° - (VuVus)’
Gsx

+G5(X)Gu V496 — “2X[(09)° = 3(09) (VuVu9)® +2(9,7.6)°] + x99

K(X)=X+0(X)?, Gi=0(X) (i=1,2,3)

oL oL
® Evaluate (SM:—/dQSi it —/dQSi 5 ,,—/dQSZ- W5
A Biba) A .g..) 30:0,60) %4

oL oL oL
_ | d28; P oS ,,+/d237;6-( ¢ )5 +/d282-8-( ¢ )5 S
/ 0(8:0;90) ” L 7\ 9(0;0;04) e 200(0,0,0 74

using ¢=0(1/r)," gige #. - Oll/%) 0Guy ~ 09 ~ O(1/r)




Shift symmetric Horndeski theories

o ro= YL G.(x)0+ ()R + Cax [(O8)? - (VuVus)]
HO3(X)Cu VH VY0 — X [(09)° ~ 3(06) (V,Vu8)’ +2(V,V,0)°] + X0

K(X)=X+0(X)?, Gi=0(X) (i=1,2,3)

® Evaluate sMv =

oL
_ | @28, cabrie SR
/ 0(9;0;¢4) <

oL i oL
_ | d28; AR ,,+/d2S7;c‘9-( ¢ )5 +/d2Si8-( ¢ )5 S
/ 9(9:0j9w) * L 7\ 0(0;0;04) e 200(0,0,0 74

USing ¢ — O(]_/T) , Juv = Nuv e O(l/T) w 5g,u1/ i 5¢ e 0(1/7“)

@ E.g. contribution of K to first term:

1 1
OM ~ /d2 aﬁqb NTQ‘Vle;N;%O as s . OO



Shift symmetric Horndeski theories

o Lo=YLIK(X)=Gy(X)06+Cu(X)R+Gux [(09)° - (VuTus)’
Gsx [
<

+Gs5(X)Gpu V"6 — ZX[(09)° = 3(06) (V,uV,0)” +2(V,uV,0)°| + X066}

K(X)=X+0(X)?, Gi=0(X) (i=1,2,3)

oL oL oL
® Evaluate (SM:—/dQSi it —/dQSi G ,,—/szi W5
a(az¢A) ¢A a(a’igw/) 7 a(a’baj¢A) 4 ¢A

oL oL oL
_ | d28; P oS ,,+/d257;a-( ¢ )5 +/d25ia-( ¢ )5 S
/ 0(8:0;90) ” L 7\ 9(0;0;04) e 200(0,0,0 i

using ¢=0(1/r), Guw =N +O(1/r) == 6g,, ~ 6¢ ~ O(1/7)

@ E.g. contribution of K fo first term:

oL
SM ~ / s e
0(0;0)

1 1
6p ~r?|lVd|—~= =0 as r— o0
r T

@ Similar reasoning shows that all terms vanish, i.e. 6M=0



Shift symmetric Horndeski theories
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PN expansion for shiftf-symmetric
Horndeski theories

® Define inner, near and far zones

@ Inner zone must be >> star and << \ew
@ In near and far zone, fields decay as 1/r
and stars described as point particles with mass

m(¢):m+aa—i$5gb—l—...:m—l—35¢—l—...

@ Expand dynamics in orders of v/c

hHV — 77/“/ i \/ng/w

W = —167G[(1 — h%o)TH + 7] + ...

0 = 08,738, ) = X005 0 R =0 T =0k




What assumptions are we making?

@ Shift symmetry for the total action (i.e. no conformal
coupling of the scalar to matter):

If no shift symmetry, ¢ = ¢ + % + ... = 09 = 0pc + O(1/r)

SM ~ /d2 8£¢ 5¢ r|Vo|6doo X addos = 54 X

NB: Conformal coupling is present in FIJBD, DEF and massive
gravity: in those cases sensitivities can NOT be neglected

@ No direct scalar-matter coupling: as long as
coupling is shift-symmetric, e.g. matter coupled to disformal
metric g, + £ 0,¢0,¢



What assumptions are we making?

@ If Vainshtein screening present,
Vainshtein radius ry<< Aew:

rv is "effective” star radius, i.e. if rv<< ‘ew
finite size effects at high PN orders

hew ~ 10?7 km for binary pulsars, and 10° km for LIGO sources

@ If rv= Aew, PN formalism is not applicable, i.e. dynamics is non-

perturbative (or “strongly coupled”). Problematic because binary
pulsars’ dynamics is perturbative

Unclear how to even do calculation. Possible approach: WKB
approximation (de Rham, Tolley and Wesley 2013; Chu & Trodden
2013), but conclusion that all multipoles radiate with comparable
strength hard fo reconcile with binary pulsars



What assumptions are we making?

Neglect cosmological-expansion effects:

@ In all scalar-tensor theories, where sensitivities for stars and BHs
affected by scalar fields cosmological expansion (Jacobson,
Charmousis, Babichey, Esposito Farese, etc)

® A more subtle effect in Horndenski/beyond Horndenski theories:
- Screening works for spatial but not time derivatives
- Time derivatives change GW-matter coupling in the quadrupole
formula (Ggw), and GW propagation speed ct

-~ Hulse=Taylor Pulsar :

an and cr are theorys parameters
(on = O in Horndenski)

1.005

Jimenez, Piazza, Velten 2015



Possible smoking-qun scalar effects?

@ Like pornography, "When you see it, you know it"!
(Supreme Court Justice Potter Stewart, 1964)

@ Abrupt waveform termination/earlier plunge than in GR
for LIGO NS-NS sources, in DEF scalar tensor theories

EB, Palenzuela,
Ponce & Lehner 2014

@ Caused by induced scalarization of one (spontaneously
scalarized) star on the other, by dynamical scalarization
of an initially non-scalarized binary



Spontaneous/dynamical scalarization
as "phase transitions”

Figure from Esposito-Farese, gr-qc/0402007



Conclusions

Modifications of GR generally infroduce violations of the strong
equivalence principle via the sensitivities, i.e. free fall of bodies
with strong internal gravity is not universal

Binary pulsars fest strong equivalence principle and are the most
dreaded theory Killer

Sensitivities can be calculated from asymptotic behavior of solutions
for isolated stars

In Horndeski theories, sensitivities are NOT zero in general, but
vanish if shift-symmetry imposed on scalar and on matter-scalar
coupling, provided that the dynamics is perturbative and
cosmological-expansion effects can be neglected

If Vainshtein screening present, counter-intuitive result that
deviations from GR are screened if Vainshtein radius is small



