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Outline

Modifications of GR and the equivalence principle



Binary pulsars as tests of the “strong” equivalence 
principle (i.e. the universality of free fall for objects 
with strong internal gravity)



How to calculate the deviations from the strong 
equivalence principle in modified gravity theories



The case of shift-symmetric Horndeski gravity



Beyond GR: how?
Lovelock’s theorem

Figure adapted 


from Berti et al 2015

Generic way to 


modify GR is to add 



extra fields!



Satisfy weak equivalence principle (i.e. universality of free fall 
for bodies with weak self-gravity) by avoiding coupling extra 
fields to matter



But extra fields usually couple non-minimally to metric, so 
gravity mediates effective interaction between matter and 
new field in strong gravity regimes (Nordvedt effect)



Equivalence principle violated for strongly gravitating bodies



For strongly gravitating bodies, gravitational binding energy 
gives large contribution to total mass, but binding energy 
depends on extra fields!                                                
minertial/mgravitational depends on local field value and may be ≠1

How to couple extra fields?



Strong-equivalence principle violations 
by thought experiments (Dicke 1969)

Energy balance gives



Brans-Dicke, scalar-tensor theories: Geff ∝ GN/φ, but φ in which 
star is immersed depends on cosmology, presence of other star                         
g             minertial/mgravitational changes with time 



Lorentz-violating gravity (Einstein-aether, Horava):         
preferred frame exists for gravitational physics                        
gravitational mass of strongly gravitating bodies depends on 
velocity wrt preferred frame             minertial ≠mgravitational for 
binary pulsars because v changes with time



If gravitational mass depends on fields, deviations from GR motion 
already at geodesics level



sensitivities or charges, 


i.e. response to change in field 



boundary conditions

A few examples



Whenever strong-equivalence principle is violated, monopolar and 
dipolar radiation may be produced



In electromagnetism, no monopolar radiation because electric 
charge conservation is implied by Maxwell eqs



In GR, no monopolar or dipolar radiation because energy and linear 
momentum conservation is implied by Einstein eqs 



In alternative theories, effective coupling matter-extra fields in 
strong gravity regimes              energy and momentum transfer 
between bodies and extra field

Strong-equivalence principle violations 


in the dissipative sector

not a wave!e.g.

1.5 PN effect vs 2.5 PN in GR! Testable with binary pulsars!



Binary pulsars
Binary system of stars on circular orbits has time changing mass 
quadrupole             GW emission 



GWs carry energy and angular momentum away from system,                                                   
binding energy gets more and more negative and binary shrinks


Indirect detection by binary pulsar systems (e.g. Hulse-Taylor pulsar)


Violations of strong equivalence principle and dipolar fluxes regulated 
by “sensitivities” 



How to calculate sensitivites

Use invariance under time shifts to write canonical mass  


for solution with              , with                  


(e.g. stationary solution)       

Compute mass difference between two neighbouring 
stellar solutions with same baryonic mass and entropy, 

but different local values of the field

[Use field eqs to get rid 


of bulk terms]

(Essentially same technique used by Damour & Esposito Farese for ST theories)
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How to calculate sensitivites
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Einstein Lagrangian

perfect-fluid Lagrangian


(Dirac, Schutz, Brown…)

Lagrangian for extra dof’s

Jµ =
p
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with Einstein Lagrangian canonical mass = ADM mass



How to calculate sensitivites
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How to calculate sensitivites
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comoving with the fluid

if gµ⌫ = ⌘µ⌫ +O(1/r) , �gµ⌫ = O(1/r)



How to calculate sensitivites
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for the two neighboring solutions

gµ⌫ = ⌘µ⌫ +O(1/r) , �gµ⌫ = O(1/r)



How to calculate sensitivites
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Expression applied to FJBD and DEF scalar tensor theories 
(Damour & Esposito Farese) and to Lorentz-violating gravity 

(Yagi, Blas, EB & Yunes, 2014)
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Horndeski theories 


(aka generalized galileons)
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Very non-linear field eqs allow Vainshtein mechanism   
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Shift symmetric Horndeski theories
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Assume analytic K, G3, G4, G5 [i.e. K(X)=X+O(X)2, 
Gi=O(X) (i=1,2,3)]… 



…but include Gauss-Bonnet term                    
(which comes from log |X| divergence in G5)
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K(X)=X+O(X)2, Gi=O(X) (i=1,2,3)

.



Shift symmetric Horndeski theories
L� =

p
�g

16⇡G

n

K(X)�G3(X)⇤�+G4(X)R+G4X

h

(⇤�)2 � (rµr⌫�)
2
i

+G5(X)Gµ⌫rµr⌫�� G5X

6

h

(⇤�)3 � 3 (⇤�) (rµr⌫�)
2 + 2 (rµr⌫�)

3
i

+ ��G
o

�M = �
Z

d2Si
@L�

@(@i�A)
��A �

Z
d2Si

@L�

@(@igµ⌫)
�gµ⌫ �

Z
d2Si

@L�

@(@i@j�A)
@j��A

�
Z

d2Si
@L�

@(@i@jgµ⌫)
@j�gµ⌫ +

Z
d2Si@j

✓
@L�

@(@i@j�A)

◆
��A +

Z
d2Si@j

✓
@L�

@(@i@jgµ⌫)

◆
�gµ⌫

K(X)=X+O(X)2, Gi=O(X) (i=1,2,3)

Evaluate

using � = O(1/r) , gµ⌫ = ⌘µ⌫ +O(1/r) �gµ⌫ ⇠ �� ⇠ O(1/r)

.
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E.g. contribution of K to first term:

using � = O(1/r) , gµ⌫ = ⌘µ⌫ +O(1/r) �gµ⌫ ⇠ �� ⇠ O(1/r)

.
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E.g. contribution of K to first term:

Similar reasoning shows that all terms vanish, i.e. δM=0

using � = O(1/r) , gµ⌫ = ⌘µ⌫ +O(1/r) �gµ⌫ ⇠ �� ⇠ O(1/r)

.
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E.g. contribution of K to first term:

Similar reasoning shows that all terms vanish, i.e. δM=0

Sensitivities of stars vanish!

using � = O(1/r) , gµ⌫ = ⌘µ⌫ +O(1/r) �gµ⌫ ⇠ �� ⇠ O(1/r)

.



PN expansion for shift-symmetric 


Horndeski theories

Define inner, near and far zones


Inner zone must be >> star and << λGW


In near and far zone, fields decay as 1/r



    and stars described as point particles with mass 



Expand dynamics in orders of v/c
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- No monopolar or dipolar emission, same quadrupole as GR               
- Deviations from GR at 3PN (2PN) order in the dissipative                       
(conservative) sector

h̄µ⌫ = ⌘µ⌫ �
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Shift symmetry for the total action (i.e. no conformal 
coupling of the scalar to matter): crucial!  



      If no shift symmetry, 



NB: Conformal coupling is present in FJBD, DEF and massive 
gravity: in those cases sensitivities can NOT be neglected



No direct scalar-matter coupling: non-crucial as long as 
coupling is shift-symmetric, e.g. matter coupled to disformal 
metric 

What assumptions are we making?
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If Vainshtein screening present,                                  
Vainshtein radius rV<< λGW: crucial!



Needed to use PN formalism! 



rV is “effective” star radius, i.e. if rV<< λGW                                                     

finite size effects at high PN orders



λGW ~ 109 km for binary pulsars, and 103 km for LIGO sources



If rV ≳ λGW, PN formalism is not applicable, i.e. dynamics is non-
perturbative (or “strongly coupled”). Problematic because binary 
pulsars’ dynamics is perturbative



Unclear how to even do calculation. Possible approach: WKB 
approximation (de Rham, Tolley and Wesley 2013; Chu & Trodden 
2013), but conclusion that all multipoles radiate with comparable 
strength hard to reconcile with binary pulsars

What assumptions are we making?



Neglect cosmological-expansion effects: potentially important   



In all scalar-tensor theories, where sensitivities for stars and BHs 
affected by scalar field’s cosmological expansion (Jacobson, 
Charmousis, Babichev, Esposito Farese, etc)



A more subtle effect in Horndenski/beyond Horndenski theories:                                                                    
- Screening works for spatial but not time derivatives                                                              
- Time derivatives change GW-matter coupling in the quadrupole 
formula (Ggw), and GW propagation speed cT

Jimenez, Piazza, Velten 2015

What assumptions are we making?

αH and cT are theory’s parameters 
(αH = 0 in Horndenski)



Like pornography, “When you see it, you know it”! 
(Supreme Court Justice Potter Stewart, 1964)



Abrupt waveform termination/earlier plunge than in GR 
for LIGO NS-NS sources, in DEF scalar tensor theories



Caused by induced scalarization of one (spontaneously 
scalarized) star on the other, by dynamical scalarization 
of an initially non-scalarized binary 

Possible smoking-gun scalar effects?

EB, Palenzuela, 


Ponce & Lehner 2014



Spontaneous/dynamical scalarization 
as “phase transitions”

Figure from Esposito-Farese, gr-qc/0402007



Conclusions
Modifications of GR generally introduce violations of the strong 
equivalence principle via the sensitivities, i.e. free fall of bodies 
with strong internal gravity is not universal



Binary pulsars test strong equivalence principle and are the most 
dreaded theory killer



Sensitivities can be calculated from asymptotic behavior of solutions 
for isolated stars



In Horndeski theories, sensitivities are NOT zero in general, but 
vanish if shift-symmetry imposed on scalar and on matter-scalar 
coupling, provided that the dynamics is perturbative and 
cosmological-expansion effects can be neglected 



If Vainshtein screening present, counter-intuitive result that 
deviations from GR are screened if Vainshtein radius is small


