Vectorial Boson star

Workshop on grauvitation and scalar fields Meudon Oc-
tober 2015’
by
S.Bonazzola L.U.T.H.

Contains
1) The Vectorial Field in a Minkoskian space
2) The vectorial field in a psudo-Riemann space

3) Solution of the vectorial equation of motion in spher-
ical gravitation andd geometry

In this section we consider a 4 Minkoskian manifold with
Cartesian metric

Git = Oik,  Gai =0, goo=—1 (1)

(geek indexes run from 0 to 4, Latin indexes run from 1
to 3).

Following N.N. Bogolioubov and D.V. Chirkov Introduc-
tion a’ la theorie des champs Ed Dunod (1960) the La-
grangian £ is not uniquely defined. ! )

We require that the momentum energy tensor T sat-
isfies 2 conditions:

1) The tensor is symmetric,

2) The time component T"? must be negative defined.

IThe Lagrangian is supposed to be a quadratic form of the field variables A, and of its
derivatives. In the case of a scalar field, the Lagrangian is uniquely defined.



The simplest Lagrangian £, that satisfies the condition
1) is
1 1
£1 = —§gaﬁg7"@aAwagAn + 5[&2140[1404 (2)

where g is the mass of the field.
Noether theorem to the action

A = / Lid'x (3)

we obtain the equation of the motion
0%A,
ox3

an the energy tensor 7,3. This tensor is symmetric but

2 By applying the

+ ANA, — *Ay =0 (4)

Tho is not definite negative. By imposing
On A =0 (5)

the Ty component becomes definite negative.

Note that because of the Eq.(5) only 3 components of
the vector field A, are independent, in agreement with
the fact that a massive vectorial field has 3 degrees of
freedom: 2 transverse polarisations and one longitudinal.
By taking the 4-divergence of the Eq.(4) we have

OV, AY — 1’V A =0 (6)

That means that if V, A* = 0 vanishes with its time
derivative at the time ¢y will vanish at all time.

The Lagrangian Lo

2L is the Lagrangian used in Q.E.D.



An other Lagrangian can be used to obtain the field equa-

tion:
1 af M2 «
Lo=—— aﬁH + —A, A (7)
4 2
where
H,p = 0,A3 — 054, (8)
Note that L, differs from £, by the term

1 .5, L s
LrLi= 59 01 9, Ay A, = 59 P10 [0, (AadsAs) — Aud?, As]

(9)
If the condition given by the Eq.(5) is fulfilled, the La-
grangians L. and L. differ by a divergence.

The equation of the motion obtained from the Lagrangian
Lc reads

_0rAC
oxg

+ AA® — 9,0,A" — P AY =0 (10)

The motion equation Eq.(4) and Eq.(10) are equivalent
if the condition given by the Eq.(5) is fulfilled. By taking
the 4-divergence of the Eq.(10) we obtain

0, A =0

Note the difference between the results obtained with
the Lagrangian L., and Lc: In the first case the free
divergence condition is imposed, in the second case, this
condition is automatically fulfilled. 3

The energy-momentum tensor 6,3 obtained from the La-

3In Q.E.D., i.e. when the mass u vanishes and when the variables A, are operators,
problems are found in computing the commutators of the operators A in using the Lagrangian
L. It turns out that the Q.E.D. cannot be obtained from a massive field by making u — 0



grangian reads

Onp = —2¢"° HoyHp 5+%gaﬁ HyyHO' 420 Ay Ag— 11 o A A°
(11)
The above energy momentum tensor is symmetric more
ever the time component Ty is definite positive.
The two energy tensors T,z and O,4 differ by a diver-
gence, consequently the global quantities (Energy, 4-momentum,spin)
are identical.
Problems arise when the energy momentum tensor is
required, for example in studding the vectorial bosons
stars: which tensor must be used ? The tensor T or
©* ? or a linear combination of the two tensors ? I
what it follows, we shall show that the presence of the
curvature terms of a pseudo- Riemann manifold elimi-
nates the above degeneracy.

Vectorial field in curved space time

The field equations and the energy tensor in curved space
can be obtained by minimising the action A

A:/ﬁJ—_gd‘*x (12)

where —g is the determinant of the metric g, The equiv-
alent £, or £ Lagrangian can be obtained by replacing
the operator 0, by the co-variant derivative V,,

We have for [:1

. 1 1
L, = —§ga6VaAnV5A” + §M2AnA” (13)

The same one for Lo



The equation of motion

The equation of motion can be obtained in the usual
way. Starting from the Lagrangian £; we obtain

VVIA" = 2 A° (14)

The above equation looks similar to Eq.(4) but this simil-
itude is misleading, in fact if we take the 4-divergence of
both sides of the Eq.(14 and taking into account that the
operators V, V3 do not commute we have

VoVA" = V5 (RPA) — i’V A" =0 (15)
where
Ros =R\ 54 (16)

We see, that contrary the minkoskian case, V, A" =
is not conserved during the motion. Finally is worth to
note that the operator V,V® appearing in the Eq.(14)
contains second order derivatives of the metric, conse-
quently the vector field is coupled with it self via the the
Einstein equation.

The situation is different is different when the equation
of the motion are obtained by using the Lagrangian L,
The Equation of the motion reads

VoV®As — V VA* — 2 A5 =0 (17)
or equivalently

VoV@A3 = V3 VeA* = RG A, — 1?Ag =0 (18)



The above differential operator is the de Rhamm opera-
tor

Note that this operator is different from the one given
by the Eq.(14):in fact the Lagrangian L1 and £ do not
differ by a divergence.

This operator has the following properties:

1) It no contains second derivatives of the metric ten-
SOT G

We can verify this claim by performing a long and tedious
explicit computation of the above operator. A faster
and smarter demonstration consists by noting that anti-
symmetric tensor H, [ has the following properties (If
the torsion vanishes) Eq.(8)

Haﬂ = VO&AQ - VﬂAa = aa Aﬂ — 85 Aa (19)
consequently no second order derivatives appear in the
operator given by the Eq.??

If we consider a locally Cartesian free falling frame in a
point xglpha
Gap = Gap+ Capys (a7 — ) («° —a5)  (20)

where C,3,s are constant quantities and we make the
eikonal approximation for the equation of motion, the
obtain the equation of motion of a classical point parti-
cle following a geodesic.

2) By taking the 4-divergence of both sides of the Eq.(18)
we obtain
1AV AY =0 (21)

Conclusion: The tensor 6%’ and the equation of motion
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Eq.(18) seems fulfil all the required properties.

Solution of the equation of motion in a Minkokian space
wn spherical coordinates and spherical components.

We look for a solution of the an harmonic solution of
the Eq.(4) i.e. depending on the factor expiwt (Note:
In a flat space, the Eq.(4) and Eq.(10) are equivalent.)
We look for a solution that for » — oo is of the form
expi(= kr —wt The Eq. of motion can be written as

ANA, = (—w2 -+ ,u2) A, (22)
we introduce the spherical normed components
1 As
A=A, Ag=-Ay, Ay =— 23
! S ) (23)

and no vanishing components of the metric g,

goo=—1, gu=1, go=r" g=r’singd® (24)

It turns be worth to introduce the following angular po-
tential

1

Ag=0m— —=0 Ay =

b M sing Y T Ging

we shall explicit the operator for each component We

perform an expansion in spherical harmonics P/"(0) . We
have for the component (A, )y,

d? N 4 d

dr? = rdr

On+ 0 x  (25)

b5 @1 1))] (A= (i A = (— + 4) (4,0
(26)

where divA is the 3-space divergence of the 3 vector A’

(dmﬁ)lm — [i + 2] (A — 10+ DI (27)

dr r r
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The equation for the potential x reads
d? 2d I(l+1)
_|_

dr? " rdr 2
Finally by using the 4-divergence equation V,A" = 0 we
obtain the equation for A°

iwA) = (divA), (29)

Xm = (=0 + 1) Xtm  (28)

(See Eq.(27) The problem has 3 degrees of freedom, con-
sequently it exist 3 independent elementary solutions.
We start with the Eq.(28, for simplicity we consider the
case m = 0 An elementary solution is

Xwo(r, 0,t) = z(kr) PZO(H) exp —iwt (30)

where z(kr) is any kind of Bessel function. with the
dispersion law

K2 = w? — (31)
if we take z(kr) = h}(kr) the solution pour r — oo
behaves PO
Yi0 = — (6) expi(kr — wt (32)
K
i.e. an out going wave. If z; = h%? — (kr) we have an

ingoing wave. Note: The function h}(kr) can be easily

computed. In fact we have

, hi(kr) = [% + (K:“)Ql exp iKr
(33)

The function h; and their derivatives for [ > 1 can be

computed easily by recurrence.

By using the Eq.25), we an compute Ay and A, no trivial

solutions exists only for I > 0 (PJ(9) = 1). For m = 0

4h(1)(/<c7°) _ OXpIKT

RT
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only A, does not vanish. This particular solution,that
we shall call, for the analogy with the electromagnetism
Transverse magnetic is

ATM =0; ATM =0, ATM =0, A;CM = hj(kr) Oy P)(0) exp (i(kr — wt))

An other solution can be found by requiring divA = 0
We have AT® =0 and

(A75) ML) o) e ilhr — o)) (39

by using the Eq,(27 ) the potential 7 is computed.

This solution is transverse asymptotically when r — oo
When the mass of the p = 0 we find the solutions of
the electromagnetism. If the mass u # 0 a longitudinal
solution exists We take

AL = h} (kr)PYL(0) exp (i(kr — wt)), n =0, x =0
(36)
By introducing this solution in the Eq.(26 and by using
the Eq.(29)we obtain
divAb = | L 1 ar (37)
dr r Ilm Ilm
This is a pure longitudinal wave.
Note: This solution exists also for [ = 0

Analogy with a electromagnetic wave i a plasma
An electromagnetic in a plasma has a dispersion law
identical to the one given by the Eq.(31) where p is re-

placed by the plasma frequency w,, (no propagation for
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w < w,) but the longitudinal modes are different: In
the massif vectorial field, the longitudinal mode has the
same dispersion law and the same phase velocity that
the transverse one. I a wave in the plasma the longitu-
dinal mod is a Lngmuir wave the propagation velocity
of which depends on the plasma properties in a different
way than the transverse one.
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