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In this section we consider a 4 Minkoskian manifold with
Cartesian metric

gik = δik, gα i = 0, g00 = −1 (1)

(geek indexes run from 0 to 4, Latin indexes run from 1
to 3).
Following N.N. Bogolioubov and D.V. Chirkov Introduc-
tion a’ la theorie des champs Ed Dunod (1960) the La-
grangian L is not uniquely defined. 1 )
We require that the momentum energy tensor T α β sat-
isfies 2 conditions:
1) The tensor is symmetric,
2) The time component T 0 0 must be negative defined.

1The Lagrangian is supposed to be a quadratic form of the field variables Aα and of its
derivatives. In the case of a scalar field, the Lagrangian is uniquely defined.
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The simplest Lagrangian L1 that satisfies the condition
1) is

L1 = −1

2
gα βgγ η∂αAγ∂βAη +

1

2
µ2AαAα (2)

where µ is the mass of the field. 2 By applying the
Noether theorem to the action

A1 =

∫
L1 d4x (3)

we obtain the equation of the motion

−∂2Aα

∂x2
0

+4Aα − µ2Aα = 0 (4)

an the energy tensor Tαβ. This tensor is symmetric but
T00 is not definite negative. By imposing

∂α Aα = 0 (5)

the T00 component becomes definite negative.
Note that because of the Eq.(5) only 3 components of
the vector field Aα are independent, in agreement with
the fact that a massive vectorial field has 3 degrees of
freedom: 2 transverse polarisations and one longitudinal.
By taking the 4-divergence of the Eq.(4) we have

�∇αAα − µ2∇αAα = 0 (6)

That means that if ∇α Aα = 0 vanishes with its time
derivative at the time t0 will vanish at all time.

The Lagrangian L2

2L∞ is the Lagrangian used in Q.E.D.
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An other Lagrangian can be used to obtain the field equa-
tion:

L2 = −1

4
Hα βH

α β +
µ2

2
AαAα (7)

where
Hα β = ∂αAβ − ∂βAα (8)

Note that L2 differs from L1 by the term

L2−L1 =
1

2
gα βgηδ ∂ηAα ∂βAη =

1

2
gαβ gη δ

[
∂η (Aα∂βAδ)− Aα∂2

β η Aδ

]
(9)

If the condition given by the Eq.(5) is fulfilled, the La-
grangians L∈ and L∞ differ by a divergence.

The equation of the motion obtained from the Lagrangian
L∈ reads

−∂2Aα

∂x2
0

+4Aα − ∂η∂αAη − µ2Aα = 0 (10)

The motion equation Eq.(4) and Eq.(10) are equivalent
if the condition given by the Eq.(5) is fulfilled. By taking
the 4-divergence of the Eq.(10) we obtain

∂α Aα ≡ 0

Note the difference between the results obtained with
the Lagrangian L∞ and L∈: In the first case the free
divergence condition is imposed, in the second case, this
condition is automatically fulfilled. 3

The energy-momentum tensor Θαβ obtained from the La-
3In Q.E.D., i.e. when the mass µ vanishes and when the variables Aα are operators,

problems are found in computing the commutators of the operators Aα in using the Lagrangian
L2. It turns out that the Q.E.D. cannot be obtained from a massive field by making µ→ 0

3



grangian reads

Θα β = −2 gη δ HαηHβ δ+
1

2
gα β Hδ ηH

δη+2µ2AαAβ−µ2gαβ AδA
δ

(11)
The above energy momentum tensor is symmetric more
ever the time component T00 is definite positive.
The two energy tensors Tαβ and Θαβ differ by a diver-
gence, consequently the global quantities (Energy, 4-momentum,spin)
are identical.
Problems arise when the energy momentum tensor is
required, for example in studding the vectorial bosons
stars: which tensor must be used ? The tensor T αβ or
Θαβ ? or a linear combination of the two tensors ? I
what it follows, we shall show that the presence of the
curvature terms of a pseudo- Riemann manifold elimi-
nates the above degeneracy.

Vectorial field in curved space time

The field equations and the energy tensor in curved space
can be obtained by minimising the action A

A =

∫
L̂
√
−g d4 x (12)

where −g is the determinant of the metric gαβ The equiv-
alent L̂1 or L̂2 Lagrangian can be obtained by replacing
the operator ∂α by the co-variant derivative ∇α

We have for L̂1

L̂1 = −1

2
gαβ∇αAη∇βA

η +
1

2
µ2AηA

η (13)

The same one for L̂2
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The equation of motion

The equation of motion can be obtained in the usual
way. Starting from the Lagrangian L̂1 we obtain

∇β∇βAα = µ2Aα (14)

The above equation looks similar to Eq.(4) but this simil-
itude is misleading, in fact if we take the 4-divergence of
both sides of the Eq.(14 and taking into account that the
operators ∇α∇β do not commute we have

∇α∇βA
β −∇β

(
Rδ βAδ

)
− µ2∇αAα = 0 (15)

where
Rαβ = Rδ

α δ β (16)

We see, that contrary the minkoskian case, ∇αAα = 0
is not conserved during the motion. Finally is worth to
note that the operator ∇α∇α appearing in the Eq.(14)
contains second order derivatives of the metric, conse-
quently the vector field is coupled with it self via the the
Einstein equation.

The situation is different is different when the equation
of the motion are obtained by using the Lagrangian L̂2

The Equation of the motion reads

∇α∇αAβ −∇α∇βA
α − µ2Aβ = 0 (17)

or equivalently

∇α∇αAβ −∇β∇αAα −Rα
β Aα − µ2Aβ = 0 (18)
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The above differential operator is the de Rhamm opera-
tor
Note that this operator is different from the one given
by the Eq.(14):in fact the Lagrangian L̂1 and L̂ do not
differ by a divergence.
This operator has the following properties:

1) It no contains second derivatives of the metric ten-
sor gα β

We can verify this claim by performing a long and tedious
explicit computation of the above operator. A faster
and smarter demonstration consists by noting that anti-
symmetric tensor Hα β has the following properties (If
the torsion vanishes) Eq.(8)

Hα β = ∇αAβ −∇βAα ≡ ∂α Aβ − ∂β Aα (19)

consequently no second order derivatives appear in the
operator given by the Eq.??
If we consider a locally Cartesian free falling frame in a
point xa

0lpha

gα β = δα β + Cα βη δ (xη − xη
0)

(
xδ − xδ

0
)

(20)

where Cαβ ηδ are constant quantities and we make the
eikonal approximation for the equation of motion, the
obtain the equation of motion of a classical point parti-
cle following a geodesic.

2) By taking the 4-divergence of both sides of the Eq.(18)
we obtain

µ2∇αAα ≡ 0 (21)

Conclusion: The tensor Θαβ and the equation of motion
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Eq.(18) seems fulfil all the required properties.

Solution of the equation of motion in a Minkokian space
in spherical coordinates and spherical components.

We look for a solution of the an harmonic solution of
the Eq.(4) i.e. depending on the factor exp iω t (Note:
In a flat space, the Eq.(4) and Eq.(10) are equivalent.)
We look for a solution that for r → ∞ is of the form
exp i(= κr − ω t The Eq. of motion can be written as

4Aα =
(
−ω2 + µ2) Aα (22)

we introduce the spherical normed components

Ar = A1, Aθ =
1

r
A2, Aφ =

A3

r sin θ
(23)

and no vanishing components of the metric gαβ

g0 0 = −1, g11 = 1, g22 = r2, g33 = r2 sin θ2 (24)

It turns be worth to introduce the following angular po-
tential

Aθ = ∂θη −
1

sin θ
∂φχ, Aφ =

1

sin θ
∂φη + ∂θ χ (25)

we shall explicit the operator for each component We
perform an expansion in spherical harmonics Pm

l (θ) . We
have for the component (Ar)lm[

d2

dr2 +
4

r

d

dr
+

1

r2 (2− l (l + 1))

]
(Ar)lm−

2

r
(div ~A)lm =

(
−ω2 + µ2) (Ar)lm

(26)
where div ~A is the 3-space divergence of the 3 vector Ai(

div ~A
)

lm
=

[
d

dr
+

2

r

]
(Ar)lm − l(l + 1)

ηlm

r
(27)

7



The equation for the potential χ reads[
d2

dr2 +
2

r

d

dr
− l(l + 1)

r2

]
χm =

(
−ω2 + µ2) χlm (28)

Finally by using the 4-divergence equation ∇αAα = 0 we
obtain the equation for A0

iωA0
lm = (div ~A)lm (29)

(See Eq.(27) The problem has 3 degrees of freedom, con-
sequently it exist 3 independent elementary solutions.
We start with the Eq.(28, for simplicity we consider the
case m = 0 An elementary solution is

χl0(r, θ, t) = zl(kr) P 0
l (θ) exp−iω t (30)

where zl(κr) is any kind of Bessel function. with the
dispersion law

κ2 = ω2 − µ2 (31)

if we take zl(kr) = h1
l (kr) the solution pour r → ∞

behaves

χl0 =
P 0

l (θ)

κr
exp i(κr − ω t (32)

i.e. an out going wave. If zl = h2 − (κr) we have an
ingoing wave. Note: The function h1

l (κr) can be easily
computed. In fact we have

4h1
0(κr) =

exp i κr

κr
, h1

1(κr) =

[
1

κr
+

i

(κr)2

]
exp iκr

(33)
The function h1

l and their derivatives for l > 1 can be
computed easily by recurrence.
By using the Eq.25), we an compute Aθ and Aφ no trivial
solutions exists only for l > 0 (P 0

0 (θ) = 1). For m = 0
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only Aφ does not vanish. This particular solution,that
we shall call, for the analogy with the electromagnetism
Transverse magnetic is

ATM
0 = 0; ATM

r = 0, ATM
θ = 0, ATM

φ = h1
l (κr) ∂θ P 0

l (θ) exp (i(κr − ωt))
(34)

An other solution can be found by requiring div ~A = 0
We have ATE

0 = 0 and

(ATE
r )=

h1
l (κr)

kr
P 0

l (θ) exp (i(kr − ωt)) (35)

by using the Eq,(27 ) the potential η is computed.
This solution is transverse asymptotically when r → ∞
When the mass of the µ = 0 we find the solutions of
the electromagnetism. If the mass µ 6= 0 a longitudinal
solution exists We take

AL
lm = h1

l (kr)P 0l(θ) exp (i(kr − ωt)), η = 0, χ = 0
(36)

By introducing this solution in the Eq.(26 and by using
the Eq.(29)we obtain

div ~AL =

[
d

dr
+

1

r

]
AL

lm = iωA0
lm (37)

This is a pure longitudinal wave.
Note: This solution exists also for l = 0

Analogy with a electromagnetic wave i a plasma

An electromagnetic in a plasma has a dispersion law
identical to the one given by the Eq.(31) where µ is re-
placed by the plasma frequency ωp, (no propagation for
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ω ≤ ωp) but the longitudinal modes are different: In
the massif vectorial field, the longitudinal mode has the
same dispersion law and the same phase velocity that
the transverse one. I a wave in the plasma the longitu-
dinal mod is a Lngmuir wave the propagation velocity
of which depends on the plasma properties in a different
way than the transverse one.
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