Kadath: a spectral solver for theoretical physics

Philippe Grandclément

Laboratoire de l'Univers et de ses Théories (LUTH) CNRS / Observatoire de Paris F-92195 Meudon, France philippe.grandclement@obspm.fr

October 6th 2015

What is KADATH?

KADATH is a library that implements spectral methods in the context of theoretical physics.

- It is written in C++, making extensive use of object oriented programming.
- Versions are maintained via Subversion.
- Minimal website : http://luth.obspm.fr/~luthier/grandclement/kadath.html
- The library is described in the paper : JCP 220, 3334 (2010).
- Designed to be very modular in terms of geometry and type of equations.
- LateX-like user-interface.
- More general than its predecessor LORENE.

Describing the space

Multi-domain approach

- Space is split into several touching (not overlapping) domains.
- In each domain, the physical coordinates X are mapped to the numerical ones X*.

Why?

- To have C^{∞} functions only.
- To increase resolution where needed.
- To use different descriptions (functions or equations) in regions of space.

Geometries in KADATH

- 1D space.
- Cylindrical-like coordinates.
- Spherical spaces with time periodicity.
- Polar and spherical spaces.
- Bispherical geometries.
- Variable domains (surface fitting).
- Additional cases are relatively easy to include.

Describing the functions

Spectral expansion

Given a set of orthogonal functions Φ_i on an interval Λ , spectral theory gives a recipe to approximate f by

$$f \approx I_N f = \sum_{i=0}^N a_i \Phi_i$$

Properties **Properties**

- the Φ_i are called the basis functions.
- the a_i are the coefficients.
- Multi-dimensional generalization is done by direct product of basis.

Usual basis functions

- Orthogonal polynomials : Legendre or Chebyshev.
- Trigonometrical polynomials (discrete Fourier transform).

Spectral convergence

- If f is C^{∞} , then $I_N f$ converges to f faster than any power of N.
- For functions less regular (i.e. not \mathcal{C}^{∞}) the error decrease as a power-law.

Collocation points

Collocation points

Spectral convergence

Choice of basis

Important step in setting the solver. All the terms involved in the equations must have consistent basis.

Guideline for scalars

- Assume that all the fields are polynomials of the Cartesian coordinates (when defined).
- Express the Cartesian coordinates in terms of the numerical ones.
- Deduce an appropriate choice of basis.

Higher order tensors

- With a Cartesian tensorial basis: given by gradient of scalars.
- For other tensorial basis: make use of the passage formulas that link to the Cartesian one.

Dealing with field equations

Let R=0 be a field equation (like $\Delta f - S=0$). The weighted residual method provides a discretization of it by demanding that

$$(R, \xi_i) = 0 \quad \forall i \leq N$$

Properties

- (,) denotes the same scalar product as the one used for the spectral expansion.
- the ξ_i are called the test functions.
- For the τ -method the ξ_i are the basis functions (i.e. one works in the coefficient space).
- Some of the last residual equations must be relaxed and replaced by appropriate matching and boundary conditions to get an invertible system.
- Additional regularity conditions can be enforced by a Galerkin method

Newton-Raphson iteration

Given a set of field equations with boundary and matching equations, KADATH translates it into a set of algebraic equations $\vec{F}(\vec{u}) = 0$, where \vec{u} are the unknown coefficients of the fields.

The non-linear system is solved by Newton-Raphson iteration

- Initial guess \vec{u}_0 .
- Iteration :
 - Compute $\vec{s}_i = \vec{F}\left(\vec{u}_i\right)$
 - If \vec{s}_i if small enough \Longrightarrow solution.
 - Otherwise, one computes the Jacobian : $\mathbf{J}_i = \frac{\partial \vec{F}}{\partial \vec{v_i}} (\vec{u_i})$
 - One solves : $\mathbf{J}_i \vec{x}_i = \vec{s}_i$.
 - $\vec{u}_{i+1} = \vec{u}_i \vec{x}_i.$

Convergence is very fast for good initial guesses.

Computation of the Jacobian

Explicit derivation of the Jacobian can be difficult for complicated sets of equations.

Automatic differentiation

- Each quantity x is supplemented by its infinitesimal variation δx .
- The dual number is defined as $\langle x, \delta x \rangle$.
- All the arithmetic is redefined on dual numbers. For instance $\langle x, \delta x \rangle \times \langle y, \delta y \rangle = \langle x \times y, x \times \delta y + \delta x \times y \rangle$.
- Consider a set of unknown \vec{u} , and a its variations $\delta \vec{u}$. When \vec{F} is applied to $\langle \vec{u}, \delta \vec{u} \rangle$, one then gets : $\langle \vec{F} \, (\vec{u}) \,, \delta \vec{F} \, (\vec{u}) \rangle$.
- One can show that

$$\delta \vec{F}\left(\vec{u}\right) = \mathbf{J}\left(\vec{u}\right) \times \delta \vec{u}$$

The full Jacobian is generated *column by column*, by taking all the possible values for $\delta \vec{u}$, at the price of a computation roughly twice as long.

Inversion of the Jacobian

Consider N_u unknown fields, in N_d domains, with d dimensions. If one works with N coefficients in each dimension, the Jacobian is a $m \times m$ matrix with:

$$m \approx N_d \times N_u \times N^d$$

For $N_d=5$, $N_u=5$, N=20 and d=3, one gets $m=200\cdot 000$, which is about 150 Go for a full matrix.

Solution

- The matrix is computed in a distributed manner.
- Easy to parallelize because of the manner the Jacobian is computed.
- The library SCALAPACK is used to invert the distributed matrix.

200 processors is enough for $m \approx 150 \cdot 000$.

KADATH has been tested on 1,024 processors (*titane* machine from the CEA).

LateX-like interface

```
// Matter terms :
       for (int d=0 : d<=1 : d++) {
         syst.add_def (d, "U^i = (ome*m^i + bet^i)/N ");
         syst.add_def (d, "pres = kap * n^2");
         syst.add_def (d, "edens = mb * n + kap * n^2");
         syst.add_def (d, "H = log(1+2*n*kap/mb)");
         syst.add def (d, "Gamsquare = 1. / (1-U i *U^i)");
         syst.add def (d, "Eeuler = Gamsquare * (edens+pres) - pres");
         syst.add def (d, "Jeuler^i = (Eeuler + pres) * U^i");
         syst.add def (d. "Seuler ij = (Eeuler + pres) * U i * U j + pres* q ij ");
         syst.add def (d, "S = q^ij * Seuler ij") :
       // Extrinsic curvature
       syst.add def ("Dshift i^i = D i bet^i") :
        svst.add def("K ii = 0.5 * (Dshift ii + Dshift ii) / N"):
       // Gauge part
       syst.add def ("V^i = g^kl * Gam kl^i");
        syst.add_def ("Gauge ij = D i V j + D j V i") ;
        syst.add def ("Ope ij = R ij - 0.5*Gauge ij") ;
       for (int d=0 : d<=1 : d++) {
            syst.add def (d, "Hamilton = q^ij * Ope ij - K ij * K^ij - 4 * qpiq * Eeuler");
           syst.add def (d, "Momentum^i = D j K^ij - 2 * qpiq * Jeuler^i");
           syst.add_def (d, "Evol_ij = N * (Ope_ij - 2*K_ik*K_j^k) - D_i D_j N + bet^k * D_k K_ij + K_ik *
Dshift i^k + K ik * Dshift i^k + N * apig * ((S-Eeuler)*g ii - 2 * Seuler ii) ") :
       for (int d=2 : d<ndom : d++) {
            svst.add def (d. "Hamilton = g^ii*Ope ii - K ii * K^ii") :
           syst.add_def (d, "Momentum^i = D_j K^ij");
           syst.add_def (d, "Evol_ij = N * (Ope_ij - 2*K_ik*K_j^k) - D_i D_j N + bet^k * D_k K_ij + K_ik *
Dshift j^k+ K jk * Dshift i^k"):
```

Successful applications

- Critic solutions.
- Vortons.
- Neutron stars.
- Binary black holes.
- Breathers and quasi-breathers (see G. Fodor's talk).
- Current applications to geons (see G. Martinon's talk).
- Boson stars (published in PRD 90, 024068 (2014), with C. Some and E. Gourgoulhon).

Boson star model

A boson star is described by a complex scalar field ϕ coupled to gravity. The field is invariant under a $U\left(1\right)$ symmetry :

$$\phi \longrightarrow \phi \exp(i\alpha)$$
.

The Lagrangian of the matter is given by

$$\mathcal{L}_{M} = -\frac{1}{2} \left[g^{\mu\nu} \nabla_{\mu} \bar{\phi} \nabla_{\nu} \phi + V \left(|\phi|^{2} \right) \right].$$

The induced stress-energy tensor is then

$$T_{\mu\nu} = \frac{1}{2} \left[\nabla_{\mu} \bar{\phi} \nabla_{\nu} \phi + \nabla_{\nu} \bar{\phi} \nabla_{\mu} \phi \right] - \frac{1}{2} g_{\mu\nu} \left[g^{\alpha\beta} \nabla_{\alpha} \bar{\phi} \nabla_{\beta} \phi + V \left(|\phi|^2 \right) \right].$$

In the following I will consider the simplest potential $V = |\phi|^2$.

Ansatz for the field

One seeks solutions such that

$$\phi = \phi_0 \exp\left[i\left(\omega t - k\varphi\right)\right],\,$$

where ϕ_0 depends only on r and θ .

k is an integer and so k=0 corresponds to solutions that are spherically symmetric (I will concentrate here on the case $k \neq 0$)

Asymptotic behavior

Asymptotically, ϕ_0 obeys

$$\Delta_3 \phi_0 - \frac{k^2}{r^2 \sin^2 \theta} \phi_0 - (1 - \omega^2) \phi_0 = 0$$

It follows that the field is localized if and only if $\omega<1$. When $\omega\to 1$, $\phi_0\to 0$ and its size tends to infinity.

3+1 decomposition

We use the 3+1 decomposition in quasi-isotropic coordinates :

$$ds^{2} = -N^{2}dt^{2} + A^{2}(dr^{2} + r^{2}d\theta^{2}) + B^{2}r^{2}\sin^{2}\theta(d\varphi - N^{\varphi}dt)^{2}.$$

N, A, B and N^{φ} depend only on r and θ .

Metric fields must obey Einstein's equations and the complex field Klein-Gordon one.

Numerical setting

Equations are solved using the *Polar* domains of Kadath.

- The unknowns are combinations of the metric fields N, A, B and N^{φ} plus the matter term ϕ_0 .
- The equations are the 3+1 ones + Klein-Gordon.
- For each k one needs a good initial guess.
- Sequences are computed by varying ω .

Measure of precision: virial error

ADM mass

Field: toroidal configuration

Orbits

Geodesics around boson stars can be numerical integrated using the Gyoto code (http://gyoto.obspm.fr/).

Due to the absence of event horizon, particles can pass very close to the center: new type of orbits.

Conclusions

- Kadath design is satisfactory.
- Applications begin to be numerous.
- Users are still (very) few.
- Lack of tutorials, documentations.
- Come talk to me...