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What is KADATH ?

KADATH is a library that implements spectral methods in the context of
theoretical physics.

It is written in C++, making extensive use of object oriented
programming.

Versions are maintained via Subversion.

Minimal website :
http://luth.obspm.fr/∼luthier/grandclement/kadath.html

The library is described in the paper : JCP 220, 3334 (2010).

Designed to be very modular in terms of geometry and type of
equations.

LateX-like user-interface.

More general than its predecessor LORENE.



Describing the space

Multi-domain approach

Space is split into several touching (not overlapping) domains.

In each domain, the physical coordinates X are mapped to the
numerical ones X?.

Why ?

To have C∞ functions only.

To increase resolution where needed.

To use different descriptions (functions or equations) in regions of
space.



Geometries in KADATH

1D space.

Cylindrical-like coordinates.

Spherical spaces with time periodicity.

Polar and spherical spaces.

Bispherical geometries.

Variable domains (surface fitting).

Additional cases are relatively easy to include.



Describing the functions

Spectral expansion

Given a set of orthogonal functions Φi on an interval Λ, spectral theory
gives a recipe to approximate f by

f ≈ INf =

N∑
i=0

aiΦi

Properties

the Φi are called the basis functions.

the ai are the coefficients.

Multi-dimensional generalization is done by direct product of basis.



Usual basis functions

Orthogonal polynomials : Legendre or Chebyshev.

Trigonometrical polynomials (discrete Fourier transform).

Spectral convergence

If f is C∞, then INf converges to f faster than any power of N .

For functions less regular (i.e. not C∞) the error decrease as a
power-law.



Collocation points



Collocation points



Spectral convergence



Choice of basis

Important step in setting the solver. All the terms involved in the
equations must have consistent basis.

Guideline for scalars

Assume that all the fields are polynomials of the Cartesian
coordinates (when defined).

Express the Cartesian coordinates in terms of the numerical ones.

Deduce an appropriate choice of basis.

Higher order tensors

With a Cartesian tensorial basis: given by gradient of scalars.

For other tensorial basis: make use of the passage formulas that link
to the the Cartesian one.



Dealing with field equations

Let R = 0 be a field equation (like ∆f − S = 0). The weighted residual
method provides a discretization of it by demanding that

(R, ξi) = 0 ∀i ≤ N

Properties

(, ) denotes the same scalar product as the one used for the spectral
expansion.

the ξi are called the test functions.

For the τ−method the ξi are the basis functions (i.e. one works in
the coefficient space).

Some of the last residual equations must be relaxed and replaced by
appropriate matching and boundary conditions to get an invertible
system.

Additional regularity conditions can be enforced by a Galerkin
method.



Newton-Raphson iteration

Given a set of field equations with boundary and matching equations,
KADATH translates it into a set of algebraic equations ~F (~u) = 0, where ~u
are the unknown coefficients of the fields.

The non-linear system is solved by Newton-Raphson iteration

Initial guess ~u0.

Iteration :

Compute ~si = ~F (~ui)
If ~si if small enough =⇒ solution.

Otherwise, one computes the Jacobian : Ji =
∂ ~F

∂~u
(~ui)

One solves : Ji~xi = ~si.
~ui+1 = ~ui − ~xi.

Convergence is very fast for good initial guesses.



Computation of the Jacobian

Explicit derivation of the Jacobian can be difficult for complicated sets of
equations.

Automatic differentiation

Each quantity x is supplemented by its infinitesimal variation δx.

The dual number is defined as 〈x, δx〉.
All the arithmetic is redefined on dual numbers. For instance
〈x, δx〉 × 〈y, δy〉 = 〈x× y, x× δy + δx× y〉.
Consider a set of unknown ~u, and a its variations δ~u. When ~F is

applied to 〈~u, δ~u〉, one then gets :
〈
~F (~u) , δ ~F (~u)

〉
.

One can show that
δ ~F (~u) = J (~u)× δ~u

The full Jacobian is generated column by column, by taking all the
possible values for δ~u, at the price of a computation roughly twice as
long.



Inversion of the Jacobian

Consider Nu unknown fields, in Nd domains, with d dimensions. If one
works with N coefficients in each dimension, the Jacobian is a m×m
matrix with:

m ≈ Nd ×Nu ×Nd

For Nd = 5, Nu = 5, N = 20 and d = 3, one gets m = 200 · 000, which
is about 150 Go for a full matrix.

Solution

The matrix is computed in a distributed manner.

Easy to parallelize because of the manner the Jacobian is computed.

The library SCALAPACK is used to invert the distributed matrix.

200 processors is enough for m ≈ 150 · 000.
KADATH has been tested on 1,024 processors (titane machine from the
CEA).



LateX-like interface



Successful applications

Critic solutions.

Vortons.

Neutron stars.

Binary black holes.

Breathers and quasi-breathers (see G. Fodor’s talk).

Current applications to geons (see G. Martinon’s talk).

Boson stars (published in PRD 90, 024068 (2014), with C. Some
and E. Gourgoulhon).



Boson star model

A boson star is described by a complex scalar field φ coupled to gravity.
The field is invariant under a U (1) symmetry :

φ −→ φ exp (iα) .

The Lagrangian of the matter is given by

LM = −1

2

[
gµν∇µφ̄∇νφ+ V

(
|φ|2

)]
.

The induced stress-energy tensor is then

Tµν =
1

2

[
∇µφ̄∇νφ+∇ν φ̄∇µφ

]
− 1

2
gµν

[
gαβ∇αφ̄∇βφ+ V

(
|φ|2

)]
.

In the following I will consider the simplest potential V = |φ|2.



Ansatz for the field

One seeks solutions such that

φ = φ0 exp [i (ωt− kϕ)] ,

where φ0 depends only on r and θ.
k is an integer and so k = 0 corresponds to solutions that are spherically
symmetric (I will concentrate here on the case k 6= 0)



Asymptotic behavior

Asymptotically, φ0 obeys

∆3φ0 −
k2

r2 sin2 θ
φ0 −

(
1− ω2

)
φ0 = 0

It follows that the field is localized if and only if ω < 1.
When ω → 1, φ0 → 0 and its size tends to infinity.



3+1 decomposition

We use the 3+1 decomposition in quasi-isotropic coordinates :

ds2 = −N2dt2 +A2
(
dr2 + r2dθ2

)
+B2r2 sin2 θ (dϕ−Nϕdt)

2
.

N , A, B and Nϕ depend only on r and θ.
Metric fields must obey Einstein’s equations and the complex field
Klein-Gordon one.



Numerical setting

Equations are solved using the Polar domains of Kadath.

The unknowns are combinations of the metric fields N , A, B and
Nϕ plus the matter term φ0.

The equations are the 3+1 ones + Klein-Gordon.

For each k one needs a good initial guess.

Sequences are computed by varying ω.



Measure of precision: virial error



ADM mass



Field : toroidal configuration



Orbits

Geodesics around boson stars can be numerical integrated using the
Gyoto code (http://gyoto.obspm.fr/).
Due to the absence of event horizon, particles can pass very close to the
center: new type of orbits.



Conclusions

Kadath design is satisfactory.

Applications begin to be numerous.

Users are still (very) few.

Lack of tutorials, documentations.

Come talk to me...


