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What is KADATH ?

KADATH is a library that implements spectral methods in the context of

theoretical physics.
@ It is written in C4++, making extensive use of object oriented
programming.
@ Versions are maintained via Subversion.

@ Minimal website :
http://luth.obspm.fr/~luthier/grandclement/kadath.html|

@ The library is described in the paper : JCP 220, 3334 (2010).

@ Designed to be very modular in terms of geometry and type of
equations.

o LateX-like user-interface.

@ More general than its predecessor LORENE.




Describing the space

Multi-domain approach

@ Space is split into several touching (not overlapping) domains.

@ In each domain, the physical coordinates X are mapped to the
numerical ones X*.

@ To have C* functions only.

@ To increase resolution where needed.

@ To use different descriptions (functions or equations) in regions of
space.




Geometries in KADATH

1D space.

Cylindrical-like coordinates.

Spherical spaces with time periodicity.
Polar and spherical spaces.
Bispherical geometries.

Variable domains (surface fitting).
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Additional cases are relatively easy to include.



Describing the functions

Spectral expansion

Given a set of orthogonal functions ®; on an interval A, spectral theory
gives a recipe to approximate f by

N
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@ the ®; are called the basis functions.

@ the a; are the coefficients.

@ Multi-dimensional generalization is done by direct product of basis.




Usual basis functions

@ Orthogonal polynomials : Legendre or Chebyshev.

@ Trigonometrical polynomials (discrete Fourier transform).

Spectral convergence

o If fis C®, then Iy f converges to f faster than any power of N.

@ For functions less regular (i.e. not C*°) the error decrease as a
power-law.




Collocation points
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Collocation points
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Spectral convergence
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Choice of basis

Important step in setting the solver. All the terms involved in the
equations must have consistent basis.

Guideline for scalars

@ Assume that all the fields are polynomials of the Cartesian
coordinates (when defined).

@ Express the Cartesian coordinates in terms of the numerical ones.

@ Deduce an appropriate choice of basis.

Higher order tensors

e With a Cartesian tensorial basis: given by gradient of scalars.

@ For other tensorial basis: make use of the passage formulas that link
to the the Cartesian one.




Dealing with field equations

Let R =0 be a field equation (like Af —.S = 0). The weighted residual
method provides a discretization of it by demanding that

(R,&) =0 Vi< N

@ (,) denotes the same scalar product as the one used for the spectral
expansion.

@ the &; are called the test functions.

@ For the T—method the &; are the basis functions (i.e. one works in
the coefficient space).

@ Some of the last residual equations must be relaxed and replaced by
appropriate matching and boundary conditions to get an invertible
system.

e Additional regularity conditions can be enforced by a Galerkin
method.




Newton-Raphson iteration

Given a set of field equations with boundary and matching equations,
KADATH translates it into a set of algebraic equations F' (@) = 0, where @
are the unknown coefficients of the fields.

The non-linear system is solved by Newton-Raphson iteration

@ Initial guess .

@ [teration :
o Compute 5 = F (ii;)
o If &; if small enough = solution.
o Otherwise, one computes the Jacobian : J; = —— (4;)

o One solves : J;Z; = s;.
@ Ui+l = Ui — Tj.

Convergence is very fast for good initial guesses.



Computation of the Jacobian

Explicit derivation of the Jacobian can be difficult for complicated sets of
equations.

Automatic differentiation

@ Each quantity x is supplemented by its infinitesimal variation .

@ The dual number is defined as (x, dx).

@ All the arithmetic is redefined on dual numbers. For instance
(x,0x) x (y,0y) = (x X y,x X 0y + 0z X y).

@ Consider a set of unknown i, and a its variations 2. When Fis
applied to (i, %), one then gets : <F(ﬁ) OF (ﬂ')>

@ One can show that .
OF (1) = J () x éu

The full Jacobian is generated column by column, by taking all the
possible values for §u, at the price of a computation roughly twice as
long.



Inversion of the Jacobian

Consider N,, unknown fields, in N; domains, with d dimensions. If one
works with IV coefficients in each dimension, the Jacobian is a m x m
matrix with:

m =~ Ng x N, x N4

For Ng =5, N, =5, N =20 and d = 3, one gets m = 200 - 000, which
is about 150 Go for a full matrix.

@ The matrix is computed in a distributed manner.

o Easy to parallelize because of the manner the Jacobian is computed.
@ The library SCALAPACK is used to invert the distributed matrix.

200 processors is enough for m = 150 - 000.
KADATH has been tested on 1,024 processors (titane machine from the
CEA).



LateX-like interface

/] Matter terms :
for (int d=0 ; de<=1 ; d++) {
syst.add_def (d, "Uri = (ome*mri + betri)/N ") ;
syst.add_def (d, "pres = kap * nr2")
syst.add_def (d, "edens = mb * n + kap * n*2") ;
syst.add_def (d, "H = log(1+2*n*kap/mb)") ;
syst.add_def (d, "Gamsquare = 1. / (1-U_i *Usi)") ;
syst.add_def (d, "Eeuler = Gamsquare * (edensﬂ)res) - pres") ;
syst.add_def (d, "Jeuler”i = (Eeuler + pres) * UAL") ;
syst.add_def (d, "seuler_ij = (Eeuler + pres) * U_i * U_j + pres* g_ij ") ;
syst.add_def (d, "s = grij * seuler_ij") ;

// Extrinsic curvature
syst.add_def ("Dshift_i”j = D_i bet~j") ;
syst.add_def("K_ij = 8.5 * (Dshift_ij + I]shlft _di) / N"):

// Gauge part

syst.add_def ("v~i = gnkl * Gam_k1~i")
syst.add_def ("Gauge D1V j+D_jVv
syst.add_def ("Ope_ij = R_ij - ©.5*Gauge_

Y
i")

for (int d=0 ; de<=1 ; d++) {
syst.add_def (d, "Hamilton = grij * Ope_ij - K_ij * KALj - 4 * qpig * Eeuler") ;
syst.add_def (d, "Momentumi = D_j KAij - 2 * gpig * Jeulerri') ;
syst.add_def (d, "Evol_ij = N * (Ope_ij - 2*K_ik*K_j*k) - D_i D_j N + bet~k * D_k K_ij + K_ik *
Dshift_j~k + K_jk * Dshift_i~k + N # gpig +* ((S-Eeuler)*g_ij - 2 * Seuler_ij) ") ;

for (int d=2 ; d<ndom ; d++) {
syst.add_def (d, "Hamilton =
syst.add_def (d, "Momentum~i H
syst.add_def (d, "Evol_ij = N * (Gpe 1j - 2*K_ik*k_j~k) - D_i D_j N + bet~k * D_k K_1j + K_ik *
Dshift_jak+ K_jk * Dshift_irk") ;
}
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Successful applications

Critic solutions.

Vortons.

Neutron stars.

Binary black holes.

Breathers and quasi-breathers (see G. Fodor's talk).
Current applications to geons (see G. Martinon’s talk).

Boson stars (published in PRD 90, 024068 (2014), with C. Some
and E. Gourgoulhon).



Boson star model

A boson star is described by a complex scalar field ¢ coupled to gravity.
The field is invariant under a U (1) symmetry :

¢ — pexp (ia).

The Lagrangian of the matter is given by

1 _
Lor =5 [¢"V,0V06+V (19°)] -

The induced stress-energy tensor is then

1 - - 1 -
Ty = ) [vud)vu¢’+ vu(bvugﬁ] - ég;u/ [gaﬂva¢vfi¢+ Vv (‘¢|2)] :

In the following | will consider the simplest potential V = |¢|2.



Ansatz for the field

One seeks solutions such that

6 = goexpli (wt — kp)],

where ¢y depends only on 7 and 6.
k is an integer and so k = 0 corresponds to solutions that are spherically
symmetric (I will concentrate here on the case k # 0)



Asymptotic behavior

Asymptotically, ¢ obeys
Aspo — 5250 (1-w?)go=0

It follows that the field is localized if and only if w < 1.
When w — 1, ¢y — 0 and its size tends to infinity.



3+1 decomposition

We use the 3+1 decomposition in quasi-isotropic coordinates :
ds® = —N2dt? + A% (dr? +72d0?) + B*?sin® 0 (dp — N¥dt)®.

N, A, B and N¥ depend only on r and 6.
Metric fields must obey Einstein's equations and the complex field
Klein-Gordon one.



Numerical setting

Equations are solved using the Polar domains of Kadath.

@ The unknowns are combinations of the metric fields N, A, B and
N¢¥ plus the matter term ¢g.

@ The equations are the 341 ones + Klein-Gordon.
@ For each k one needs a good initial guess.

@ Sequences are computed by varying w.



Measure of precision: virial error
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Field : toroidal configuration




Orbits

Geodesics around boson stars can be numerical integrated using the
Gyoto code (http://gyoto.obspm.fr/).

Due to the absence of event horizon, particles can pass very close to the
center: new type of orbits.




Conclusions

Kadath design is satisfactory.
Applications begin to be numerous.
Users are still (very) few.

Lack of tutorials, documentations.

Come talk to me...



