Kerr black holes with scalar hair: theory and phenomenology

C. Herdeiro Departamento de Física da Universidade de Aveiro, Portugal

Gravitational lensing of the Aveiro Campus by an almost extremal Kerr black hole with scalar hair

Gravitation and scalar fields Meudon, Paris, October 6th 2015

based on PRL112(2014)221101 IJMPD9(2015)1542014; CQG32(2015)14 arXiv:1509.00021

> with E. Radu, P. Cunha, H. Rúnarsson

Plan:

- 1) Introduction and message
- 2) Kerr black holes with scalar hair
 i) Boson Stars
 ii) Scalar clouds around Kerr black holes
 iii) Phenomenology: shadows
- 3) Outlook

1) Introduction and message

D=4, asymptotically flat, regular (on and outside the event horizon) black hole (BH) solutions of Einstein's gravity

Vacuum:

$$\mathcal{S} = \frac{1}{16\pi} \int d^4x \sqrt{-g}R$$

Kerr Kerr 1963 Uniqueness Israel 1967; Carter 1970; Hawking 1972 No (independent-multipolar) hair

Electro-vacuum:

$$\mathcal{S} = \frac{1}{4\pi} \int d^4x \sqrt{-g} \left(\frac{R}{4} - \frac{1}{4} F_{\mu\nu} F^{\mu\nu} \right)$$

Kerr-Newman Newman et al. 1965 Uniqueness Israel 1968; Robinson 1975, 1977 No (independent-multipolar) hair

Many no-scalar-hair theorems:

(only scalars, D=4, asymptotically flat)

C.H., Radu, 2015

Theory	No-hair	Known scalar hairy BHs with
Lagrangian density \mathcal{L}	theorem	regular geometry on and outside \mathcal{H}
	The second second	(primary or secondary hair;
		regularity)
Scalar-vacuum	$Chase^{22}$	
$\frac{1}{4}R - \frac{1}{2} abla_{\mu}\Phi abla^{\mu}\Phi$		
Massive-scalar-vacuum	Bekenstein ¹¹	
$\frac{1}{4}R - \frac{1}{2}\nabla_{\mu}\Phi\nabla^{\mu}\Phi - \frac{1}{2}\mu^{2}\Phi^{2}$	and the second second	
Massive-complex-scalar-vacuum	Pena-	Herdeiro-Radu ^{136, 137}
$rac{1}{4}R- abla_{\mu}\Phi^{*} abla^{\mu}\Phi-\mu^{2}\Phi^{*}\Phi$	-Sudarsky ⁶¹	(primary, regular);
		generalizations: ¹⁵⁹
	Xanthopoulos-	Bocharova–Bronnikov–Melnikov–
Conformal-scalar-vacuum	–Zannias ³²	$-Bekenstein (BBMB)^{16-18}$
$rac{1}{4}R - rac{1}{2} abla_\mu \Phi abla^\mu \Phi - rac{1}{12}R\Phi^2$	Zannias ³³	(secondary, diverges at \mathcal{H});
		generalizations: ⁸⁷
V-scalar-vacuum	$Heusler^{46,47,50}$	Many, with non-positive
$\frac{1}{4}R - \frac{1}{2}\nabla_{\mu}\Phi\nabla^{\mu}\Phi - V(\Phi)$	Bekenstein ²⁶	definite potentials: ^{71–75, 78–80}
	Sudarsky ⁵¹	(typically secondary, regular)
P-scalar-vacuum	Graham-	
$\frac{1}{4}R + P(\Phi, X)$	$-Jha^{62}$	
Einstein-Skyrme		$Droz-Heusler-Straumann^{126}$
$rac{1}{4}R - rac{1}{2} abla_{\mu}\Phi^{a} abla^{\mu}\Phi^{a}$		(primary but topological; regular);
$-\kappa abla_{[\mu} \Phi^a abla_{ u]} \Phi^b ^2$		generalizations: ^{129,131}
	Hawking ²⁷	
Scalar-tensor theories	$Saa^{34,35}$	
$arphi \hat{R} - rac{\omega(arphi)}{arphi} \hat{ abla}_{\mu} arphi \hat{ abla}^{\mu} arphi - U(arphi)$	Sotiriou-	
Charmousis' and	-Faraoni ³¹	
Sofiriou's talks		Sotiriou-Zhou ⁴³
Horndeski/Galileon theories	Hui–	(secondary; regular)
Full \mathcal{L} in eq. (41)	–Nicolis ⁴⁵	Babichev–Charmousis ^{88,90}
		(secondary ⁸⁸ or primary, ⁹⁰
		diverges at \mathcal{H}^+ or \mathcal{H}^-);

Assumptions for an influential Bekenstein theorem:

Many no-scalar-hair theorems:

(only scalars, D=4, asymptotically flat)

ſ	Theory	No-hair	Known scalar hairy BHs with	
	Lagrangian density \mathcal{L}	theorem	regular geometry on and outside \mathcal{H}	٨
		The second second	(primary or secondary hair;	Assur
			regularity)	I
Ī	Scalar-vacuum	Chase ²²		
	$rac{1}{4}R - rac{1}{2} abla_{\mu}\Phi abla^{\mu}\Phi$			
	Massive-scalar-vacuum	Bekenstein ¹¹		
	$rac{1}{4}R - rac{1}{2} abla_\mu \Phi abla^\mu \Phi - rac{1}{2}\mu^2 \Phi^2$	Contraction of the second		
Ī	Massive-complex-scalar-vacuum	Pena-	Herdeiro–Radu ^{136, 137}	
	$rac{1}{4}R- abla_{\mu}\Phi^{*} abla^{\mu}\Phi-\mu^{2}\Phi^{*}\Phi$	-Sudarsky ⁶¹	(primary, regular);	min
			generalizations: ¹⁵⁹	
Ì		Xanthopoulos-	Bocharova–Bronnikov–Melnikov–	
	Conformal-scalar-vacuum	-Zannias ³²	–Bekenstein (BBMB) ^{16–18}	
	$rac{1}{4}R - rac{1}{2} abla_\mu \Phi abla^\mu \Phi - rac{1}{12}R\Phi^2$	Zannias ³³	(secondary, diverges at \mathcal{H});	
			generalizations: ⁸⁷	
ľ	V-scalar-vacuum	Heusler ^{46, 47, 50}	Many, with non-positive	
	$\frac{1}{4}R - \frac{1}{2} abla_{\mu}\Phi abla^{\mu}\Phi - V(\Phi)$	Bekenstein ²⁶	definite potentials: ^{71–75, 78–80}	en
		Sudarsky ⁵¹	(typically secondary, regular)	011
Ì	P-scalar-vacuum	Graham-		
	$\frac{1}{4}R + P(\Phi, X)$	$-Jha^{62}$		
I	Einstein-Skyrme		Droz–Heusler–Straumann ¹²⁶	
	$rac{1}{4}R - rac{1}{2} abla_\mu \Phi^a abla^\mu \Phi^a$		(primary but topological; regular);	
	$-\kappa abla_{[\mu} \Phi^a abla_{ u]} \Phi^b ^2$		generalizations: ^{129,131}	
ſ		Hawking ²⁷		S
	Scalar-tensor theories	$Saa^{34, 35}$		
	$arphi \hat{R} - rac{\omega(arphi)}{\omega} \hat{ abla}_{\mu} arphi \hat{ abla}^{\mu} arphi - U(arphi)$	Sotiriou-		
	٣	–Faraoni ³¹		
ł			Sotiriou-Zhou ⁴³	
	Horndeski/Galileon theories	Hui–	(secondary; regular)	
	Full \mathcal{L} in eq. (41)	-Nicolis ⁴⁵	Babichev–Charmousis ^{88,90}	
			(secondary ⁸⁸ or primary, ⁹⁰	
ĺ			diverges at \mathcal{H}^+ or \mathcal{H}^-):	

Assumptions for an influential Bekenstein theorem:

Assumption 1: minimally coupled scalar

Assumption 2: energy condition on V

Assumption 3: scalar field inherits isometries

Violating assumption 3 in

Massive-complex-scalar-vacuum:

$$S = \frac{1}{4\pi} \int d^4x \sqrt{-g} \left(\frac{R}{4} - \nabla_\mu \Phi^* \nabla^\mu \Phi - \mu^2 \Phi^* \Phi \right) -V(|\Phi|) = -\lambda \Phi^4$$

Runarsson's talk

There are BH solutions which are:

- asymptotically flat
- regular on and outside the horizon
- continuously connecting to the Kerr solution
- with an independent scalar charge (primary hair)

Kerr Black Holes with scalar hair C.H. and Radu, PRL 2014

2) Kerr black holes with scalar hair i) Boson stars

Boson stars:

Kaup (1968); Ruffini and Bonazzola (1969) Review: Liebling and Palenzuela (2012)

Einstein-Klein-Gordon theory:

$$S = \int d^4x \sqrt{-g} \left[\frac{1}{16\pi G} R - \Phi^*_{,a} \Phi^{,a} - \mu^2 \Phi^* \Phi \right]$$

Rotating boson stars: Yoshida and Eriguchi (1997) Schunck and Mielke (1998) $ds^2 = -e^{2F_0(r,\theta)}dt^2 + e^{2F_1(r,\theta)} (dr^2 + r^2d\theta^2) + e^{2F_2(r,\theta)}r^2 \sin^2\theta (d\varphi - W(r,\theta)dt)^2$ $\Phi = \phi(r,\theta)e^{i(m\varphi - wt)}$

Three input parameters: (w,m,n)

Solutions preserved by a single helicoidal Killing vector field:

$$\frac{\partial}{\partial t} + \frac{w}{m} \frac{\partial}{\partial \varphi}$$

Boson stars phase space (nodeless):

Conserved Noether charge:

$$Q = \int_{\Sigma} dr d\theta d\varphi j^t \sqrt{-g}$$

For rotating boson stars: Schunck and Mielke (1998)

Convenient parameter:

$$J = mQ$$

$$q \equiv \frac{mQ}{J}$$

Surfaces of constant scalar energy density

2) Kerr black holes with scalar hairii) Scalar clouds around Kerr black holes

Linear analysis: Klein-Gordon equation in Kerr

$$\Box \Phi = \mu^2 \Phi \qquad \Phi = e^{-iwt} e^{im\varphi} S_{\ell m}(\theta) R_{\ell m}(r)$$

Radial Teukolsky equation: Teukolsky (1972); Brill et al. (1972)

$$\frac{d}{dr}\left(\Delta\frac{dR_{\ell m}}{dr}\right) = \left(a^2w^2 - 2maw + \mu^2r^2 + A_{\ell m} - \frac{K^2}{\Delta}\right)R_{\ell m} \qquad \qquad \Delta \equiv r^2 - 2Mr + a^2$$
$$K \equiv (r^2 + a^2)w - am$$

Generically one obtains quasi-bound states:

critical frequency
$$w_c = m\Omega_H$$

 $\omega = \omega_R + i\omega_I$

critical frequency

 $\omega = \omega_R + i\omega_I$

 $w_c = m\Omega_H$

 $w_I < 0$ if $w_R > w_c$

decay

Degollado et. al., PRL 109 (2012) 081102

Degollado, CH, Runarsson, to appear

 $w_I = 0$ if $w = w_c$

true bound states: *stationary clouds*

Degollado and C.H. 2014

 $w_I > 0$ if $w_R < w_c$

grow Press and Teukolsky (1972)

Klein-Gordon (linear) stationary clouds around Kerr:

Damour, Deruelle and Ruffini (1976); Zouros and Eardley (1979); Detweiler (1980); Hod 2012; (...); Yakov Shilapentokh-Rothman (2014)

Clouds for Kerr: discrete set labelled by (n,l,m) subject to one quantization condition which yields BH mass,spin. Hod (2012)

$$\frac{w}{m} = \Omega_H$$
 is a rotation synchronization condition

scalar mode

$$\frac{w}{m} < \Omega_H$$

Superradiant regime black hole decreases angular velocity

scalar mode

$$\frac{w}{m} < \Omega_H$$

Superradiant regime black hole decreases angular velocity

scalar mode

$$\frac{w}{m} > \Omega_H$$

decaying regime black hole increases angular velocity

scalar mode

$$\frac{w}{m} < \Omega_H$$

Superradiant regime black hole decreases angular velocity

scalar mode

Suggests: clouds as dynamical attractors Synchronization locking (cf. tidal locking for earth-moon)

Benone, Crispino, C.H. and Radu, PRD, 2014

Backreacting clouds yield Kerr black holes with scalar hair

Einstein Klein-Gordon: non-linear setup

Ansatz:

Asymptotically:

$$g_{tt} = -1 + \frac{2M}{r} + \dots, \quad g_{\varphi t} = -\frac{2J}{r} \sin^2 \theta + \dots$$
$$\phi = f(\theta) \frac{e^{-\sqrt{\mu^2 - w^2}r}}{r} + \dots$$

take: $w < \mu$

Four input parameters: m, w, r_H, n

Near the horizon:

$$x \equiv \sqrt{r^2 - r_H^2}$$

$$F_{i} = F_{i}^{(0)}(\theta) + x^{2}F_{i}^{(2)}(\theta) + \mathcal{O}(x^{4})$$
$$W = \Omega_{H} + \mathcal{O}(x^{2})$$
$$\phi = \phi_{0}(\theta) + \mathcal{O}(x^{2})$$
take: $\Omega_{H} = \frac{w}{m}$

Hairy black holes

Hairy black holes phase space

Hairy black holes phase space

Hairy black holes phase space

Five parameters family of solutions: 3 continuous parameters (M,J,q) 2 discrete parameters (m,n) 2) Kerr black holes with scalar hair iii) Phenomenology There is non uniqueness (different solutions for same ADM M,J); but degeneracy raised with q

Can we distinguish by a local measurement degenerate configurations?

Shadow of a Kerr black hole:

(equatorial plane observation)

Cunha, M.Sc. Thesis

Technique: backwards ray-tracing

camera

•

Cunha, M.Sc. Thesis

We have performed ray tracing to compute lensing and shadows.

The full celestial sphere

The "camera" opening angle

Following A. Bohn et al. arXiv:1410.7775

A Kerr-like hairy black hole

5% of mass; 13% of angular momentum is stored in the scalar field

A Kerr-like Kerr BH with scalar hair

Kerr BH with scalar hair M=0.393; J=0.15 (horizon) M=0.022; J=0.022 (scalar field)

Vacuum Kerr BH M=0.415; J=0.172

A non-Kerr-like hairy black hole

75% of mass; 85% of angular momentum is stored in the scalar field

A non-Kerr-like hairy black hole

Kerr BH with scalar hair M=0.234; J=0.114 (horizon) M=0.699; J=0.625 (scalar field)

Vacuum Kerr BH M=0.933; J=0.739

More non-Kerr-like hairy black holes

A very non-Kerr-like hairy black hole

Qualitatively new feature: multiple shadows of a single black hole

3) Outlook

Hairy black holes interpolate between Kerr and boson stars.

branching of Kerr black holes towards a new family of solutions due to superradiant instability.

Mechanism:

A (hairless) BH which is afflicted by the superradiant instability of a given field for which the energy-momentum tensor is timeindependent, allows a hairy generalization with that field.

Yet another example: **Proca stars** Brito, Cardoso, C.H., Radu, arXiv:1508.05395 and **Kerr black holes with Proca hair** To appear

Thank you for your attention!