

aboratoire Univers et Théori

PhD Students' day

Thesis : Study

of the Vishniac Instability (V.I.)

Julien Minière (CFR) Direction : Claire Michaut and Serge Bouquet At LUTH/CNRS and DPTA/CEA DAM/DIF

INTRODUCTION

Supernova remnants (SNR)

Apparition of complex structures and filamentation. Hydrodynamic instabilities.

• Remove contradictions, be more realistic

THEORY

Mach number:
$$M \equiv \frac{v_{shock}}{c_{sound}}$$
. Shock: $M > 1$. Strong shock: $M \gg 1$.
Compression rate: $C \equiv \frac{\gamma + 1}{\gamma - 1}$ for a strong shock.
 $\gamma \to 1 \Longrightarrow C \to +\infty$

Radiative losses in BW
$$\rightarrow$$
 densification behind the shock \rightarrow C \nearrow

Small $\gamma \iff$ radiative losses in regard to the density distribution

$$\gamma = 5/3 \Rightarrow C = 4$$

 $\gamma = 1.1 \Rightarrow C = 21$

Thin shell model: relations of dispersion

Decrease of the growth rate and reduction of the instability domain. Unstable only for low γ

NUMERICAL SIMULATIONS

Code and workline

HADES 2D : Radiative hydrodynamic code (H.C. Nguyen, C. Michaut , M. Mancini, L. Di Menza)

- Adapted to multi-processor computing
- Planar, cylindrical and spherical geometry
- Euler equations
- Time splitting method, finite volume
- Possibility of losses of energy by cooling function
- Or radiative transfer
- Run on Mesopsl (1472 cores max, 144 for our simulations)

Workline :

SNR in Sedov phase Perturbation of non-cooling SNRs Study of cooling unperturbed SNRs Perturbation of cooling perturbed SNRs

Previous work

Parametric studies: influence of

- Adiabatic index
- Mach number
- Perturbation mode
- Amplitude of the perturbation

(Cavet et al. 2009; Cavet et al. 2011; Michaut et al. 2012; Cavet, PhD Thesis)

No radiative losses in these studies Radiative effects taken into account by varying γ :

$$\gamma_{ISM} = \gamma_{bubble} = 5/3$$

Conclusion: the perturbation is always vanishing in these conditions.

Our aim :

- High resolution
- Closer to theory: uniform adiabatic index γ
- Study of SNRs experience radiative losses (cooling function)

SNR initialization and perturbation

SNR initialisation and perturbation

V.I. Without cooling: mechanism and attenuation $\gamma=5/3$

 $t \approx 3 \ kyrs$

 $t \approx 7.5 \ kyrs$

V.I. without cooling: growth of the perturbation $\gamma=1.1$

Mass variation: definition

V.I. without cooling: mass variation

DE LA RECHERCHE À L'INDUSTRIE

Cooling SNRs

Energy losses \rightarrow densification and reduction of thickness ($\Leftrightarrow \gamma \rightarrow 1$ without Λ in theoretical studies).

Densification and thin shell structure of cooling SNRs

$M(X\%) \equiv M(X\% \times R_{SNR} < r < R_{SNR}) / M_{SNR}$

Thin shell structure and power-law of expansion of cooling SNRs

V.I. in cooling SNRs : double mode generation -<u>9</u>7 $\gamma = 5/3$ $\Lambda = 0.1 \rho$ $t \approx 43 \ kyrs$ $t \approx 38 \ kyrs$ $t \approx 58 \ kyrs$ 13.0 Density Density Density 12.0 12.0 12.0 11.0 11.0-

Analytical studies:

- Extension of the theory
- Reduction of the domain of instability, need of radiative losses

Numerical simulations:

- In agreement with theory without cooling for $\gamma = 5/3$
- V.I. mechanism seen for $\gamma = 1.1$ at late times for the first time
- SNRs with cooling : self-similar behavior for radius evolution
- V.I. mechanism seen for cooling SNRs at late times for the first time