# Isolated halos as cosmological probes for Dark Energy

Paul de Fromont

supervised by Jean-Michel Alimi

July 2, 2014



### The physical context

### 2 Cosmological structures as probes for dark energy





# Sommaire



2 Cosmological structures as probes for dark energy

#### 3 Isolated halos



#### Introduction Dark energy problem

- Baryonic matter :  $\sim 5\%$
- Dark Matter (CDM) :  $\sim 25\%$
- Dark Energy :  $\sim 70\% \Rightarrow$  accelerated expansion of the Universe



#### Introduction Dark energy problem

- Baryonic matter :  $\sim 5\%$
- Dark Matter (CDM) :  $\sim 25\%$
- Dark Energy :  $\sim 70\% \Rightarrow$  accelerated expansion of the Universe



#### Introduction Dark energy problem

- Baryonic matter :  $\sim 5\%$
- Dark Matter (CDM) :  $\sim 25\%$
- Dark Energy :  $\sim$  70%  $\Rightarrow$  accelerated expansion of the Universe



#### Introduction Dark energy problem

- Baryonic matter :  $\sim 5\%$
- Dark Matter (CDM) :  $\sim 25\%$
- Dark Energy :  $\sim 70\% \Rightarrow$  accelerated expansion of the Universe



#### Introduction Dark energy problem

- Baryonic matter :  $\sim 5\%$
- Dark Matter (CDM) :  $\sim 25\%$
- Dark Energy :  $\sim 70\% \Rightarrow$  accelerated expansion of the Universe



#### Introduction Dark energy problem

#### Dark energy nature ?

- equation of state :  $p_{DE} = \omega \rho_{DE}$
- acceleration  $\Rightarrow \omega < -1/3$
- in GR,  $\omega \in [-1, -1/3]$
- 3 cases :
  - 1)  $-1 < \omega \leq -1/3$ , quintessence
  - $@ \ \omega = -1$  : cosmological constant  $ho_{DE} = cste$
  - $\bigcirc \omega < -1$ : extension of GR, modified gravity



э

- 4 同 6 4 日 6 4 日 6

#### Introduction Dark energy problem

#### Dark energy nature ?

- equation of state :  $p_{DE} = \omega \rho_{DE}$
- acceleration  $\Rightarrow \omega < -1/3$
- in GR,  $\omega \in [-1, -1/3]$
- 3 cases :
  - $\bigcirc$   $-1 < \omega \leq -1/3$ , quintessence
  - 2  $\omega=-1$  : cosmological constant  $ho_{DE}=cste$
  - $\bigcirc \omega < -1$  : extension of GR, modified gravity



э

#### Introduction Dark energy problem

#### Dark energy nature ?

- equation of state :  $p_{DE} = \omega \rho_{DE}$
- acceleration  $\Rightarrow \omega < -1/3$
- in GR,  $\omega \in [-1, -1/3]$
- 3 cases :
  - $old \quad -1 < \omega \leq -1/3$ , quintessence
  - 2)  $\omega=-1$  : cosmological constant  $ho_{\it DE}={\it cste}$
  - 3  $\omega < -1$  : extension of GR, modified gravity



-

・ロト ・同ト ・ヨト ・ヨト

### Introduction Dark energy problem

#### Dark energy nature ?

- equation of state :  $p_{DE} = \omega \rho_{DE}$
- acceleration  $\Rightarrow \omega < -1/3$
- in GR,  $\omega \in [-1,-1/3]$
- 3 cases :
  - $old u = -1 < \omega \leq -1/3$ , quintessence
  - 2)  $\omega=-1$  : cosmological constant  $ho_{DE}=cste$
  - 3  $\omega < -1$  : extension of GR, modified gravity



-

### Introduction Dark energy problem

#### Dark energy nature ?

- equation of state :  $p_{DE} = \omega \rho_{DE}$
- acceleration  $\Rightarrow \omega < -1/3$
- $\bullet$  in GR,  $\omega \in [-1,-1/3]$
- 3 cases :
  - $f 0 \ -1 < \omega \leq -1/3$ , quintessence
  - 2)  $\omega=-1$  : cosmological constant  $ho_{\it DE}={\it cste}$
  - 3  $\omega < -1$  : extension of GR, modified gravity



-

(人間) (人) (人) (人) (人)

### Introduction Dark energy problem

#### Dark energy nature ?

- equation of state :  $p_{DE} = \omega \rho_{DE}$
- acceleration  $\Rightarrow \omega < -1/3$
- $\bullet$  in GR,  $\omega \in [-1,-1/3]$
- 3 cases :
  - **1**  $-1 < \omega \leq -1/3$ , quintessence
    - $0~\omega=-1$  : cosmological constant  $ho_{DE}=cste$
    - 3)  $\omega < -1$  : extension of GR, modified gravity



-

A B + A B +

< 6 >

### Introduction Dark energy problem

#### Dark energy nature ?

- equation of state :  $p_{DE} = \omega \rho_{DE}$
- acceleration  $\Rightarrow \omega < -1/3$
- in GR,  $\omega \in [-1, -1/3]$
- 3 cases :
  - $\bigcirc$   $-1 < \omega < -1/3$ , quintessence
  - 2  $\omega = -1$ : cosmological constant  $\rho_{DE} = cste$



-

### Introduction Dark energy problem

#### Dark energy nature ?

- equation of state :  $p_{DE} = \omega \rho_{DE}$
- acceleration  $\Rightarrow \omega < -1/3$
- in GR,  $\omega \in [-1,-1/3]$
- 3 cases :
  - **1**  $-1 < \omega \leq -1/3$ , quintessence
  - 2  $\omega = -1$ : cosmological constant  $\rho_{DE} = cste$
  - **(**)  $\omega < -1$ : extension of GR, *modified gravity*



### Sommaire



2 Cosmological structures as probes for dark energy

#### 3 Isolated halos



Paul de Fromont Isolated halos as cosmological probes for Dark Energy

### cosmic structures as probes for dark energy

#### **DEUS** simulation

### N-body simulations

- $\Lambda CDM$  with  $\omega = -1$
- RPCDM quintessence model with  $\omega \sim -0.87$
- SUCDM idem with  $\omega \sim -0.94$



### cosmic structures as probes for dark energy

#### **DEUS** simulation

### N-body simulations

- $\Lambda CDM$  with  $\omega = -1$
- RPCDM quintessence model with  $\omega \sim -0.87$
- SUCDM idem with  $\omega \sim -0.94$



### cosmic structures as probes for dark energy

#### **DEUS** simulation

### N-body simulations

- $\Lambda CDM$  with  $\omega = -1$
- RPCDM quintessence model with  $\omega \sim -0.87$
- SUCDM idem with  $\omega \sim -0.94$



### cosmic structures as probes for dark energy

#### **DEUS** simulation

### N-body simulations

- $\Lambda CDM$  with  $\omega = -1$
- RPCDM quintessence model with  $\omega \sim -0.87$
- SUCDM idem with  $\omega \sim -0.94$



# Sommaire



2 Cosmological structures as probes for dark energy





### density and mass profile



#### mass profile

(日) (同) (三) (三)

$$f(r) = \frac{M(r)}{4/3\pi\bar{\rho}r^3}$$

for halos of mass  $M_h \sim 5.1 \ 10^{12} \ M_o$  and  $d_i \geq \alpha (R_i + R_0)$ 



-

### density and mass profile



#### mass profile

$$f(r) = \frac{M(r)}{4/3\pi\bar{\rho}r^3}$$

for halos of mass  $M_h \sim 5.1 \ 10^{12} \ M_o$  and  $d_i \geq lpha (R_i + R_0)$ 

- 4 同 6 4 日 6 4 日 6



-

### profile evolution



### profile evolution



## difference between cosmologies



# difference between cosmologies



# evolution of an isolated halo



## evolution of an isolated halo







Paul de Fromont Isolated halos as cosmological probes for Dark Energy

< □ > < 同 >

## evolution of an isolated halo



Paul de Fromont Isolated halos as cosmological probes for Dark Energy

LUTH

## evolution of an isolated halo





< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >



# evolution of an isolated halo







Paul de Fromont Isolated halos as cosmological probes for Dark Energy

< 同 ▶

# evolution of an isolated halo







### dynamical evolution

#### dynamical properties

- no shell-crossing !
- "self similar" evolution for  $f_0(r) \rightarrow f(r, t)$
- $r_1$  such as  $f(r_1, t) = 1 \Rightarrow r_1(t) \propto a(t)$
- $f_{min}(t)$  such as  $\partial_r f(r,t) = 0$

$$f_{min}(t) = \frac{f_{min}(0)}{x(t, f_{min}(0))^3}$$



3

### dynamical evolution

#### dynamical properties

- no shell-crossing !
- "self similar" evolution for  $f_0(r) o f(r, t)$
- $r_1$  such as  $f(r_1, t) = 1 \Rightarrow r_1(t) \propto a(t)$
- $f_{min}(t)$  such as  $\partial_r f(r, t) = 0$

$$f_{min}(t) = \frac{f_{min}(0)}{x(t, f_{min}(0))^3}$$



3

- 4 同 6 4 日 6 4 日 6

### dynamical evolution

#### dynamical properties

- no shell-crossing !
- "self similar" evolution for  $f_0(r) o f(r,t)$
- $r_1$  such as  $f(r_1, t) = 1 \Rightarrow r_1(t) \propto a(t)$
- $f_{min}(t)$  such as  $\partial_r f(r,t) = 0$

$$f_{min}(t) = \frac{f_{min}(0)}{x(t, f_{min}(0))^3}$$



э

A B M A B M

< A ▶

### dynamical evolution

#### dynamical properties

- no shell-crossing !
- "self similar" evolution for  $f_0(r) o f(r,t)$
- $r_1$  such as  $f(r_1, t) = 1 \Rightarrow r_1(t) \propto a(t)$
- $f_{min}(t)$  such as  $\partial_r f(r,t) = 0$

$$f_{min}(t) = \frac{f_{min}(0)}{x(t, f_{min}(0))^3}$$



3

A B M A B M

### dynamical evolution

#### dynamical properties

- no shell-crossing !
- "self similar" evolution for  $f_0(r) o f(r,t)$
- $r_1$  such as  $f(r_1, t) = 1 \Rightarrow r_1(t) \propto a(t)$
- $f_{min}(t)$  such as  $\partial_r f(r,t) = 0$

$$f_{min}(t) = \frac{f_{min}(0)}{x(t, f_{min}(0))^3}$$



-

A B M A B M

### dynamical evolution

#### dynamical properties

- no shell-crossing !
- "self similar" evolution for  $f_0(r) o f(r,t)$
- $r_1$  such as  $f(r_1,t) = 1 \Rightarrow r_1(t) \propto a(t)$
- $f_{min}(t)$  such as  $\partial_r f(r, t) = 0$

$$f_{min}(t) = \frac{f_{min}(0)}{x(t, f_{min}(0))^3}$$



-

### dynamical evolution

#### dynamical properties

- no shell-crossing !
- "self similar" evolution for  $f_0(r) o f(r,t)$
- $r_1$  such as  $f(r_1, t) = 1 \Rightarrow r_1(t) \propto a(t)$
- $f_{min}(t)$  such as  $\partial_r f(r,t) = 0$

$$f_{min}(t) = \frac{f_{min}(0)}{x(t, f_{min}(0))^3}$$



# dynamical evolution

#### **Evolution equations**

introducing  $x(t, r_0) = r(t, r_0)/a(t)$ 

$$\frac{\partial^2 x}{\partial \tau^2} + \frac{1}{\sqrt{2\Omega_m(\tau)}} \frac{\partial x}{\partial \tau} = x - \frac{f_0(r_0)}{x^2}$$

with

$$\tau = \frac{\sqrt{2}}{3\omega} \sinh^{-1} \left[ \sqrt{\frac{\Omega_m^0}{1 - \Omega_m^0}} \left( \frac{a(t)}{a(0)} \right)^{3\omega/2} \right]$$



э

글 🖌 🖌 글 🕨

# dynamical evolution

#### **Evolution equations**

introducing  $x(t, r_0) = r(t, r_0)/a(t)$ 

$$\frac{\partial^2 x}{\partial \tau^2} + \frac{1}{\sqrt{2\Omega_m(\tau)}} \frac{\partial x}{\partial \tau} = x - \frac{f_0(r_0)}{x^2}$$

with

$$\tau = \frac{\sqrt{2}}{3\omega} \sinh^{-1} \left[ \sqrt{\frac{\Omega_m^0}{1 - \Omega_m^0}} \left( \frac{a(t)}{a(0)} \right)^{3\omega/2} \right]$$



э

### dynamical evolution

#### **Evolution equations**

introducing  $x(t, r_0) = r(t, r_0)/a(t)$ 

$$\frac{\partial^2 x}{\partial \tau^2} + \frac{1}{\sqrt{2\Omega_m(\tau)}} \frac{\partial x}{\partial \tau} = x - \frac{f_0(r_0)}{x^2}$$

with

$$\tau = \frac{\sqrt{2}}{3\omega} \sinh^{-1} \left[ \sqrt{\frac{\Omega_m^0}{1 - \Omega_m^0}} \left( \frac{a(t)}{a(0)} \right)^{3\omega/2} \right]$$



э

글 🖌 🖌 글 🕨

# dynamical evolution





Paul de Fromont Isolated halos as cosmological probes for Dark Energy

< □ > < 同 >

∃ → < ∃</p>

### Isolated halos



# Isolated halos

- known dynamics
- access to  $f_0(r)$  (Gaussian Random Field and P(k))
- gives  $f_{min}(t)$ ,  $r_{min}(t)$  ...
- probability to be isolated  $p(\alpha, M_h)$
- depends on the cosmology !



# Isolated halos

### why useful ?

#### known dynamics

- access to  $f_0(r)$  (Gaussian Random Field and P(k))
- gives  $f_{min}(t)$ ,  $r_{min}(t)$  ...
- probability to be isolated  $p(\alpha, M_h)$
- depends on the cosmology !



# Isolated halos

- known dynamics
- access to  $f_0(r)$  (Gaussian Random Field and P(k))
- gives  $f_{min}(t)$ ,  $r_{min}(t)$  ...
- probability to be isolated  $p(\alpha, M_h)$
- depends on the cosmology !



# Isolated halos

- known dynamics
- access to  $f_0(r)$  (Gaussian Random Field and P(k))
- gives  $f_{min}(t)$ ,  $r_{min}(t)$  ...
- probability to be isolated  $p(\alpha, M_h)$
- depends on the cosmology !



# Isolated halos

- known dynamics
- access to  $f_0(r)$  (Gaussian Random Field and P(k))
- gives  $f_{min}(t)$ ,  $r_{min}(t)$  ...
- probability to be isolated  $p(\alpha, M_h)$
- depends on the cosmology !



# Isolated halos

- known dynamics
- access to  $f_0(r)$  (Gaussian Random Field and P(k))
- gives  $f_{min}(t)$ ,  $r_{min}(t)$  ...
- probability to be isolated  $p(\alpha, M_h)$
- depends on the cosmology !



Cosmological structures as probes for dark energy Isolated halos

# Conclusion

#### Isolated halos

shape and population leads to the cosmology !



э

Cosmological structures as probes for dark energy Isolated halos

# Conclusion

#### Isolated halos

shape and population leads to the cosmology !



э

# Conclusion

#### Isolated halos

shape and population leads to the cosmology !

### work still in progress

finish the job ... include modified gravity



э

(E)

Paul de Fromont Isolated halos as cosmological probes for Dark Energy

< 🗇 >

# Conclusion

#### Isolated halos

shape and population leads to the cosmology !

### work still in progress

finish the job ... include modified gravity



э

# Conclusion

#### Isolated halos

shape and population leads to the cosmology !

### work still in progress

finish the job ... include modified gravity



э

### Conclusion

#### Thank you for your attention !





A = 
 A = 
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Paul de Fromont Isolated halos as cosmological probes for Dark Energy

Image: Image:

# Isolated halos

### what is an isolated halo ?

$$\forall i, \|\vec{x}_0 - \vec{x}_i\| \ge \alpha (R_i + R_0)$$

• 
$$R_k = \left(\frac{3M_k}{4\pi\bar{\rho}}\right)^{1/3}$$
  
•  $\alpha = 0$  selects all halo



# Isolated halos

### what is an isolated halo ?

$$\forall i, \|\vec{x}_0 - \vec{x}_i\| \ge \alpha (R_i + R_0)$$

• 
$$R_k = \left(\frac{3M_k}{4\pi\bar{\rho}}\right)^{1/3}$$
  
•  $\alpha = 0$  selects all halos



# Isolated halos

### what is an isolated halo ?

$$\forall i, \|\vec{x}_0 - \vec{x}_i\| \geq \alpha (R_i + R_0)$$

• 
$$R_k = \left(\frac{3M_k}{4\pi\bar{\rho}}\right)^{1/3}$$
  
•  $\alpha = 0$  selects all halos



# Isolated halos

### what is an isolated halo ?

$$\forall i, \|\vec{x}_0 - \vec{x}_i\| \geq \alpha (R_i + R_0)$$

• 
$$R_k = \left(\frac{3M_k}{4\pi\bar{\rho}}\right)^{1/3}$$
  
•  $\alpha = 0$  selects all halo



# Isolated halos

### what is an isolated halo ?

$$\forall i, \|\vec{x}_0 - \vec{x}_i\| \geq \alpha (R_i + R_0)$$

• 
$$R_k = \left(\frac{3M_k}{4\pi\bar{\rho}}\right)^{1/3}$$
  
•  $\alpha = 0$  selects all halos



### density and mass profile

