# A new mechanism for Deflagration to Detonation Transition (DDT) in thermonuclear supernovae

Camille Charignon, under supervision of Jean-Pierre Chièze

CEA/DSM/Service d'Astrophysique - AIM

March 21 2013

Séminaire LUTH





## Outline

- Observations and constraints
- Progenitors and explosion models
- 3 DDT and the delayed detonation
- 4 Conclusions





## Supernovae

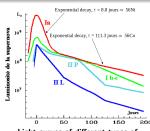
Two types of supernovae : Core-collapse and Thermonuclear



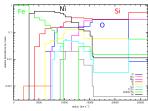
High-Z Supernova Search Team HST/NASA

- 1 Supernova as bright as 1 galaxy
- Visible extremely far away
- Thermonuclear SNe are standardisable candles: → distance measurement across the Universe

⇒ Revealed the acceleration of the expansion of our Universe (Nobel prize 2011 : Perlmutter, Schmidt et Riess)







- Spectra :
  - ▶ No hydrogen lines
  - Strong silicon lines
- Light curves :
  - ▶ Powered by decay of <sup>56</sup>Ni :

$$^{56}$$
Ni  $ightarrow^{56}$  Co  $ightarrow^{56}$  Fe

- Nucleosynthesis:
  - Stratification of ejecta
  - ▶ High velocity IME ( $\sim^{28}$  Si)



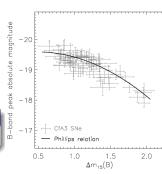
Light curves of different types of supernovae



Abundance stratification inferred by tomography



#### Inhomogeneities strongly correlated


Most SNe Ia are arrangeable in a 1-parameter family according to explosion strength

- weaker explosions :
  - ► less luminous
  - redder
  - decline faster
  - slower ejecta velocities

#### Phillips Relation

$$M_{max} = -21.7 + 5.7 \Delta m_{15}$$

 $\Delta m_{15}$  is the magnitude decrease after 15 days

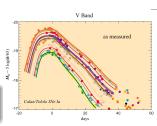


Diversity of SNe Ia, correlated through the Phillips relation



# Diversity and correlation

### Inhomogeneities strongly correlated


Most SNe Ia are arrangeable in a 1-parameter family according to explosion strength

- weaker explosions :
  - less luminous
  - redder
  - decline faster
  - slower ejecta velocities

#### Phillips Relation

$$M_{max} = -21.7 + 5.7 \Delta m_{15}$$

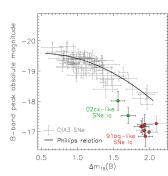
 $\Delta m_{15}$  is the magnitude decrease after 15 days



Brighter-slower correlation






# Peculiar supernovae

## However, Peculiarity rate of about 30%

- These SNe are outlier compared to phillips relation
- They present spectral differences that make them abnormal

## Subluminous (20%):

- Fainter than Phillips relation
- Two subclasses
  - ▶ 91bg like
  - ▶ 02cx like or type lax

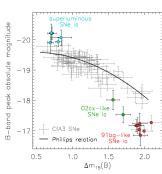


Diversity of SNe Ia, correlated through the Phillips relation



# Peculiar supernovae

## However, Peculiarity rate of about 30%


- These SNe are outlier compared to phillips relation
- They present spectral differences that make them abnormal

## Subluminous (20%):

- Fainter than Phillips relation
- Two subclasses
  - ▶ 91bg like
  - ▶ 02cx like or type lax

## Superluminous (10%):

Brighter than Phillips relation



Diversity of SNe Ia, correlated through the Phillips relation





# What are thermonuclear supernovae?

## They are thermonuclear explosions of Carbon-Oxygen White Dwarf

SN 2011fe (in M101) has a radius  $< 0.02R_{\odot}$  (Bloom & al 2011)

### C+O combustion explains :

Observations and constraints

- Absence of H and He
- Production of <sup>28</sup>Si and <sup>56</sup>Ni
- Typical energy of 1.5 10<sup>51</sup> erg





DDT and the delayed detonation

# What are thermonuclear supernovae?

## They are thermonuclear explosions of Carbon-Oxygen White Dwarf

SN 2011fe (in M101) has a radius  $< 0.02R_{\odot}$  (Bloom & al 2011)

### C+O combustion explains :

Observations and constraints

- Absence of H and He
- Production of <sup>28</sup>Si and <sup>56</sup>Ni
- Typical energy of 1.5 10<sup>51</sup> erg

### Single WD unconditionally stable

⇒ Necessarily in binary systems



Artist view





# What are thermonuclear supernovae?

## They are thermonuclear explosions of Carbon-Oxygen White Dwarf

SN 2011fe (in M101) has a radius  $< 0.02R_{\odot}$  (Bloom & al 2011)

### C+O combustion explains :

- Absence of H and He
- Production of <sup>28</sup>Si and <sup>56</sup>Ni
- Typical energy of 1.5 10<sup>51</sup> erg

### Single WD unconditionally stable

⇒ Necessarily in binary systems



#### However

- Progenitor evolution up to ignition?
- Combustion mode : deflagration or detonation ?



- 1 solar mass in less than an earth radius :
- $\Rightarrow$  Very compact object,  $\rho_c \gtrsim 10^9 \text{ g.cm}^{-3} = 1000 \text{ ton.cm}^{-3}$ .
  - Fully ionized plasma
  - Correlated plasma: ions form a liquid
  - ullet  $e^-$  are extremely degenerate and relativistic  $(\epsilon_f > m_e c^2)$  :
    - Superconducting plasma : Strong magnetic field
    - ▶ Pressure P dominated by degenerate electrons  $(P_e)$
    - ▶ Thus P is (mostly) independent of the temperature

## No negative feedback on combustion by expansion

⇒ Explosive thermonuclear reactions





## Thermonuclear combustion

• 13  $\alpha$ -elements network :  ${}^4He(=\alpha)$  and  ${}^{12}C$ ,  ${}^{16}O$ ,  ${}^{20}Ne$ ,  ${}^{24}Mg$ ,  ${}^{28}Si$ , ...,  ${}^{52}Fe$ ,  ${}^{56}Ni$ 





## Thermonuclear combustion

Observations and constraints

- 13  $\alpha$ -elements network :
  - $^{4}$ He(=  $\alpha$ ) and  $^{12}$ C,  $^{16}$ O,  $^{20}$ Ne,  $^{24}$ Mg,  $^{28}$ Si, ...,  $^{52}$ Fe,  $^{56}$ Ni
- Including 30 nuclear reactions :
  - Heavy ions:  ${}^{12}C + {}^{12}C \rightarrow {}^{20}Ne + \alpha$  ...
  - ightharpoonup lpha captures :  $^{20}$  Ne  $+ \, lpha \ 
    ightharpoonup \ ^{24}$  Mg  $+ \, \gamma \, \ldots$  , all the way to  $^{56}$  Ni
  - Reverse reactions : photo-disintegration.





## Thermonuclear combustion

- 13  $\alpha$ -elements network : <sup>4</sup> $He(=\alpha)$  and <sup>12</sup>C, <sup>16</sup>O, <sup>20</sup>Ne, <sup>24</sup>Mg, <sup>28</sup>Si, ..., <sup>52</sup>Fe, <sup>56</sup>Ni
- Including 30 nuclear reactions :
  - ▶ Heavy ions :  $^{12}C + ^{12}C \rightarrow ^{20}Ne + \alpha$  ...
  - lpha captures :  $^{20}$ Ne + lpha ightarrow  $^{24}$ Mg +  $\gamma$  ... , all the way to  $^{56}$ Ni
  - ▶ Reverse reactions : photo-disintegration.
- Reaction rates :

$$\frac{dn_{\rm Mg}}{dt} = n_{\rm Ne} n_{\alpha} < \sigma v > + \dots$$

 $\sigma$  is the cross section, v the relative speed,  $\langle \sigma v \rangle$  tabulated in T





# Propagation of combustion

## Subsonic mode : Deflagration

- Propagate through e<sup>-</sup> conduction + radiation
- Unstable to Rayleigh-Taylor and Landau-Darrieus instabilities
- Slow combustion : the star expands





## Propagation of combustion

### Subsonic mode: Deflagration

- Propagate through e<sup>-</sup> conduction + radiation
- Unstable to Rayleigh-Taylor and Landau-Darrieus instabilities
- Slow combustion : the star expands

#### Supersonic mode: Detonation

- Propagated by a leading shock followed by combustion
- Once triggered, disrupt the whole star (No expansion)





# ropagation of combustion

### Subsonic mode: Deflagration

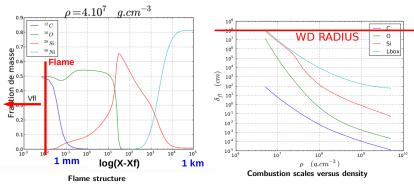
- Propagate through  $e^-$  conduction + radiation
- Unstable to Rayleigh-Taylor and Landau-Darrieus instabilities
- Slow combustion : the star expands

### Supersonic mode : Detonation

- Propagated by a leading shock followed by combustion
- Once triggered, disrupt the whole star (No expansion)

## Reaction rates $\propto T^{27} \Rightarrow \text{ very thin flames } (1 \mu m \text{ to } 1 \text{cm})$

Combustion fronts unresolved (in simulations)  $\delta_{\rm fl}/R_{WD} \sim 10^{-10}$ 



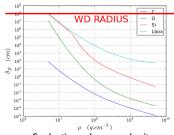



## Thermonuclear flames in C+O white dwarfs

Observations and constraints

High resolution hydro simulations with ASTROLABE (ALE mesh) :




- 3 burning stages : Carbon, Oxygen , Silicium
- 3 highly disparate reaction lengths
- Incomplete silicon burning at low densities





## Combustion products:

- High densities :  $\rho \gtrsim 10^8 \ g.cm^{-3} \rightarrow {}^{56}Ni$
- Low densities :  $\rho \lesssim 5 \ 10^7 \ g.cm^{-3} \rightarrow {}^{28}Si$



Combustion scales versus density

## Observations: Both <sup>56</sup>Ni and <sup>28</sup>Si produced

⇒ Combustion has to occur both at low and high densities.





- Observations and constraints
- 2 Progenitors and explosion models
- 3 DDT and the delayed detonation
- 4 Conclusions






## The three main models



Accretion model (Hydrogen)



Accretion model (Helium)



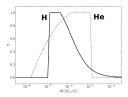






# Single Degenerate model (SD)

## External trigger:


Accretion of Hydrogen up to Chandrasekahr mass

## Robust ignition mechanism

- ► The WD accretes mass to  $M_{ch}$ → unstable WD → explosion
- Central ignition as a deflagration



Acrretion of H from a giant companion



Retention efficiency

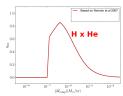
#### • But M<sub>ch</sub> hard to reached

- lacktriangleright if low  $\dot{M}_H 
  ightarrow$  recurrent novae
- if strong  $M_H o$  mass loss by winds



# Single Degenerate model (SD)

## External trigger :


Accretion of Hydrogen up to Chandrasekahr mass

## Robust ignition mechanism

- ► The WD accretes mass to  $M_{ch}$ → unstable WD → explosion
- Central ignition as a deflagration



Actretion of it from a giant companion



Retention efficiency

#### • But $M_{ch}$ hard to reached

- if low  $\dot{M}_H \rightarrow$  recurrent novae
- if strong  $\dot{M}_H \rightarrow$  mass loss by winds



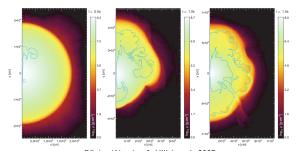
# Pure detonation models (Arnett 1969)

#### Chandrasekhar mass white dwarfs:

- $\bullet~M_{ch}\sim 1.4~M_{\odot}$
- Central densities above  $10^9~g~cm^{-3}$
- Most of the mass is above  $10^8~g~cm^{-3}$

### This rules out pure detonation models

A detonation propagates supersonically :


- ⇒ The star has no time to expand
- $\Rightarrow$  Combustion at high density, producing only  $^{56}Ni$

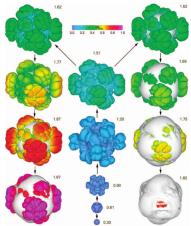




# Pure deflagration models

#### With the most advanced flame model:




Röpke, Woosley & Hillebrandt 2007

## Not enough energy released

- In 2D : The deflagration cannot unbind the star
- In 3D: The outcome depends on the ignition geometry



## Delayed detonation models

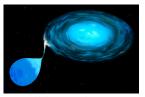


Gamezo, Khokhlov & Oran 2005

- Deflagration to expand the star
- ② Detonation to incinerate the remaining fuel
- $\bullet \ \rho_{DDT} \sim 2.10^7 g.cm^{-3}$
- ⇒ correct nucleosynthesis and energetics.

#### But...

Physical mechanism for DDT still unknown






### External trigger:

Accretion of helium up to ignition of a He-detonation

- The WD accretes Helium
- If sufficiently massive layer forms
  - ⇒ Helium detonation
- Send a converging shock inward
  - ⇒ Trigger a carbon core detonation



Helium accretion

#### Detonation in a sub-Chandrasekahr mass WD

- Less massive WD ⇒ Lower central densities
- A pure detonation produces correct nucleosynthesis



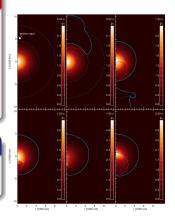
## The helium layer problem

- Produces <sup>56</sup>Ni in outer layers
   ⇒ At odds with observations
- Model discarded in 90s

(Thought to require too massive helium layer :  $\sim 0.1 M_{\odot}$ )






## The helium layer problem

- Produces <sup>56</sup>Ni in outer layers
   ⇒ At odds with observations
- Model discarded in 90s

(Thought to require too massive helium layer :  $\sim 0.1 M_{\odot}$ )

### Shock convergence

The convergence of the inner shock allows for lighter helium shell



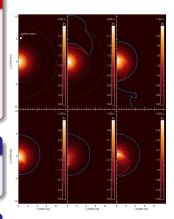
Fink&al2010





### The helium layer problem

- Produces <sup>56</sup>Ni in outer layers
   ⇒ At odds with observations
- Model discarded in 90s


(Thought to require too massive helium layer :  $\sim 0.1 M_{\odot}$ )

### Shock convergence

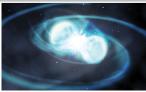
The convergence of the inner shock allows for lighter helium shell

## Small helium layer + Mixing

Correct spectra (Kromer & al 2010)



Fink&al2010






# Double Degenerate models (DD)

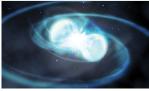
## External trigger:

Collision of two C+O white dwarfs



Merger of two CO whites dwarfs

- WD mergers are quite frequent
- Off-center deflagration ignition must be avoided (leading to collapse)






# Double Degenerate models (DD)

## External trigger:

Collision of two C+O white dwarfs



Merger of two CO whites dwarfs

WD mergers are quite frequent

DDT and the delayed detonation

 Off-center deflagration ignition must be avoided (leading to collapse)

## $M_{ch}$ mergers

- Secondary is disrupted and slowly accreted
- Central deflagration ignition
- DDT (⇔ SD scenario)





# Double Degenerate models (DD)

## External trigger:

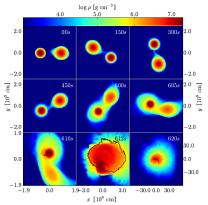
Collision of two C+O white dwarfs



Merger of two CO whites dwarfs

- WD mergers are quite frequent
- Off-center deflagration ignition must be avoided (leading to collapse)

### $M_{ch}$ mergers


- Secondary is disrupted and slowly accreted
- Central deflagration ignition
- DDT (⇔ SD scenario)

## sub- $M_{ch}$ violent mergers

- Violent accretion of secondary
- Off-center detonation
- sub-*M<sub>ch</sub>* leads to correct nucleosynthesis



# Violent double degenerate mergers



Pakmor & al 2011

## Detonation ignition

favourable conditions are met directly during the fast accretion of the secondary

#### Observables

Spectra from these events can reproduce normal Type Ia





# Explosion models, summary:

- Each oh these models can reproduce the main observables :
  - the range of observed luminosities
  - the stratification of ejecta
- 3D modelling of hydro and radiative transfer gives acceptable spectra

### HOWEVER all rely on unresolved physical mechanisms :

- Delayed detonation: The DDT mechanism (also in the classical M<sub>ch</sub> merger)
- ▶ **Double detonation :** The helium detonation ignition
- Violent merger: The detonation ignition at contact between the two white dwarfs





# **Direct Observations**

- PTF 11kx : Symbiotic Nova progenitor
   ⇒ incompatible with DD (Dilday&al 2012)
- SNR 0509-67.5 : Absence of any companion star
  - ⇒ Rules out SD scenario. (Schaefer&al 2012 )



Dilday & al 2012

### No single progenitor path to thermonuclear supernovae

⇒ the question is now, which one contributes most?





## In this context:

- Homogeneity is an argument in favour of SD
- This model is the most mature
- It still lacks a major piece of physics :

#### The DDT mechanism

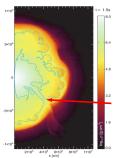
Studying and understanding this transition is still important

(This transition is also needed in the classical  $M_{ch}$  DD scenario)





- Observations and constraints
- 2 Progenitors and explosion models
- 3 DDT and the delayed detonation
- 4 Conclusions






# Models to get a delayed detonation:

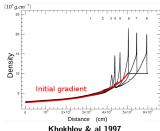
Several models have been designed to obtain a detonation after an initial phase of deflagration and expansion :

- Turbulence induced DDT (Khokhlov 1997)
- Gravitationally confined detonation (Plewa & al 2004)
- Pulsational detonation
- ...



All rely on the Zel'dovich's gradient mechanism

But on VERY unresolved scales




# Zel'dovich gradient mechanism

- Rely on an induction time  $(\tau_i)$  gradient :
  - ightharpoonup  $au_i$  is the time needed to burn half of the carbon
  - $\triangleright$  A spontaneous combustion wave propagates from short  $\tau_i$  to long  $\tau_i$
- If the gradient is sonic :

$$\nabla \tau_i = \frac{1}{Cs}$$

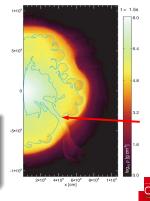
Overpressure accumulates at the wave front



If the gradient is sonic and large enough

 $P_{CI}$  can be reached  $\Rightarrow$  self-sustained detonation

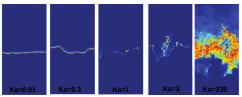



# Global models

Gravitationally confined detonation

Pulsational detonation

- Ignition studies with resolved combustion scales :
  - → Critical conditions
- ② If a cell meet those conditions:
  - $\rightarrow$  Detonation


⇒ Rely on the global flow to reach critical values at the grid scale (Collision of two plumes or re-contraction of the whole structure)





# Turbulence induced DDT

- Rayleigh-Taylor and Kelvin-Helmholtz⇒ Turbulence :
  - $ightharpoonup V_{RT} \sim 100~km.s^{-1}$  on scale  $L_{RT} \sim 10~km$
  - Cascade down to Kolmogorov scale
  - $\eta \ll \delta_{\it fl} \ll L_{\it RT} \Rightarrow$  Interaction with the flame
- If intense enough, can penetrate the flame : (Distributed burning)



Aspden, Bell & Woosley, 2008,2010

Distributed regime reached at  $ho \sim$  3  $10^7~g.cm^{-3}$ 

Correspond to the  $\rho_{DDT}$  inferred from observation. Coincidence?



# Requirement for the Zel'dovich mechanism in supernovae

- Woosley & al (2009) obtained a DDT in one dimensional turbulence simulations
- DDT actually occurred in the distributed regime
- Require high turbulence intensity (20% of sound speed)

#### Is such a level of turbulence realistic?

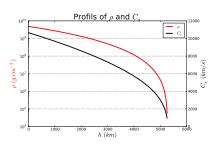
→ Maybe through intermittency ( Röpke 2007)

⇒ In this context we propose a novel approach...





## We considered another original approach :


#### Sound waves:

• Energy carried :

$$F = \frac{1}{2}\rho u^2 C_s$$

• Flux conservation :  $\sqrt{\frac{\rho_0 C_{5,0}}{\rho_0}}$ 

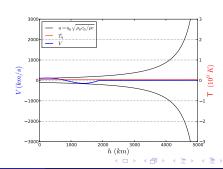
$$u(h) = u_0 \sqrt{\frac{\rho_0 C_{s,0}}{\rho C_s(h)}}$$







We considered another original approach:


Perturbations are produced in the flame,

### Sound waves:

• Energy carried:

$$F = \frac{1}{2}\rho u^2 C_s$$

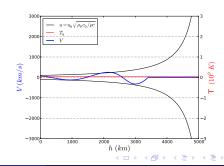
$$u(h) = u_0 \sqrt{\frac{\rho_0 C_{s,0}}{\rho C_s(h)}}$$







We considered another original approach :


- Perturbations are produced in the flame,
- 2 get amplified through the density gradient,

### Sound waves:

• Energy carried :

$$F = \frac{1}{2}\rho u^2 C_s$$

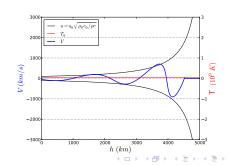
$$u(h) = u_0 \sqrt{\frac{\rho_0 C_{s,0}}{\rho C_s(h)}}$$





# \\/- ----idawad awathaw awininal awawa ah

We considered another original approach :


- Perturbations are produced in the flame,
- 2 get amplified through the density gradient,

#### Sound waves:

• Energy carried :

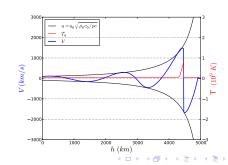
$$F = \frac{1}{2}\rho u^2 C_s$$

$$u(h) = u_0 \sqrt{\frac{\rho_0 C_{s,0}}{\rho C_s(h)}}$$





We considered another original approach :


- Perturbations are produced in the flame,
- 2 get amplified through the density gradient,
- degenerate into shocks and heat up the medium.

#### Sound waves:

• Energy carried :

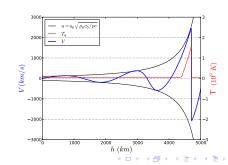
$$F = \frac{1}{2}\rho u^2 C_s$$

$$u(h) = u_0 \sqrt{\frac{\rho_0 C_{s,0}}{\rho C_s(h)}}$$





We considered another original approach:


- Perturbations are produced in the flame,
- get amplified through the density gradient,
- degenerate into shocks and heat up the medium.

#### Sound waves:

• Energy carried :

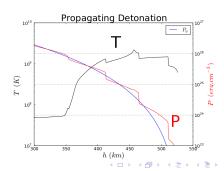
$$F = \frac{1}{2}\rho u^2 C_s$$

$$u(h) = u_0 \sqrt{\frac{\rho_0 C_{s,0}}{\rho C_s(h)}}$$





We considered another original approach:


- Perturbations are produced in the flame,
- 2 get amplified through the density gradient,
- degenerate into shocks and heat up the medium.
- If strong enough: a detonation can be ignited ( well ahead of the flame  $\Rightarrow$  non local DDT )

#### Sound waves:

• Energy carried:

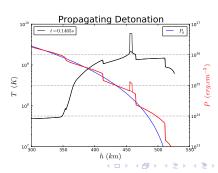
$$F = \frac{1}{2}\rho u^2 C_s$$

$$u(h) = u_0 \sqrt{\frac{\rho_0 C_{s,0}}{\rho C_s(h)}}$$





We considered another original approach:


- Perturbations are produced in the flame,
- 2 get amplified through the density gradient,
- degenerate into shocks and heat up the medium.
- If strong enough: a detonation can be ignited ( well ahead of the flame  $\Rightarrow$  non local DDT )

#### Sound waves:

• Energy carried:

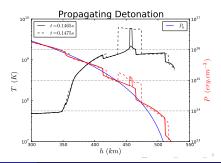
$$F = \frac{1}{2}\rho u^2 C_s$$

$$u(h) = u_0 \sqrt{\frac{\rho_0 C_{s,0}}{\rho C_s(h)}}$$





We considered another original approach:


- Perturbations are produced in the flame,
- get amplified through the density gradient,
- degenerate into shocks and heat up the medium.
- If strong enough: a detonation can be ignited ( well ahead of the flame ⇒ non local DDT )

#### Sound waves:

• Energy carried :

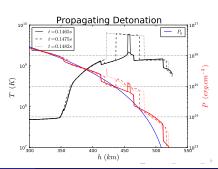
$$F = \frac{1}{2}\rho u^2 C_s$$

• Flux conservation :  $u(h) = u_0 \sqrt{\frac{\rho_0 C_{s,0}}{\rho C_s(h)}}$ 





We considered another original approach:


- Perturbations are produced in the flame,
- 2 get amplified through the density gradient,
- degenerate into shocks and heat up the medium.
- If strong enough: a detonation can be ignited ( well ahead of the flame  $\Rightarrow$  non local DDT )

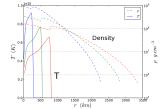
#### Sound waves:

Energy carried :

$$F = \frac{1}{2}\rho u^2 C_s$$

Flux conservation: 
$$u(h) = u_0 \sqrt{\frac{\rho_0 C_{s,0}}{\rho C_s(h)}}$$






# Application to supernovae

**1** A self-gravitating white dwarf: Geometrical effects

$$F = \frac{1}{2}\rho u^2 C_s r^2$$
,  $u(r) = u_0 \sqrt{\frac{\rho_0 C_{s,0}}{\rho C_s(r)}} \times \frac{r_0}{r} \Rightarrow$  weaker shocks.

- Taking into account the initial deflagration phase :
  - ► A thickened flame model to pre-expand the star...
  - ► Allowing for studies at decreasing densities (shallower gradients) :
    - $\rho_{\rm fl} \sim 10^9$  : M > 0.02
    - $\rho_{\rm fl} \sim 3 \ 10^8 : M \ge 0.03$
    - $\rho_{fl} \sim 10^8$  : M > 0.05





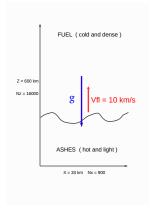


# Where these perturbations come from?

- Large scale combustion, driven by the Rayleigh-Taylor instability
- Possible magnetic reconnection after amplification in the flow
- Small scale combustion in very intense turbulence






# Turbulent combustion and magnetic field

### 2D Non ideal MHD simulations with OHM (G. Aulanier, LESIA) :

- OHM : A 5th order finite difference MHD code
- ADR flame :

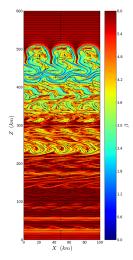
$$\frac{\partial f}{\partial t} + \vec{v}.\vec{\nabla}f = D\Delta f + R(f)$$

- Initial set-up :
  - ► Hydrostatic equilibrium
  - ► Slightly perturbed flame








# 2D RT driven combustion

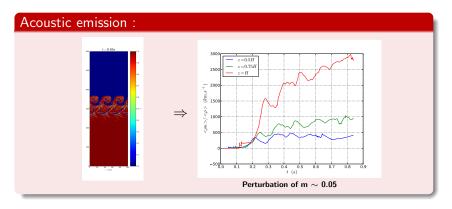




# cea

# 2D RT driven combustion: Reconnection




We could not check our hypothesis about magnetic reconnection :

- Amplification of B, but not enough for dynamic effects ( $\beta \sim 10$ )
- Finite differences scheme
  - ⇒ numerical diffusion
  - ⇒ less amplification





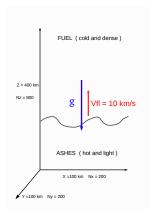
# 2D RT driven combustion



- A 2D flame can emit enough acoustic perturbations
- Perturbation are associated with large scales. In real 3D combustion, they will likely disappear...






# Rayleigh-Taylor driven flame in 3D

Hydro simulations with HERACLES (E. Audit, Maison de la Simulation) :

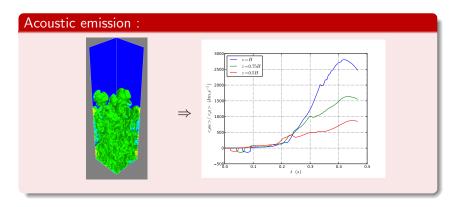
- HERACLES: A 2nd order Godunov hydro code.
- ADR flame :

$$\frac{\partial f}{\partial t} + \vec{v}.\vec{\nabla}f = D\Delta f + R(f)$$

Same initial set-up








# Rayleigh-Taylor driven flame in 3D



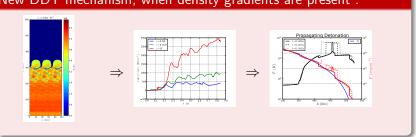


# 3D RT driven combustion



- Not much acoustic emission in 3D
- The magnetic field could prevent the small scale from growing
  - $\rightarrow$  Moving the MHD code to 3D






# Turbulent Flame: acoustic emission





# New DDT mechanism, when density gradients are present :



#### However...

- 1 It requires a sufficiently noisy flame
- At large scales this is not sure
- At small scales it seems to be the case for highly turbulent flames





## Conclusion

### Take away

Thermonuclear SNe are more diverse than we previously thought

- Probably no single progenitor
- Single Degenerate scenario
  - Rates and delay time distribution
  - Accretion physics
  - Robust and well studied ignition
  - Physical mechanism for DDT





- Double Degenerate scenario
  - + Rates and delay time distribution
  - Require violent mergers
  - Detonation ignition





# Conclusion

### Take away

Thermonuclear SNe are more diverse than we previously thought

- Probably no single progenitor
- Single Degenerate scenario
  - Rates and delay time distribution
  - Accretion physics
  - + Robust and well studied ignition
  - ± Physical mechanism for DDT





- Double Degenerate scenario
  - + Rates and delay time distribution
  - Require violent mergers
  - Detonation ignition



Conclusions



# Peculiar Supernovae: sub-luminous

### There are two kinds of subluminous supernovae :

- 1991bg-like supernovae
  - ▶ Low <sup>56</sup>Ni mass ( $\sim 0.1 M_{\odot}$ )
  - ▶ <sup>28</sup>Si present in most of the ejecta

#### Detonation at low densities

For example a violent merger of 2 WD of  $0.9M_{\odot}$  (Pakmor & al 2010)

- 2002cx like or type lax supernovae
  - Very low expansion velocity
- Pure deflagration leaving bound remnant

Deflagration naturally explains low kinetic energy and mixed ejecta Leave a bound remnant: C+O white dwarf with an iron core (Kromer & al 2012)



# Peculiar Supernovae : super-luminous

# Super- $M_{ch}$ explosions

Such luminosities  $\Rightarrow$  <sup>56</sup>Ni  $> 1M_{\odot} \Rightarrow M_{WD} > M_{ch}$ 

- Degeneracy pressure cannot support more than  $M_{ch}$
- Centrifugal force could stabilize well above this threshold
- Also rotation will "focus" a deflagration, leaving more fuel for the detonation



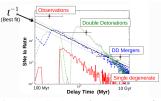
Hillebrandt&al2013

# Delayed detonation of a rapidly rotating WD

A 2  $M_{\odot}$  rotating WD could produce 1.5  $M_{\odot}$  of <sup>56</sup>Ni



# Constraint on the progenitor system


### Rates an delay time distribution

• 
$$\nu_{gal} = 0.003 \ SNe.yr^{-1}$$

• 
$$\nu(t) \propto t^{-1}$$

Binary population synthesis studies are parameterized :

- Common envelope
- Accretion efficiency
- ⇒ Results highly dependent on the group preferred model...



Delay time distribution from Hillebrandt & al 2013

### BPS are not yet mature, but

- ullet DD reproduce naturally a  $t^{-1}$  DTD  $( au_{GW} \propto a^{-4})$
- SD has some problems reproducing the DTD



# **Unconfined DDT?**

In unconfined media a DDT could be triggered through the Zeldovich's gradient mechanism

⇒ turbulence would create the appropriate conditions.

#### Flame and turbulence interaction:

- Gibson scale,  $I_G$ , defined by  $au_{turb}(I_G) = au_{fl}(I_G)$ 
  - $au_{\rm turb} = I/\delta_{\rm v}(I)$  : Eddy turnover time (at scale I)
  - $au_{{\scriptscriptstyle fl}} = I/S_{{\scriptscriptstyle lam}}$  : Flame crossing time (at scale I )
- Karlovitz number :  $Ka = \sqrt{\frac{\delta_{fl}}{l_G}} = \left(\frac{\tau_{fl}(\delta_{fl})}{\tau_{turb}(\delta_{fl})}\right)^{3/2}$ 
  - if Ka < 1: wrinkled flame regime
  - if Ka > 1: distributed regime

## DDT in distributed flame?

Fundamentally different regime ⇒ broadened reaction zone

