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Presented for the “Habilitation á Diriger des Recherches”
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Amphithéâtre Evry Schatzman

Observatoire de Paris, Meudon Campus



Acknowledgements

I am greateful to all people around the globe that over these many years I had the fortune to

encounter and who have enriched my research. A special thanks to my close collaborators

Jean-Michel Alimi and Yann Rasera, it is with them that I walk the paths that explore

the invisible universe, without their dedication most of these routes will still be unknown.

I am thankful to all the members of the jury for the time they have dedicated to me. If

they have been asked to participate is because in different occasions and at different times

I have discussed with them and had the chance to learn from them. Most of all I owe my

wonderful wife, my two beautiful girls and my parents a debt of gratitude for their love,

support and patience that allow me to pursue my bizarre endeavours.

i
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Abstract

This document contains a summary of my research activity, career achievements and

student project supervision. My work has been mainly driven by the quest for Dark

Energy in the Universe, a topic that is central to modern cosmology and which I believe

has much deeper connections with other open problems in theoretical physics and extra-

galactic astrophysics. Pursuing such an ambitious quest has naturally led me to investigate

a large variety of topics in Cosmology. Because of this a complete presentation of the work

done since my doctorate would have demanded a too lengthy dissertation. Hence, in the

spirit of the HDR, I preferred to limit the discussion to a few selected works, focusing

particularly on those which have involved the supervision of undergraduate and graduate

students.
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Foreword

The reader who has no experience of the French Higher Education system might wonder

what “Habilitation à Diriger des Rercherches” (HDR) stands for. In several countries

the PhD is the ultimate academic degree necessary to pursue an academic career. In

others including France, Germany, Switzerland, Sweden to mention a few, the HDR “is

the highest academic qualification a scholar can achieve”1. If the HDR is an academic

degree for PhDs only, then what does it entitle to?

In France holding a PhD does not certificate the ability of fully mastering all aspects

of research work. This is why PhD holders still need to proof their aptitude to “diriger

des recherches”, which can be translated as supervising, running and managing research

projects. Proof comes from the very ultimate academic degree, the HDR, established

in 1984 by the “Savary law” and subsequently regulated by a series of decrees in 1988,

1992, 1995 and 2002. The HDR is an academic degree that allows the holder to officially

supervise PhD students. It is mandatory for full professor positions at universities and,

though not formally required for Research Director (DR) positions at CNRS, it is certainly

an added value. In fact, as member of the “Comité Nationale” of Section 17 of CNRS I

can tell you that one is better off having it than not. The HDR is not only the ultimate

academic degree in France, but also the ultimate academic career certification. Quite

interestingly though, the rules to obtain the HDR appear to be rather inconsistent across

different institutions. Moreover, legal code only gives a list of recommendations about the

content of the HDR application. More or less everything is left to the interpretation of local
1Citation from http://en.wikipedia.org/wiki/Habilitation



administrators. The advantage of applying for the HDR at Paris 7 is that at least their

requirements are clearly stated on their website. One needs to submit a document which

contains a summary of the scientific activity or one or more published papers. This can

be in a format that includes a CV, a summary of student project supervision, description

of the research and its originality, future perspectives and a list or copies of national and

international publications. At this point if you are still confused about what this document

should contain do not panic. As stated in the “Circulaire” 89-004 in application to the

decree of 23 November 1988, the HDR is not a PhD or better still it is not a second PhD.

So I can tell you what this document is certainly not: a PhD thesis. It is not intended

to be a PhD thesis and it will not be one. Nevertheless, you should still find sufficient

information that can demonstrate I have the ability to “diriger des recherches”.
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Parcours: brief history of my time

In 1998 I was an undergraduate student in the last year of the Physics program at the

University of Rome “La Sapienza” looking for a science project upon which writing a

dissertation thesis. This was the last obstacle between me and the dreamed “Laurea”

degree (equivalent to a combined B. Sc. and M. Sc. program of the duration of 4 years)

on a journey that began in 1994, almost 20 years ago. The Physics Department at “La

Sapienza” had always been dominated by theoretical High Energy Physics, a tradition

which can be traced all the way back to Enrico Fermi. During the first three years of

studies, the particle physics environment had quite seriously disturbed my original interest

for the cosmos. However, in 1998, the annus mirabilis, I had the chance to attend the

cosmology lectures by Prof. Franco Occhionero and those on extra-galactic astrophysics

by Prof. Francesco Melchiorri. They gave great overviews of the challenging problems that

Cosmology had to offer to a young generation of physicists. Furthermore, they resonated

with the excitement of an upcoming golden age of observations and experiments; those

that over the past decade have revolutionized the field of Cosmology. These lectures were

very inspiring in several aspects and decisive in directing my inexpert curiosity toward a

career in Cosmology. Particularly, the encounter with Franco Occhionero and his closest

collaborator Luca Amendola (now full professor at the University of Heidelberg) was a

turning point in life. I always wanted to be a Physicist, but now among physicists I

wanted to be a Cosmologist because there is nothing more exciting than aspiring to know

everything !

That year the results of the measurements of luminosity distance to Supernova Type
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Ia indicated for the first time that the cosmic expansion is accelerating, thus providing

evidence for Dark Energy [1, 2]. But Dark Energy was yet to become the central topic of

investigation in Cosmology. Although the Rome group and particularly Luca were quite

responsive to this new field of investigation, the cosmological arena was dominated by

different debates.

In the mid and late ’90, observations of the CMB were not accurate enough to dis-

criminate between the two competing scenarios which were thought to be responsible for

seeding the cosmic structure formation. On the one side was the theory of Inflation and

on the other the cosmological scenario with topological defects. Franco and Luca were

contributing to this debate by investigating a class of inflationary models characterized by

a stage of production of bubble-like defects amid the standard spectrum of nearly scale

invariant adiabatic Gaussian fluctuations [3–5]. They were particularly interested in the

possibility of detecting the signature that such bubbles left on the CMB and calculated

the imprints in a series of papers with Carlo Baccigalupi [6, 7]. It was clear that besides

measuring the CMB power spectrum (for which topological defect models predicted the

absence of acoustic oscillations), searching for non-Gaussian signals was the way to test the

topological defect hypothesis. Around that period a series of articles dedicated to testing

non-Gaussianity through CMB bispectrum statistics appeared in the literature [8–10]. In

particular in [8], the authors claimed the detection of a non-Gaussian signal at a specific

multipole in the COBE data, which at that time contributed to render non-Gaussianity a

hot topic, perhaps as much as it has become in recent years. So I had a project: compute

the CMB bispectrum statistics in topological defect scenarios. This implied developing

the numerical tools to Monte Carlo generate CMB maps using an algorithm developed

by Paolo Natoli (HEALPIX had yet to be written) which I had to modify to account for

the temperature anisotropies induced by topological defects, then compute the bispectrum

statistics and finally confront the inferred distributions against the Gaussian case. The

task was successfully completed by a mix of Fortran coding and Mathematica analysis

algorithms on a Toshiba laptop. Along the way I managed to derive an analytical expres-

sion for the three-point correlation function generated by bubble-like defects on the CMB,

that I used to infer observational bounds on the bubble scenario using the COBE data, a
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study which we published a couple of years later [11]. The results were discussed in my

Italian “Laurea” thesis “Simulation and detection of non-Gaussian signals in the Cosmic

Microwave Background radiation” defended the 17th December 1999 and presented at the

9th Marcel Grossman Meeting in Rome in July 2000, my first big conference. Unfortu-

nately, a few months later the hard disk of my distressed laptop, which had run 24/7

munching Monte Carlos for months in a raw at home or on crowded metros, buses, in the

office and cafes, crashed. Having no backups one year worth of work was for ever lost. A

sign that it was time to move onto new stuff. Nevertheless, I knew I gained something

worth more than one year of work and valuable for the rest of my career. How to work

on cosmological problems I learned it from Franco and Luca. In any quest I learned to

have equal consideration for the theoretical aspects of the problem, the phenomenological

consequences and the comparison with observational data. I also learned to always keep

an interest on many subjects at the same time. Thanks to their approach I learned to

explore problems in their entirety, rather than looking at them from a single perspective.

Most importantly, they taught me to never be dogmatic but always to keep an open mind.

It was time to look for a PhD and I needed to expand my horizons and confront myself

with research abroad. Willing to remain in Europe for the PhD, the choice fell inevitably

on the Physics & Astronomy Department at the University of Sussex. Around the year

2000, Sussex was the ideal place to study Cosmology. It was a strongly motivated group of

cosmologists, particle physicists, string theorists, numerical and observational astrophysi-

cists. A few months after my arrival I started working with Ed Copeland and I become

one of his many students. I owe to him as much as I do to Franco and Luca. I learned how

to work from them, but what to work on I learned it from Ed. His guidance has led me

to success. However, this would not have been possible without the amazing environment

of the Sussex group. People had offices along the same (hospital-looking) corridor, shared

working space in the computer center, had common seminars, had tea together at 3 pm

and pints at 5 pm2. Exchanges were constant and systematically organized, including the

weakly football match on Thursday morning at 10 am. There was no moment of the day
2Sussex campus on the hills outside Brighton is equipped with two pubs that facilitate any sort of

(scientific) discussion.
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that you would not hear an interesting conversation about Inflation, Dark Energy, Galaxy

Clusters, CMB, Red Galaxies, D-branes and Ramond-Ramond charges etc etc. To me it

really felt like being a kid going to the playground to play with other kids all day long.

It made such an inspiring working place where I learned an incredible amount of Physics

and had the opportunity to develop my own research program on a topic that was going

to become central to Cosmology, the quest for Dark Energy. I graduated in the summer of

2003 with the thesis “Phenomenological Aspects of Dark Energy Dominated Cosmologies”.

I was finally the Cosmologist that I wanted to be. Dark Energy and CMB were my

stuff and I was heading for a three years postdoc at Columbia University in New York.

Not surprising my next destination was again a multi-disciplinary group lead by string

theorist Brian Greene and astrophysicist Arlin Crotts, the “Institute of String, Cosmology

and Astroparticle Physics” (ISCAP). Being in the US and especially at Columbia allowed

me to come into contact with several area of research in theoretical cosmology and extra-

galactic astrophysics. I worked with several postdocs and students on the most diverse

topics and interacted with leading scientists. So, if at Sussex I became the Cosmologist

that I wanted to be, it is definitely at Columbia that I have realized myself professionally.

In 2007, motivated by a growing curiosity on cosmological signatures of Dark Energy on

the non-linear structure formation, I moved to the Observatory of Paris as a postdoc in

the “Horizon Project”. That same year I was recruited by the CNRS and permanently

established my quarters at the “Laboratoire Univers et Theory” (LUTH). Here, thanks to

collaboration with my colleagues and friends Jean-Michel Alimi and Yann Rasera, I have

become involved in the study of cosmic structure formation using N-body simulations. This

collaboration has quickly evolved in a team work that has convinced us of the necessity

to form an independent cosmology group at the Observatory of Paris. Joining our diverse

expertise has allowed us to tackle challenging projects such as the “Dark Energy Universe

Simulation Series” (DEUSS) and the “Full Universe Runs” (DEUS FUR). As a result of

this activity, in the summer of 2010 I have proposed a 5-years research project, “Exploring

Dark Energy through Cosmic Structures” (EDECS) to the European Resarch Council call

for ERC-Starting Grant and awarded with a 1.5 million euros grant. The project is

dedicated to the realization of innovative numerical simulations to study the impact of
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Dark Energy clustering on the non-linear cosmic structure formation. The project has

started on April Fool 2012 and the funding will allow me to set up a small team consisting

of 3 postdocs and 1 PhD student. It is a responsibility that I felt ready to embrace and

now it is my utmost priority to lead this project and its contributors to success. However,

for this to be possible I first need to get my HDR and in the next Chapters you should

find all you need to decide whether I deserve the French ultimate academic degree, the

HDR.

Over the past 10 years the quest of Dark Energy has lead me to work on several topics.

Since this is not a PhD thesis, in order to keep the material as concise as possible and in

line with HDR requirements I decided to limit the presentation to three selected topics

which have involved the supervision of students. I will discuss the work I have done on

non-minimally coupled Dark Energy models in Section 1 and in Section 2 the work on

the cosmological implications of dust in the Intergalactic Medium, while I will describe

work on the physical modeling of the dark matter halo mass function in Section 3. I

added at the very end original copies of the published articles discussed Section 1, 2 and

3 respectively. Next, I will discuss my experience with student supervision.



Student Supervision

I have always devoted time to mentoring students. I have received a lot from my mentors

and I feel an obligation to give to younger generations what I received before. I regularly

engaged in the supervision of PhD thesis since I joined the CNRS. At the beginning I

was puzzled as to what kind of supervisor would have been best to be. Then, I quickly

realized that there is not right answer to this question. It would be too naive to say -

be the supervisor that you would like to have had - because it implies that there exists

a perfect supervisor for each one of us and that it is completely unreal. We all have

different characters, interests and goals. Supervising students primarily concerns with

human interaction. As one gets to know students with different personalities one learns

how to deal with each one of them. Something that works for one, may not work for

others. Of course this requires a lot of dedication, because supervising students may turn

not to be the most pleasant voluntary job in the world, unless one is really motivated to

help someone else to realize itself. There is the student that prefers to be left in peace,

then after months it comes with a fully edited paper just asking for your approval. On

the other hand there is the student who is unhappy if it does not stop on your office front

door every morning to tell you about the great ideas that it just had while showering3. I

think what is especially important is to be crystal clear from the beginning about what

the expectations are and then find the ways to get the best out of each of person.

As a postdoc I had the fortune to work with some extremely brilliant and talented

students such as Subinoy Das , Tommaso Giannantonio and Marilena Loverde (rigourously

3Mine do.
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in alphabetical order). However, supervising student projects as a postdoc does not carry

the same sense of responsibility of being a PhD advisor. The latter requires having a long

term vision about the topics that a student should investigate, while at the same time

matching them with the student’s own interests and capabilities.

It is a risky choice that can have a tremendous impact on the future career of the

student. Flexibility, perseverance and most of all student’ commitment to hard work are

necessary to minimize the risk of failure. In the end, for all the effort a supervisor can

make, it is ultimately in students hands to take the responsibility of realizing itself in life.

What the supervisor can do it is only to provide them with the best options and advises.

In France, the majority of scholarships are funded by the National Department of

Science and Education. Every year, depending on Government Funding, doctoral schools

are allocated a limited number of scholarships. Master students need to apply to schools

and after selection the winners can register for a PhD program. Part of the evaluation

process include the PhD project proposal that must have been already concerted with

the sponsoring advisor. Because of this, prospect students start working with their future

mentors already at the level of the Master during a few months internship. It is in this

way that I have met a number of students that I supervised..ops (I cannot officially say

that) I co-supervised in the past few years.

The first student who has contacted me for a Master intership project is Irene Balmes.

In 2008 Irene was a student of Master 2 and I proposed her to use up to date measurements

of gravitational lens time delays to infer constraints on the Hubble constant under different

cosmological model assumptions. Irene impressed me for her fast learning pace and her

skills, in a few weeks she set up the entire analysis software in Mathematica, reproduced

the results of a paper in the literature that I gave her to study and performed the analysis.

The project was simple, the results neat, but not enough for a publication. Nevertheless,

there were many aspects that could have been further developped and which were worth to

investigate in a PhD thesis. After one year leave for voluntary work in Benin, Irene started

her PhD under my supervision. She has worked on the application of Bayesian model

selection methods to model strong gravitational lens potentials of double image lenses

using astrometry and time-delay measurements. While studying the relation between the
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lens potential and the lens halo mass distribution I suggested her to look into the properties

of halo profiles from N-body simulations. This has led her to perform an original analysis

of the DEUSS halo catalogs. She is expected to discuss her thesis before Autumn of this

year, as she will leave for her postdoc.

In the Spring 2009 another Master student knocked at my door, Ixandra Achitouv,

who was looking for a Master 2 internship. In that period I become interested in un-

derstanding the physical processes that shape the halo mass function as we infer it from

numerical simulations. Previous studies performed by our group showed that this carry

a signature of Dark Energy. So, I suggested her to study the Excursion Set Theory and

particularly a series of papers which introduced a path-integral formulation of the theory.

She successfully defended her thesis last September 2012 on “Halo Mass Function of Dark

Matter Halos: Imprints of the Initial Matter Density Field and the Non-Linear Collapse”.

She is currently postdoc at University of Munich. Her thesis has been a co-supervision

with Jim Bartlett at Paris 7. In Section 3 I will discuss the work that we have carried

out during her PhD. Finally, last September I offered a PhD scholarship funded through

my ERC-StG to Linda Blot, who is working with me on coding the Dark Energy fluid

equations in RAMSES/hydro solver to run simulations which will allow us to study the

effects of Dark Energy clustering properties on the non-linear scales.



Chapter 1

Dark Energy Cosmology:

Interaction, Super-Acceleration

and Stability

1.1 Why not just Λ?

Over the past 15 years, measurements of the temperature and polarization anisotropies

of the Cosmic Microwave Background (CMB) radiation [12], surveys of the large scale

distribution of galaxies [13] and the determination of cosmic distances through observations

of Supernova Type Ia (SN Ia) standard-candles [1, 2, 14] have provided precise estimates

of the geometry, matter content, and state of expansion of the universe. On the one hand

these measurements have confirmed the pillars of the Standard Model of cosmology, i.e.

the Hot Big-Bang scenario. On the other hand, they have opened a new window on an

unknown invisible sector that accounts for most of the total matter/energy budget of the

universe.

We have now compelling evidence that the bulk of cosmic matter is non-luminous, with

baryons contributing only for a few percent. Observations strongly indicate that matter in

cosmic structures is primarily made of a Cold Dark Matter (CDM) component [15], which
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accounts for roughly 25% of the total cosmic matter density. Most striking is the discovery

that the remaining 70% consists of an exotic component, dubbed as Dark Energy (DE),

which is thought to be responsible for the present accelerated phase of cosmic expansion.

The presence of a Cosmological Constant (Λ) in Einsteins equations of General Rela-

tivity (GR) provides the simplest, best-fitting solution to the available cosmological data,

thus reconciling the Standard Model of cosmology with the observed accelerating phase.

Contrary to ordinary matter fields, Λ behaves as an effective fluid with constant energy

density (ρΛ) and negative pressure (pΛ), with a characteristic ratio (equation of state)

wΛ = −1. Because of its negative pressure, Λ acts with a repulsive effect on the space-

time expansion, thus if ρΛ dominates the cosmic energy budget it drives a stage of cosmic

accelerated expansion. Current observations indicate that ρΛ ≈ 1047GeV4. However the

smallness of this value has posed a puzzling problem to any attempt of identifying the

physical origin of Λ.

All forms of energy contribute to the curvature of space-time, including that stored

in quantum vacuum fluctuations of the matter fields in the universe. These vacuum

energies behaves as a cosmological constant term in GR and can be computed in Quantum

Field Theory (QFT). For a given cut-off scale kcut−off , which sets the limit of validity

of the QFT, the vacuum energy is k4cut−off . Thus, if QFT is assumed to be valid all

the way to the Planck scale, the resulting vacuum energy density is ∼ 119 orders of

magnitude larger than the observed value of ρΛ. Even assuming the cut-off to be at

the TeV scale, where exact super-symmetric cancelations of vacuum diagrams might take

place, the discrepancy is still ∼ 60 orders of magnitude. This leaves us with an unnatural

fine-tuning of vacuum diagrams with a bare geometrical cosmological constant, that is

the unsolved “Cosmological Constant Problem” (for a review see [16]). One possibility to

solve this puzzle is the existence of an unknown symmetry that forces vacuum energies to

vanish, thus DE would have a different origin. Alternatively, it has been proposed that such

vacuum energy may decay over time [17], but in such a case the phenomenology will differ

from that of a pure Cosmological Constant model. Thus, if we exclude untestable multi-

universe explanations as well as anthropic selection arguments, all attempted solutions

to the cosmological constant problem point toward a different explanation for the DE
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phenomenon.

In principle, we could imagine Λ being another fundamental gravitational constant,

such as Newtons constant, G. However, even in this case we will find ourselves with

the unsettling question as to why gravity is ruled by two very different constants: G,

which sets the local gravitational interactions (a multiplicative coupling constant), and Λ,

completely different in nature (the only additive constant of Physics), which controls the

global dynamics of the universe in a very coincidental way. In fact, its value seems to be

precisely set such as to allow for a sufficient period of structure formation, as we observe

it today. Therefore, is quite remarkable that the Standard Model (SM) of cosmology with

Cosmological Constant, so called “concordance” ΛCDM, accounts so well for the data

available thus far. In the lack of theoretical prejudice, we should therefore keep an open

mind. Since the discovery of Dark Energy several hypotheses have been advanced.

We can distinguish three main approaches: a modification of Einstein gravity on cos-

mological scales, the existence of additional scalar degree of freedom beyond the Standard

Model of Particle Physics, or a relaxation of the Cosmological Principle at small scales.

The latter is indeed very persuasive since it does not require any new additional physics.

On the other hand, it is extremely hard for these models to account for all cosmological

observations so far collected. My personal view on this approach is that general relativistic

effects due to the inhomogeneous matter distribution at small scales and late times may

well be there, but are not sufficiently important such as to solely account for DE. Modified

gravity scenarios are also an original possibility. Though, the formulations so far advanced

suffer to a different extent of technical difficulties. The same is true for “quintessence”

scalar field scenarios. A class of interesting scalar models has emerged from noticing that

a relaxation of the Equivalence Principle may provide an alternative approach to solving

the Dark Energy problem. In fact, if gravity possess other degrees of freedom which cou-

ple non-universally to the various matter species [18] or via density dependent screening

mechanisms [19], then these may be responsible for the Dark Energy we observe today.

Personally, I find these scenarios quite intriguing since they open up the possibility of an

invisible richness in the dark sector, which can be tested in the upcoming future with fine

observations of the cosmic structures.
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1.2 Phantom Dark Energy or Dark Sector Interactions?

Observationally the quest for Dark Energy has primarily focused on inferring the value

of the equation of state wDE . This is because a measurement of wDE $= −1, would be

indicative of a dynamical component rather than a Cosmological Constant. A variety of

measurements constrain the dark energy equation in a range of values that extends in a

“super-negative” region with wDE < −1 (see e.g [14,20,21]). A fluid with such an equation

of state, usually referred as “phantom” Dark Energy, violates the Weak Energy Condition

[22]. Because of this self-consistent theoretical formulations of phantom Dark Energy

models have prooven extremely difficult (see e.g. [16]). However, such a measurement

refers to the properties of an effective fluid, can there be other physical interpretations

which do not require the existence of phantom fields?

In 2004, Huey and Wandelt [23] showed that if one consider a Dark Energy component

in the form of a scalar field coupled to a matter species than the resulting cosmic expansion

is similar to that of a phantom Dark Energy dominated cosmology. However, in their

specific formulation the Dark Matter density becomes negligibly small beyond z > 1, thus

requiring the introduction of an additional non-interacting Dark Matter species. This work

raised a number of interesting questions. Is phantom cosmic dynamics a generic feature of

coupled dark matter/quintessence models? Are there any constraints on the scalar field

dynamics or the form of the scalar interaction to mimic a super-accelerating universe?

At that time I was postdoc at Columbia University and Justin Khoury also postdoc

in the group was pondering similar questions inspired by his work on the Chameleon

cosmology. Finding an answer made a neat project suitable for a student and Subinoy

Das, who at that time was an undergraduate student at Columbia University, accepted the

task. The project was developed over a few months period of close collaboration between

the three of us. The results were published in [24].

We set the problem in the most general terms by considering a Yukawa-like interaction

between a quintessence field φ and Dark Matter,

f(φ/MPl)ψ̄ψ , (1.1)

where f is an arbitrary monotonic function of the scalar field φ, MPl is the Planck constant
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and ψ is a Dirac spinor describing the Dark Matter particle. For simplicity we assumed

no coupling with baryons such as to satisfy solar-system tests of gravity. Because of the

field evolution, Dark Matter particles have a time-dependent mass, thus in a Friedman-

Lemaitre-Robertson-Walker universe the dark matter energy density does not scale with

the scale factor as a−3, rather

ρDM =
ρ(0)DM

a3
f(φ/MPl)

f(φ0/MPl)
, (1.2)

where φ0 is the field value today. By equating the corresponding Hubble equation to the

standard one for non-interacting Dark Matter and Dark Energy with equation of state

weff we obtained the relation

weff =
wφ

1− x
. (1.3)

where

wφ =
φ̇2/2− V (φ)

φ̇2/2 + V (φ)
, (1.4)

with V (φ) the scalar self-interaction potential and

x ≡ −
ρ(0)DM

a3ρφ

[

f(φ/MPl)

f(φ0/MPl)
− 1

]

. (1.5)

If f(φ0/MPl) increases with time then x ≥ 0. Thus, today we have weff = wφ > −1,

however in the near past when 0 < x < 1 we can have weff < −1. We have shown

explicitly that this occur in the case of a coupled model with f(φ/MPl) = exp(βφ/MPl) and

scalar potential V (φ) = M4(MPl/φ)α, and generally it is true for any “tracker” potential

provided β > 0. In such a case, the scalar field decays into Dark Matter particles, thus

transfering energy from the field to Dark Matter, while the coupling function stabilizes the

runaway self-interaction potential. Hence, the scalar field evolves in an effective potential

characterized by a minimum which moves toward large field values as the system evolves.

The minimum is an attractor solution of the system with the scalar field slow-rolling around

it. This is the so called “adiabatic” regime. We showed that for natural coupling values,

β ∼ O(1) (order of gravitational strength) and assuming a nearly flat scalar potential,

the cosmic dynamics resemble that of a phantom Dark Energy model with a constant

weff ≈ −1.2. In this case differences in the luminosity distance are of order of 2% up to
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z = 2. On the other hand, we showed that such models can leave a distinctive imprint in

the cosmic structure formation. In fact, the scalar interaction alters the gravitational of

collapse of Dark Matter density fluctuations in a scale dependent manner. This is because

the field mediates a scalar fifth force between DM particles with finite range that for an

inverse-power law potential has given by

λ = V −1/2
,φφ =

√

φα+2

α(α+ 1)M4Mα
Pl

. (1.6)

Hence, matter perturbations on scales larger than λ evolve as in the uncoupled case,

while those on smaller scales feel a gravitational interaction that is 1 + 2β2 stronger.

This has important phenomenological implications since it implies a more efficient DM

clustering on the non-linear scales.

1.3 Adiabatic stability of linear density fluctuations

Several works in the literature have pointed out that coupled models suffer of instabilities,

with scalar field fluctuations becoming unstable at early times and inducing a non-linear

regime of gravitational collapse of the Dark Matter density perturbations on the large

scales deep in the matter-dominated era. This immediately rules out these models unless

the amplitude of the scalar coupling is constrained to be unnaturally small. In 2008, I

decided to study this problem in greater detail. In fact, from a numerical analysis of

the system I was aware of the presence of instabilities (which I initially thought to be

of numerical origin). However, these occurred only for certain dynamical regimes of the

scalar field which were not attractor solutions of the system. This contrasted with works in

the literature that claimed exponentially unstable growing modes to be a generic features

of coupled models. Even the analysis by Trodden et al. [25] or that of Majerotto et al. [26]

where not fully convincing. The former suggested that since in the adiabatic regime the

system behaves as a single adiabatic fluid for which the square of the adiabatic sound

speed, c2a = ṗT /ρ̇T , equals the square of the sound speed of pressure perturbations in the

fluid rest frame, c2s = δpT /δρT , the one that controls the clustering properties of the fluid,

then having found that c2a = ṗT /ρ̇T ∝ −β implies the presence of large scales Jeans-like
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instabilities for β > 1. In the analysis of Majerotto et al. [26] the perturbations were

studied in a gauge invariant formalism in the case of Dark Matter coupled to a generic

Dark Energy fluid with constant equation of state, wDE . However, their equations become

singular for wDE → −1 which corresponds to the behavior of the scalar field equation of

state in the adiabatic regime. Thus, the instabilities they found for wDE $= −1 referred to

a different dynamical regime of the system, not the adiabatic one.

The issue deserved a clarification which I set to discuss in [28]. Rather then assum-

ing the adiabaticity of the system I first considered the linear equations for the coupled

scalar field and Dark Matter perturbations in the synchronous gauge (the choice of the

gauge turns out to be irrelevant), then I derived the linear perturbation equations for

the total fluid and evaluated the expressions for the sound speeds in the adiabatic regime

approximation to find

c2aT = −β
φ̇

3H
, (1.7)

and

c2sT = −
1

1− 1
β

δDM
δφ

. (1.8)

In the adiabatic regime 3Hφ̇ ≈ 0 due to the slow-roll dynamics of the field, thus the

term φ̇/3H is negligibly small compared to β. This implies that c2aT < 0, however, the

absolute value is exponentially small even for β ∼ O(1). Similarly, since in the matter-

dominated era the scalar field is subdominant compared to Dark Matter, δφ/MPl ) δDM ,

thus c2sT ≈ βδφ/δDM ≈ 0 and never negative (the system starts with adiabatic initial

conditions, for which δφ and δDM have the same sign). This implies that during the

adiabatic regime the system behaves as an adiabatic fluid to very good approximation

since c2aT ≈ 0− and c2sT ≈ 0+. Hence, even in the case of β * 1 instability cannot

occur on large-scales because they are suppressed by the slow-roll dynamics of the field.

The numerical study of the coupled equations of the system along the adiabatic attractor

solution of the field confirms these conclusions.

Finally, by solving numerically the system I was able to study also the case of non-

attractor solutions, for which analytical formula of the relevant quantities cannot be de-

rived. In particular I found that instabilities occurs only for initially large scalar field



1.3 Adiabatic stability of linear density fluctuations 23

0.01 0.1 1
-1

-0.5

0

0.5

1

0.01 0.1 1

-10

0

10

20

a

0.01 0.1 1

0.01

0.1

0.01 0.1 1

0

10

20

a

Figure 1.1: Evolution of φ (top right panel), wφ (top left panel), δφ (bottom left panel)

and δDM (bottom right panel) for k = 0.001, 0.01 and 0.1.

values, corresponding to φi > φimin (Figure 1.1). In such a case the field rolls down a steep

part of the effective potential, quickly acquires kinetic energy which is then dissipated

through large damped oscillations whose frequency increase as the amplitude diminishes.

As shown in [27], this is a proxy for the presence of scalar field instabilities as in the case

of pre-heating. Here, because of the energy transfer from the scalar field to Dark Matter,

the instabilities of the field perturbations are transmitted to that in the Dark Matter com-

ponent, causing an exponential growth of the perturbations on the linear scales. During

this oscillatory regime of the homogeneous part of the scalar field evolves with an average

equation of state wφ > −1, which recover the results of Majerotto et al. [26].



Chapter 2

Cosmological Implications of

Inter-Galactic Dust

2.1 Luminosity Distance and Dust Extinction

Cosmic distance measurements to Supernova Type Ia are a sensitive probe of the cos-

mic expansion history over a time period which sees the emergence of the Dark Energy

phenomenon. Their use as cosmic standard candles relies on the presence of correlated

features light-curve features which allow a standardization of high-redshift observations

using a local calibrated sample.

The luminosity distance to a supernova at redshift z is given by

mB(z) = MB + 5 logH0dL(z), (2.1)

wheremB(z) is the apparent SN magnitude in the B-band, MB = MB−5 logH0+25 is the

“Hubble-constant-free” absolute magnitude. The peak luminosity-decline rate correlation

of SN light-curves is the most prominent feature used to standardize SN data [29, 30].

However, it is only in the past ten years or so that the origin of this empirical relation has

become clearer (see e.g. [31, 32]).

The most accredited scenario of SN Ia is the explosion of a degenerate C/O White

Dwarf at the Chandrasekar mass limit due to the accretion of mass from an evolved
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companion star. The photons that we observe today as SN Ia are the decay product of Ni

synthesized during the explosion. Improvements in the physical modeling of the explosive

phase through high-resolution simulations have shown that one parameter family of light-

curves may arise if the propagation of the burning flame undergoes a transition from

subsonic deflagration to supersonic detonation. The earlier the transition the greater

the amount of Ni synthesized. This cause both higher peak-luminosity, higher density

and higher temperatures which increase the opacity of the gas thus allowing for a slower

energy release which delays the decrease of the SN light-curve.

Current observations are characterized by a dispersion about the standard-candle rela-

tion of ∼ 0.15mag [33]. Whether larger statistical sample may reduce such dispersion by

an order of magnitude is still debated, since it is not clear that at that level of accuracy

SN Ia remains standard-candles. Errors may well become dominated by astrophysical

systematics.

Present SN Ia data are marginally informative on Dark Energy provided external con-

straints on the cosmic matter density are included. Even in such a case the interpretation

of Dark Energy parameter inference requires careful consideration (see e.g. [34, 35]). The

effect of systematic uncertainties on future SN data had been considered only at the level

of parametric studies which assumed unphysical redshift dependent off-sets [36, 37].

During my last postdoctoral year at Columbia University I was particularly involved in

estimating the performance of the ALPACA survey and consequently become interested

in quantifying the effect of astrophysical systematics [38] on the future SN surveys. Ex-

tinction by a diffuse dust component in the Inter-Galactic Medium (IGM) is one of such

systematics. Here, I will briefly summarize the most salient points of my analysis and

refer the reader to the original article for more details [39].

Dust particles are present in the interstellar medium causing the absorption of nearly

30 − 50 per cent of the light emitted by stars in the Galaxy. In contrast, very little is

known about the presence of a diffuse dust in the IGM. The existence of such component

has been speculated upon for years; at the time I worked on this project no direct evidence

of IGM dust was available. Nevertheless, the presence of metal lines in the X-ray spectra

of galaxy clusters (see e.g. [40]) and in high-redshift Lyman α clouds left this hypothesis
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still viable [41, 42]. This situation has changed in recent years, thank to a number of

observations that have provided the first direct evidence of dust particles in the IGM. As

an example [43] obtained the first detection of dust reddening in the Intra-Cluster Medium

(ICM), while angular cross-correlation studies of large samples of background distant

quasars with foreground galaxies provided evidence of reddening signature of diffuse dust

on scales ranging from 20 kpc up to several Mpc [44,45], we will return on this work more

in detail in the next Section.

The conditions in the IGM are unfavorable to the formation of dust grains. Dust forms

in stellar environments inside galaxies, nonetheless several mechanisms (stellar winds,

SN explosions, etc.) can expel grains from formation sites in the IGM. As an example,

simulations have shown that grains can efficiently diffuse over considerable distance (up

to several hundred kiloparsec over one billion years) [46]. The presence of diffuse dust in

the IGM has several consequences. From the point of view of galaxy formation the large

scale motion of dust provides mass exchange between galaxies and the IGM. On the other

hand, this component may play an important role in regulating the thermal equilibrium

of the IGM and contribute to the metal pollution of the medium. IGM dust particles

also contribute to the extinction of SN Ia photons, however, different from grains in the

interstellar medium, IGM dust particles have undergone several selection processes that

have altered their original size distribution. Because of this, the galactic extinction law is

hardly justifiable for IGM dust. In particular, due to sputtering with the hot gas in the

IGM it is expected that the population of dust grain is primarely made of large particles in

the range ∼ 0.05µm to ∼ 0.1µm. In such a case the extinction law tends to flatten since

scattering on large grains tends to be independent of the wavelength of light-rays, thus the

absence of reddening does not guarantee that incoming photons have freely propagated.

Constraints on the IGM dust density have been inferred from several indirect measure-

ments. As an example Aguirre & Haiman [47] have inferred an upper bound on the cosmic

dust density of Ωd ! 10−5 at z ! 0.2 from the FIRAS/DIRBE limits on the far-infrared

background emission. This is because dust particles absorb UV-photons from star forming

galaxies and remit in the far-infrared. Similar bounds where inferred from the thermal

structure of the IGM [48] as well as direct constraints on the scattering of IGM grain along
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the line-of-sight of luminous X-ray source [49].

In the presence of dust extinction Eq. (2.1) becomes

m̃B(z) = mB(z) +AB(z), (2.2)

where AB(z) is the B-band extinction. In order to evaluate this term it is first necessary to

model the evolution of the IGM dust density. Following the work of Inoue & Kamaya [50]

this can be obtained assuming that the abundance of IGM dust evolves proportionally

to the cosmic mean metallicity. The latter can be inferred assuming that the amount of

metals released in the IGM is proportional (on average) to the cosmic Star-Formation-

History (SFH). In such a case if we assume that metals are instantaneously ejected from

newly formed stars, the metal ejection rate per unit comoving volume at redshift z can be

written as ρ̇Z(z) = ρ̇SFR(z)yZ where ρ̇SFR is the star formation rate and yZ is the mean

stellar yield. If yZ is constant, it follows that the mean cosmic metallicity is given by:

Z(z) =
yZ

Ωbρc

∫ zS

z
ρ̇SFR(z

′)
dz′

H(z′)(1 + z′)
, (2.3)

where Ωb is the baryon density, ρc is the current critical density, H(z) is the Hubble rate

and zS redshift at which star formation began. Finally, assuming a constant dust-to-gas

ratio D of the IGM, the mass fraction of dust to the total metal mass is given by χ = D/Z,

and the differential number density of dust particles in a unit physical volume reads as

dnd

da
(z) = χ

Z(z)Ωbρc(1 + z)3

4πa3+/3
N(a), (2.4)

where + is the grain material density and N(a) is the grain size distribution normalized

to unity.

The amount of cosmic dust extinction on a source at redshift z observed at the rest-

frame wavelength λ integrated over the grain size distribution is then given by:

Aλ(z)

mag
= 1.086π

∫ z

0

c dz′

(1 + z′)H(z′)

∫

a2Qλ
m(a, z′)

dnd

da
(z′)da, (2.5)

where c is the speed of light and Qλ
m(a, z′) is the extinction efficiency factor which depends

on the grain size a and complex refractive index m of the grain material. This factor can

be computed by solving numerically the Mie equations for spherical grains. From Eq. (2.5)
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Figure 2.1: Cosmic gray dust extinction in the B-band (upper panels) and color excess

(lower panels) as function of redshift of the source for BF (left panel) and MRN (right

panel) grain size distributions in the range 0.02−0.15µm. Solid and dash lines correspond

to silicate and graphite grains respectively. Thick (thin) lines correspond to high (low)

SFH models.
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we can infer that the extinction at a given redshift depends on the dust properties and the

metal content of the IGM. More specifically, for a given cosmological background a model

of dust is specified by the grain composition, size distribution and material density, the

mean interstellar yield, the star formation history and the IGM dust-to-total-metal mass

ratio.

In Figure 2.1 we plot the extinction in the B-band (upper panels) and the color B-V

(lower panels) for a standard LCDM model in the case of Silicate and Graphite grains

respectively, for two different grain size distribution: uniform as resulting from the study

of dust migration (left panels) and power law as in the case of the Milky Way (right

panels). At the time of my analysis it was unclear whether the Star-Formation-Rate at

high-redshift (z > 1) declined (low-SFH) or flattened (high-SFH), the extinction for these

two scenarios is also shown in Figure 2.1. The current consensus is that SFR declines at

high-redshift [51].

Notice that extinction can raise up to 0.1mag at z ∼ 1.5, while reddening would re-

quire photometric measurements better than 1% accuracy. In order to quantify the impact

on the Dark Energy parameter inference from future SN searches, assuming Eq. (2.2) I

generated synthetic samples of few hundreds SN Ia per redshift bin up to z ∼ 2 for a

fiducial LCDM model and different IGM dust models which are consistent with current

astrophysical constraints. By running a blind Markov Chain Monte Carlo (MCMC) likeli-

hood analysis using Eq. (2.1) I then inferred the DE model parameters. The results have

shown that a systematic bias at more than 2σ compared to a dust-free universe. Indeed,

the presence of dust can mimic a time-varying DE component and shift the equation of

state towards more negative values. This is because assuming no extinction SN appear to

be farther away, hence to account larger luminosity distance at high redshifts requires a

more negative value of w.

The conclusion of my analysis is that in the light of current astrophysical observations,

extinction by IGM dust grains can be a relevant source of systematic bias for future

SN data analysis. Nevertheless, several observations can provide us with the necessary

information to account for its effect. As I will discuss in the next Section cross-correlation

studies can provide a better insight on the IGM dust properties.
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2.2 IGM Dust and Angular Cross-Correlations

The presence of IGM dust along the line-of-sight in the proximity of foreground galax-

ies alters the flux of background sources, causing fluctuations about the sample average.

If dust is mostly concentrated in the halos surrounding the foreground galaxies and/or

within galaxy clusters at low-z, one can expect flux fluctuations to increase as the back-

ground sources are at smaller angular separations from foreground objects. Consequently,

IGM dust induce correlations between flux fluctuations of background sources relative to

foreground objects. Cosmic magnification by weak gravitational lensing can also generate

angular correlations between independent samples. However, at optical wavelengths this

effect is opposite to the flux fluctuations induced by cosmic magnification1. In fact, the

observed flux of a source at redshift z in the direction of the sky n̂ is given by

F obs(n̂, z) = Fµ e−τ + Fe−τ̄(z) [1 + 2κ(n̂, z)− δτ(n̂, z)] , (2.6)

where the lensing magnification µ + 1+2κ with κ the lensing convergence and the optical

depth τ ≡ τ̄ + δτ with δτ the spatial fluctuations of the optical depth.

In 2006 a number of articles described how lensing magnification could be inferred by

measuring the spatial correlation of supernova flux fluctuations [52, 53]. Pengjie Zhang

proposed me to compare the amplitude of the dust induced correlations in SN samples to

those generated by lensing magnification. The results of that work are published in [54]

which I refer to for further details. Here, I will briefly sketch the key results of our work.

SN flux fluctuation correlations can be inferred from the estimator δF (n̂, z) ≡ F obs/F̄ obs−

1, where F̄ obs(z) + F̄ e−τ̄(z) is the average flux of the SN sample [52]. From Eq. (2.6) we

then have δF = 2κ− δτ , hence δF provides an estimate of the gravitational lensing only if

fluctuations in the optical depth are negligible. In terms of the angular power spectrum

we have
1

4
CδF (l) = Cκ +

1

4
Cδτ − Cκδτ , (2.7)

where Cκ, Cδτ , Cκδτ are the angular power spectra of κ, δτ , and the κ-δτ cross correlation.
1Hereafter, lensing magnification refers to both the cases of magnification (µ > 1) and de-magnification

(µ < 1).
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Using the Limber’s approximation these read as:

l2Cκ

2π
=
π

l

[

3ΩmH2
0

2c2

]2 ∫

∆2
δ

(

l

χ
, z

)

W 2(χ,χs)χdχ , (2.8)

l2Cδτ

2π
=
π

l

[

1

2.5 log e

]2 ∫

∆2
δd

(

l

χ
, z

)[

dĀ

dχ

]2

χdχ , (2.9)

and
l2Cκδτ

2π
=
π

l

3ΩmH2
0

5c2 log e

∫

∆2
δδd

(

l

χ
, z

)

W (χ,χs)
dĀ

dχ
χdχ, (2.10)

where ∆2
δ is the dimensionless non-linear matter spectrum and ∆2

δδd
and ∆2

δd
are defined

analogously. The spatial distribution of IGM dust is not known, the simplest assumption

is that dust traces the total mass distribution. In such case ∆2
δd

= b2d∆
2
δ and ∆2

δδd
= bd∆2

δ ,

where bd is the dust bias.

Defining ΣL ≡ 3
2Ωm

H2
0

c2
∫

W (χ,χs)dχ, one has δτ/κ ∼ bdĀ/ΣL, hence Cδτ/Cκ ∼

b2d(Ā/ΣL)2 and Cκδτ/Cκ ∼ bd(Ā/ΣL). This indicates that cosmic dust contamination

is negligible only if Ā(z) ) ΣL(z). For realistic IGM dust models discussed in the pre-

vious Section, the redshift evolution of extinction versus ΣL(z) is shown in Figure 2.2.

Since AB and ΣL are comparable, dust extinction effects cannot be neglected in lensing

measurements of SN flux correlation.

In [54] we proposed to use a combination of angular convergence power spectrum mea-

surements and SN angular flux fluctuation correlation to quantify the dust contamination

by the ratio η ≡ |Cκδτ −Cδτ/4|/Cκ ≈ 0.7bdĀ/ΣL, thus allowing to estimate Ā up to model

uncertainties in bd and measurement errors in CdeltaF .

On the other hand constraints on the amount of IGM dust can be inferred from the

study of the galaxy-quasar correlation. For a given line-of-sight, dust extinction reduces

the observed number of galaxies above flux F from N(> F ) to N(> F exp[τ̄ +δτ ]) + N(>

F )[1− α(τ̄ + δτ)]. Here, α = −d lnN/d lnF is the (negative) slope of the intrinsic galaxy

luminosity function N(> F ) and we have assumed τ ) 1. Thus dust inhomogeneities

induce a fractional fluctuation −αδτ in the galaxy number density. Since δτ is correlated

with the matter density field, dust extinction induces a correlation between foreground

galaxies and background galaxies (quasars) such that wfb(θ) = −α〈δτ(θ′)δfg (θ
′

+ θ)〉.

Here, δfg is the foreground galaxy number overdensity. On the other hand, lensing induced
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Figure 2.2: The lensing normalized matter surface density ΣL and the B-band dust ex-

tinction AB for different dust models.

fluctuations in galaxy number density are 2(α− 1)κ [55], where the −1 term accounts for

the fact that lensing magnifies the surface area and thus decreases the number density.

Because of the different dependence on the slope α the signal of extinction and lensing

can be separated simultaneously. Furthermore, while the lensing effect is wavelength

independent, the cross-correlation is wavelength dependent with a small, but non-vanishing

color slope even in the case of gray dust. In [54] we predicted for one our dust models with

Ωd = 10−6 a negative correlation with amplitude ∼ 0.003 at θ = 0.01◦. quite remarkably

this coincides with the characteristics of the quasar-galaxy correlation measured by Menard

et al. [44, 45] from the analysis of the SDSS which have provide the first clear indication

of dust in the IGM.



Chapter 3

Dark Energy and Non-linear Dark

Matter Collapse

3.1 Non-linear scales and DE signatures

How Dark Energy alters the formation and evolution of cosmic structures? Are there ob-

servational features that can shed light onto the nature of this exotic phenomenon? These

are the key questions that have motivated the bulk of my research since my doctorate.

At large scale Dark Energy leaves a distinct imprint on the temperature anisotropies

of Cosmic Microwave Background radiation. CMB photons crossing overdense regions

during the accelerating phase are perturbed by the time variation of the potential wells.

This generates temperature fluctuations which are imprinted on the large angular scales

of the CMB [56]. This is the so called Integrated Sachs-Wolfe effect which has been

detected through cross-correlation measurements of CMB maps with galaxy surveys [57]

as originally proposed by [58] and which provide complementary constraints on DE [59,60].

Dark Energy clustering can also affect the Dark Matter power spectrum on the very large

scales. In the simplest scenario a Quintessence-like component is homogeneous on sub-

horizon scales, while a constant perturbation mode may exist only near horizon scale, thus

causing a small excess of power on the large scale clustering of Dark Matter compared

to the small scales. The effect is of order of a few percent and as such it is hardly
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detectable even with future galaxy survey data due to cosmic variance. On the other hand

a fully inhomogeneous DE component alter the Dark Matter clustering proportionally to

(1 + w)ΩDE/Ωm [61], where w is the DE equation of state, ΩDE and Ωm are the cosmic

DE and matter densities respectively. Thus, for w > −1 the DM clustering is enhanced,

while for w < −1 is suppressed.

At small scales the late time gravitational collapse of Dark Matter perturbations be-

comes non-linear. The onset of mode couplings alters the matter power spectrum on non-

linear scales. Furthermore, as the collapse proceeds Dark Matter particles are bounded

into virialized structures, the halos. These are the building blocks of the cosmic structure

formation, since it is inside these objects that cooling baryonic gas falls in to form the

stars and galaxies that we observe today. Whether DE leaves a clear imprint also on these

scales has been subject of active investigation. Two arguments may suggest a negative

answer to this quest. Firstly, Dark Energy comes to dominate the cosmic energy budget

at late time and its effect are dominant only on the large scales. Secondly, we may expect

that the non-linear regime would erase any dependence on initial conditions and linear

growth history. Due to the non-linear dynamics of the system, this evolutionary regime

of structure formation is mostly studied through N-body simulation experiments. Early

studies of the non-linear clustering of Dark Matter in Quintessence cosmologies found re-

sults that seemed to support these arguments (see e.g. [62, 63]). However, none of these

works performed neither a systematic study of the problem nor possessed the numerical

accuracy to detect the feeble DE signatures. As an example a result that has been very

influential in suggesting the idea that the non-linear clustering of Dark Matter is indepen-

dent not only of Dark Energy, but of the underlying cosmological model concerned the

halo mass function inferred from N-body simulations [64]. This particular study found

that when properly scaled to account for the mean matter density and the variance of the

linear density field the number density of Dark Matter halos can be expressed in terms

of a universal fitting formula which does not dependent on the underlying cosmology to

within 20% accuracy.

The research program that Jean-Michel Alimi, Yann Rasera and myself have set at

LUTH aims to asses the impact of DE on the non-linear structure formation through a
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systematic and detailed physical analysis based on the use of accurately designed N-body

simulations. The bulk of this work is still ongoing, nevertheless in the past three years we

have obtained some important results that falsify the arguments against the presence of

DE effect on non-linear scales.

In [65] we have shown that DE dependent modifications of the Dark Matter power

spectrum occurs on non-linear scales above the stable clustering regime. These are a

manifestation of the fact that the non-linear regime carries a memory of the past linear

growth. In fact, we find that relative to the standard LCDM case deviations of the non-

linear matter power spectrum are correlated with the integral of the growth factor of

the underlying DE model relative to that of the LCDM. Again this is because above the

stable clustering scales the non-linear regime does not erase information on the linear

growth phase as shown in [66]. Similar conclusions where inferred from the numerical

study by the Durham group led by Elise Jennings [67].

In [68] we have tackled the issue of the “universality” of the mass function and inden-

tified the conditions for which an apparent universality may occurs. In particular, we find

that models with nearly identical linear growth histories exhibit approximately identical

mass functions to numerical precision. In contrast, models which do not share the same

linear growth function predict different mass functions. As clearly shown by our study

even when properly scaled the mass function still carries a characteristic imprint of the

underlying DE model, which causes deviations from a universal behavior. We find such

deviations to be correlated with the value of the linearly extrapolated critical density δc

predicted by the spherical collapse model of the DE model under consideration. Using the

Sheth-Tormen formula [69] which explicitly depends on this quantity to fit the numerical

data reduces the amplitude of such deviations. Nevertheless, excess residuals at different

redshifts still remains and which we find to be correlated with the values of the virial over-

density predicted by the spherical collapse model at that redshift. These results indicated

that the entire shape of the mass function and not simply the exponential cut-off at the

high-mass end carry cosmological information. It is this study that has lead me to further

investigate the physicality of the halo mass function. A topic which in recent years I have

worked on in collaboration with my student Ixandra Achitouv.
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3.2 Halo Mass Function and Collapse Model

The seminal work by Press & Schechter (PS) [70] is the first attempt to derive the halo mass

function from the statistical properties of the linear Dark Matter density perturbations.

The basic idea behind the PS approach is that halos form in regions of the smoothed linear

density field which lie above a critical linearly extrapolated density threshold of collapse,

such as predicted from the spherical collapse model. Then, the number density of halos in

the mass range [M,M + dM ] can be inferred from the fraction of mass elements in halos

with mass > M , namely
dn

dM
=

1

V

dF

dM
, (3.1)

where

F (M) =

∫

∞

δc

dδ P (δ,M), (3.2)

with δc being the collapse threshold and P (δ,M) the probability distribution function of

the linear density field smoothed over a scale R associated to a mass M = ρ̄V (R), where

ρ̄ is the mean matter density and V (R) =
∫

W (x,R) d3x the volume filtered by W (x,R)

the smoothing function in real space. In the case of a Gaussian random field with zero

mean and variance S ≡ σ2(R), P (δ, S) = e−δ2/2S/
√
2πS and Eq. (3.2) gives

F (M) =
1

2
Erfc

[

δc√
2S

]

. (3.3)

At this point is convenient to rewrite Eq. (3.1) as

dn

dM
=
ρ̄

M2

d log σ−1

d logM
f(σ), (3.4)

where we have factorized the contribution of the mean matter density and the variance

of the smoothed linear density field, while the so called “multiplicity function” f(σ) =

2σ2dF/dS encodes all information on the non-linear collapse of Dark Matter halos. From

Eq. (3.2) one finds

fPS(σ) =
1√
2π

δc
σ
e−

δ2c
2σ2 , (3.5)

the exponential cut-off in the above formula is consistent with the N-body mass function at

the high-mass end, but overall Eq. (3.5) poorly reproduce results from N-body simulations.

A key limitation of the PS approach is the miscounting of the number of regions which are
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above the threshold at multiple scales, the so called “cloud-in-cloud” problem. Since the

fraction of mass element in halos is obtained by indiscriminately integrating over density

perturbations independently of the mass enclosed the formalism does not make difference

whether a collapsed mass M1 is embedded in a larger collapsed region M2 > M1. The

PS approach wrongly counts both M1 and M2 as contributing to the mass function, while

only M2 should be considered.

The formulation of the Excursion Set theory by Bond et al. [71] encompasses the original

Press-Schecther idea with a powerful mathematical formalism in which the computation

of the mass function is reduced to solving a stochastic calculus problem. As shown in [71],

at any point in space the density fluctuation field behaves as a stochastic variable obeying

a Langevin equation as function of the smoothing scale:

∂δ

∂R
= ζ(R) & ζ(R) =

1

(2π)3

∫

d3kδ(k)
∂W̃

∂R
e−ikx, (3.6)

where ζ is a noise term that depends on the form of the filter function (halo mass definition)

and statistical properties of the linear density field. Halos are associated to random tra-

jectories which first-cross the critical density threshold of collapse. It is the first-crossing

requirement together with the introduction of a mass ordering through the pseudo-time

dependence on R that solves the cloud-in-cloud problem.

The goal of the Excursion Set is to compute the probability distribution of random

walks obeying Eq. (3.6) that have yet to cross the collapse threshold, Π(δ, δc, S). This

allows to compute the first-crossing distribution

dF

dS
= −

∂

∂S

∫ δc

−∞

Π(δ, δc, S) dδ, (3.7)

from which one can derive the multiplicity function, f(σ).

In the case of uncorrelated Gaussian random walks the Excursion Set reduces to solving

a simple diffusion problem and the multiplicity function matches the Press-Schechter result

multiplied by a factor of 2, that is the so called Extended Press-Schechter. Hence, even

after solving the cloud-in-cloud problem the Excursion Set prediction still fail to reproduce

N-body simulation results. This is because assuming uncorrelated Gaussian random walks

with a spherical collapse barrier is a too simplistic model of halo formation. In fact,
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assuming that the random walks are uncorrelated implies that the smoothing function of

the linear density field differs from the standard one (e.g. when computing σ8), a spherical

top-hat in real space. Hence, the computation of Eq. (3.4) is not coherent. However, in

the case of a top-hat in real space the random walks are correlated and the computation of

the multiplicity function cannot be performed analytically, thus requiring numerical Monte

Carlo simulations. Another oversimplification concerns the spherical collapse threshold.

As shown in a vast literature (see e.g. [72,73]) the Dark Matter collapse at small scales can

be highly non-spherical and the collapse of a homogeneous ellipsoid may be a much better

model to extrapolate the collapse threshold. As shown by Sheth et al. [74] in the ellipsoidal

collapse model the linearly extrapolated collapse threshold is randomly distributed variable

with mass dependent average. By numerically solving the first-crossing distribution of

uncorrelated random walk for such barrier model Sheth et al. found that the inferred

multiplicity function provides a good approximation of the Sheth-Tormen formula derived

empirically to fit the GIF simulations [69] and as mentioned in the previous chapter the

Sheth-Tormen fitting formula is capable of encoding some of the cosmology dependence

of the N-body mass function. This clearly suggests that the parameters of Sheth-Tormen

formula may have a direct physical meaning related to the collapse model, as well as to

the mass definition of halos which depends on the smoothing function.

In 2009 in a series of papers [75], Maggiore and Riotto described how to derive self-

consistent and fully analytical predictions for mass function using path-integral techniques.

The application of this mathematical approach to the Excursion Set theory offers the

opportunity to address several questions about the Dark Matter halo mass function and

statistics of Dark Matter halos in general. I was particularly interested in two line of

research. First, developing a clear analytical link between barrier model parameters (and

their cosmology dependence) and the form of the mass function which in the long term

can optimize the cosmological parameter inference from observational tests such as cluster

number counts. Second, given the interest on the mass function as probe of primordial

non-Gaussianity, it needed to be addressed how the non-spherical halo collapse affected

the signature of primordial non-Gaussianity on the mass function. This made the subject

of a doctoral thesis. At that time Ixandra Achitouv was looking for an internship in



3.2 Halo Mass Function and Collapse Model 39

Cosmology as part of the NPAC-School Master 2 program and I proposed her to study

the articles by Maggiore and Riotto. Since I do not have the HDR I discussed with Prof.

Jim Bartlett of Paris 7 about the possibility of a “co-tutelle” which would allow me to

sponsor Ixandra application for a PhD scholarship and supervise her work. In the end

everything worked out and Ixandra started her PhD in the Autumn 2009. In September

2012 she obtained her PhD with a thesis on “Dark Matter Halo Mass Function: Imprints

of the Initial Density Field and Non-Linear Collapse”.

Hereafter, I will just outline the basic idea of the path-integral approach to the Ex-

cursion Set theory and summarize the main results of our work. I leave the reader to the

original articles for a detailed discussion.

As we have already mentioned the goal of the Excursion Set theory is to compute the

probability distribution of random walks that do not cross the barrier. In the path-integral

this computation is performed as an integral over all possible trajectories of the systems

that obey such a constrain. More specifically, let us consider a stochastic variable Y

varying over the time interval [0, S] discretized in steps ∆S = ε such that at Sk = kε with

Y (Sk) = Yk for k = 1, ..., n. Then, the transition probability from the starting point Y0 to

Yn at S = Sn of trajectories that never cross a boundary at Y = 0 is given by ensemble

averaging of the random walks

Πε(Y0, Yn, Sn) =

∫

∞

0
dY1...

∫

∞

0
dYn−1 Dλ ei

∑n
i=1

λiYi〈e−i
∑n

i=1
λiYi(Si)〉, (3.8)

where the term with brakets is nothing else than the exponential of the partition function

of the system, eZ , where

Z =
∞
∑

p=1

(−i)p

p!

n
∑

i1=1

...
n
∑

ip=1

λi1 ...λip〈Yi(Si1)...Y (Sip)〉c, (3.9)

with 〈Yi(Si1)...Y (Sip)〉c the connected correlators of the random walks. Hence, a stochastic

model is fully specified by the correlation functions. The markovian (uncorrelated) case

corresponds to having the 2-point function being a δ-Dirac and all higher moments to

be vanishing. If the amplitudes of the connected correlators are small compared to the

markovian analog than one can compute Πε(Y0, Yn, Sn) as a perturbative expansion around

the markovian solution. Maggiore & Riotto [75] have shown that in the case of standard
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Tinker et al. (2008)

Diffusive Drifting Barrier

Maggiore & Riotto (2010)

Figure 3.1: (Upper panel) Halo mass function at z = 0 given by the Tinker et al. fitting

formula for ∆ = 200 (solid blue line), diffusing drifting barrier with β = 0.057 and

DB = 0.294 (red dashed line) and Maggiore & Riotto [75] with DB = 0.235 (green dotted

line). Data points are from [77]. (Lower panel) Relative difference with respect to the

Tinker et al. fitting formula. The thin black solid lines indicates 5% deviations.

Gaussian LCDM model the 2-point correlation due to filtering the linear density field with

a top-hat function in real space is small compared to that of a top-hat filter in Fourier

space which generates uncorrelated random walks. This allowed them to infer perturbative

corrections with respect to the Extended Press-Schechter formula and further extend the

calculation to the case of a stochastic spherical collapse barrier.

In [76] we have derived analytical formulae of the halo mass function and bias for a

stochastic barrier which captures the main features of the non-spherical collapse of halos.

The computation has allowed us to show that on the one hand the deviations from the

spherical collapse mainly suppress the mass function at small masses; on the other hand
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a stochastic diffusion of the collapse condition affects the mass function at large and

intermediate masses. By comparing the analytical formula with the mass function from

simulations by Tinker et al. [77] we have found an unprecedented agreement to the level of

numerical uncertainty of the simulations ∼ 5% (see Fig. 3.1). Following this work, Ixandra

has investigated the relation between the signature of the non-spherical collapse on the

mass function and the imprint of primordial non-Gaussianity. The results, published

in [78], have shown that also in the case of non-Gaussian initial conditions the path-

integral calculation of the mass function agrees with results from non-Gaussian N-body

simulations. Moreover we have found that the effect of the non-spherical collapse of Dark

Matter shapes the mass function in a way that is degenerated with the effects induced by

PNG, with the amplitude of the non-spherical collapse effects being larger for increases

PNG amplitudes. This implies that reliable PNG constraints from cluster number counts

can be inferred only if the imprint on the mass function of the non-spherical collapse of

halo is properly accounted for.

The Excursion Set formalism relies on the idea that halos form out of any random points

in the initial density field where the density inside a smoothed region centered on these

points is above a non-linear collapse density threshold. In the work described above we

have modeled this threshold with a statistical model. The reason being that it is impossible

to know the exact density condition of non-linear collapse at every point of the density field,

rather it is more plausible to access to its ensemble properties. Hence, if the Excursion

Set is self-consistent, once the mass function has been found to be in agreement with that

from N-body simulations, the regions in the initial conditions from which the N-body halos

have formed, must have densities whose statistics is consistent with the statistical model of

collapse used to predict the mass function. Ixandra has lead a project specifically dedicated

to test the self-consistency of the Excursion Set using the vast simulation dataset from the

“Dark Energy Universe Simulation Series” (DEUSS) project. In Achitouv, Rasera, Sheth,

Corasaniti [79] we have analyzed a catalog of numerical halos. In order to be consistent

with the basic assumption of the Excursion Set Theory, for each halo in the catalog we

have drawn a random particle. Then, by tracing its location in the initial conditions we

have measured the initial overdensity contained within a radius containing a mass equal
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Figure 3.2: Distribution of first-crossing overdensities in Monte-Carlo simulations (blue

histograms) and our theoretical prediction (smooth solid black curves), for parameters

calibrated using the first-crossing distribution from DEUS simulations and the initial over-

densities around randomly chosen halo particles (black histograms) at S = 1.5, 2 and 3.

Red histograms, which are more sharply peaked, show the same measurement but around

the halo centers of mass. In this case, smooth curves show the best-fitting Lognormal.

to that of the halo under consideration. By repeating this procedure for halos in the

catalog we have been able to compute the distribution of halo overdensities in the initial

conditions. The comparison with the prediction from the statistical model of collapse

shows a remarkable agreement (see Fig. 3.2), which for the first time has demonstrated

the self-consistency of the formalism.



Morale

In the previous chapters I summarized some of the work that I carried out in the past

ten years in the field of Physical Cosmology. I am very keen of using this term because

it is the title of a founding cosmology textbook by Jim Peebles which concisely expresses

a Physics approach to question, model and understand the phenomena that characterize

the Universe we live in.

I hope to have convinced the reader that although the topics presented here differs from

one another, their study has been stimulated by a unifying endeavor: that of advancing

the quest for Dark Energy. Whether concerning dust in the Inter-Galactic Medium or

the non-linear gravitational collapse of Dark Matter shaping the halo mass distribution,

understanding Dark Energy can only be attained by solving the myriads of puzzles that

contribute to our ignorance of the cosmos.

There is today a widespread believe that the quest for Dark Energy resolves into mea-

suring an equation of state parameter/s w (wa). This, however, instills the tempting idea

that once things get ready it will be sufficient to point all the guns (observations) on to the

same target to kill the Dark Energy problem out of the astrophysical realm once and for

all. Despite the limited size of this dissertation I hope to have been able to pass the reader

my anti-conformist message: “understanding Dark Energy cannot be reduced to simply

measuring a few parameters”. What if w is the wrong parameter? Having measured its

value to the third decimal digit would really provide us with the necessary knowledge to

make sense of all other phenomena that occur in the Universe? In the end the stuff we are

made of contributes to no more than 5% of the total content of the Universe, and still it
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has taken more than 100 years from the discovery of quantum nature of photons to that of

the Higgs boson to have a complete understanding of the laws that govern it. Pretending

that we may settle the question on the invisible Universe in the next 20 years by simply

measuring one or two parameters sounds like what the Ancient Greeks defined as uβρις,

and the history of physics has always implacably erased human hubris.

We have just come to perceive the existence of a vast Dark sector through its gravita-

tional effects. Given how little we know about, it cannot be a priori excluded that such

an invisible domain can manifests a complexity which today we are simply not able to

appreciate. For this to be excluded there is still lots of unknown complex physics that

needs to be disclosed.
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We show that an interaction between dark matter and dark energy generically results in an effective
dark-energy equation of state of w<!1. This arises because the interaction alters the redshift
dependence of the matter density. An observer who fits the data treating the dark matter as noninteracting
will infer an effective dark-energy fluid with w<!1. We argue that the model is consistent with all
current observations, the tightest constraint coming from estimates of the matter density at different
redshifts. Comparing the luminosity and angular-diameter distance relations with !CDM and phantom
models, we find that the three models are degenerate within current uncertainties but likely distinguishable
by the next generation of dark-energy experiments.
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I. INTRODUCTION

Nature would be cruel if dark energy were a cosmologi-
cal constant. Unfortunately this daunting possibility is
increasingly likely as observations converge towards an
equation of state of w " !1. Combining galaxy, cosmic
microwave background (CMB) and Type Ia supernovae
(SNIa) data, Seljak et al. [1] recently found !1:1 & w &
!0:9 at 1!. On the one hand, a cosmological constant is
theoretically simple as it involves only one parameter.
However, observations would offer no further guidance
to explain its minuteness, whether due to some physical
mechanism or anthropic reasoning [2].

A more fertile outcome is w ! !1. This implies dy-
namics—the vacuum energy is changing in a Hubble
time—and hence, new physics. A well-studied candidate
is quintessence [3,4], a scalar field " rolling down a self-
interaction potential V#"$. Its equation of state,

w" "
_"2=2! V#"$
_"2=2% V#"$ ; (1)

can be <! 1=3 for sufficiently flat V#"$ and thus lead to
cosmic speed-up. Whether dark energy is quintessence or
something else, this case offers hope that further observa-
tions, either cosmological or in the solar system, may
unveil the underlying microphysics of the new sector.

An even more exciting possibility is w<!1. In fact
there are already indications of this [5,6] from various
independent analyses of the ‘‘Gold’’ SNIa data set [7].
Moreover, by constraining redshift parametrization of
w#z$ they also exclude that this could result from assuming
a constant w [8,9]. The w<!1 regime would rule out
quintessence since w" & !1 [see Eq. (1)], as well as most
dark-energy models.

Devising consistent models with w<!1 has proven to
be challenging. Existing theories generally involves
ghosts, such as phantom models [10], resulting in insta-
bilities and other pathologies [11]. Fields with nonminimal

couplings to gravity, such as Brans-Dicke theory, can
mimic w<!1 [12]. However, solar-system constraints
render the Brans-Dicke scalar field nearly inert, thereby
driving w indistinguishably close to !1. Other proposals
for w<!1 include brane-world scenarios [13], quantum
effects [14], quintessence-moduli interactions [15], and
photon-axion conversion [16].

In this paper we show that w<!1 naturally arises if
quintessence interacts with dark matter. The mechanism is
simple. Because of the interaction, the mass of dark matter
particles depends on ". Consequently, in the recent past
the dark matter energy density redshifts more slowly than
the usual a!3, which, for fixed present matter density,
implies a smaller matter density in the past compared to
normal cold dark matter (CDM).

An observer unaware of the interaction and fitting the
data assuming normal CDM implicitly ascribes this dark
matter deficit to the dark energy. The effective dark-energy
fluid thus secretly receives two contributions: the quintes-
sence part and the deficit in dark matter. The latter is
growing in time, therefore causing the effective dark-
energy density to also increase with time, hence w<!1.

Treating dark matter as noninteracting is a sine qua non
for inferring w<!1. There are no wrong-sign kinetic
terms in our model—in fact the combined dark matter
plus dark-energy fluid satisfies w>!1. Hence the theory
is well defined and free of instabilities.

Interacting dark matter/dark energy models have been
studied in various contexts [17–23]. Huey and Wandelt
[24] realized that coupled dark matter/quintessence can
yield an effective w<!1. (See also [25] for similar ideas.)
However, the dynamics in [24] are such that DM density
becomes negligibly small for z * 1, thereby forcing the
addition of a second noninteracting DM component. In
contrast, our model involves a single (interacting) DM
component.

Given the lack of competing consistent models, we
advocate that measuring w<!1 would hint at an interac-
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tion in the dark sector. More accurate observations could
then search for direct evidence of this interaction. For
instance, we show that the extra attractive force between
dark matter particles enhances the growth of perturbations
and leads to a few percent excess of power on small scales.
Other possible signatures are discussed below.

II. DARK-SECTOR INTERACTION

Consider a quintessence scalar field ! which couples to
the dark matter via, e.g., a Yukawa-like interaction

f!!=MPl" !  ; (2)

where is f is an arbitrary function of ! and  is a dark
matter Dirac spinor. In order to avoid constraints from
solar-system tests of gravity, we do not couple ! to bary-
ons. See [19], however, for an alternative approach.

In the presence of this dark-sector interaction, the energy
density in the dark matter no longer redshifts as a#3 but
instead scales as

"DM $ f!!=MPl"
a3

: (3)

This can be easily understood since the coupling in Eq. (2)
implies a !-dependent mass for the dark matter particles
scaling as f!!=MPl". Since the number density redshifts as
a#3 as usual, Eq. (3) follows.

Thus the Friedmann equation reads

3H2M2
Pl %

"!0"
DM

a3
f!!=MPl"

f0
& "!; (4)

where f0 % f!!0=MPl" with !0 the field value today, and

"! % 1
2
_!2 & V!!" (5)

is the scalar field energy density. With a % 1 today, "!0"
DM is

identified as the present dark matter density.
Meanwhile, the scalar field evolution is governed by

"!& 3H _! % #V;! # "!0"
DM

a3
f;!
f0
: (6)

This differs from the usual Klein-Gordon equation for
quintessence models by the last term on the right-hand
side, arising from the interaction with dark matter.

The standard approach to constraining dark energy with
experimental data assumes that it is a noninteracting per-
fect fluid, fully described by its equation of state, weff .
Given some weff!z", the evolution of the dark-energy den-
sity is then determined by the energy conservation equa-
tion:

d"eff
DE

dt
% #3H!1& weff""eff

DE: (7)

Meanwhile, the dark matter is generally assumed to be

noninteracting CDM, resulting in the Friedmann equation

3H2M2
Pl %

"!0"
DM

a3
& "eff

DE: (8)

An observer applying these assumptions to our model
would infer an effective dark-energy fluid with

"eff
DE ' "!0"

DM

a3

!
f!!=MPl"
f!!0=MPl"

# 1
"
& "!; (9)

obtained by comparing Eqs. (4) and (8). The end result is to
effectively ascribe part of the dark matter to dark energy.
Notice that today the first term vanishes, hence the effec-
tive dark-energy density coincides with "!. In the past,
however, ! ! !0, and the two differ. In particular, we will
find that the time-dependence of "eff

DE can be such that
weff <#1.

To show this explicitly requires an expression for weff .
Taking the time derivative of Eq. (9) and substituting the
scalar equation of motion, Eq. (6), we obtain

d"eff
DE

dt
% #3H

#
"!0"
DM

a3

!
f!!=MPl"
f!!0=MPl"

# 1
"
& !1& w!""!

$
:

(10)

Comparing with Eq. (7) allows us to read off weff :

1& weff %
1

"eff
DE

#!
f!!=MPl"
f!!0=MPl"

# 1
"
"!0"
DM

a3
& !1& w!""!

$
:

(11)

Now suppose that the dynamics of ! are such that

FIG. 1. Redshift evolution of weff (solid line) and w! (dash
line). As advocated, weff <#1 in the recent past due to the
interaction with the dark matter.
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f!!=MPl" increases in time. This occurs in a wide class of
models, as we will see in Sec. III. In this case,

x # $ "!0"
DM

a3"!

!
f!!=MPl"
f!!0=MPl"

$ 1
"
% 0 (12)

for all times until today, with equality holding at the
present time. It is straightforward to show that weff takes
a very simple form when expressed in terms of x:

weff &
w!

1$ x
: (13)

This is our main result. Since x & 0 today, one has w!0"
eff &

w!0"
! , which is greater than or equal to $1. In the past,

however, x > 0. Moreover, for sufficiently flat potentials,
w! ' $1. Hence it is possible to have weff <$1 in the
past. This is shown explicitly in Fig. 1 for a fiducial case:
f!!=MPl" & exp!#!=MPl" and V!!" & M4!MPl=!"$.

III. QUINTESSENCE DYNAMICS

We now come back to the equation of motion for !,
Eq. (6), and demonstrate that its dynamics can lead to
weff <$1. The scalar potential V!!" is assumed to satisfy
the tracker condition [26],

! # V;!!V
V2
;!

> 1: (14)

For an exponential potential, ! & 1, while ! & 1( $$1

for V!!" )!$$. Moreover, we take the coupling function
f to be monotonically increasing.

Without coupling to dark matter, the scalar field would
run off to infinite values. Here, however, the interaction has
a stabilizing effect since ! wants to minimize the effective
potential

Veff & V!!" ( "!0"
DM

a3
f!!=MPl"
f!!0=MPl"

: (15)

Indeed, it is easily seen that the right-hand side of Eq. (6) is
just $Veff

;! . Similar stabilization mechanisms have been
explored in other contexts, such as so-called VAMPS sce-
narios [27], string moduli [28,29], chameleon cosmology
[19,20], interacting neutrino/dark-energy models [23], and
other interacting dark matter/dark energy models [24,30],
to name a few.

Having ! at the minimum of the effective potential is an
attractor solution [20]: as the dark matter density redshifts
due to cosmic expansion, ! adiabatically shifts to larger
field values, always minimizing Veff . This is because the
period of oscillations about the minimum, m$1, is much
shorter than a Hubble time, i.e., m * H. We show this for
the present epoch, leaving the proof for all times as a
straightforward exercise.

The mass of small fluctuations about the minimum is
given as usual by

m2 & Veff
;!! & "!0"

DM

a3
f;!!

f0

#
1(

f2;!
f;!!f

!
V

"!0"
DM

a3
f
f0

$
; (16)

where we have substituted ! using its definition, Eq. (14).
Evaluating this today, and noting that "!0"

DM & 3H2
0M

2
Pl"

!0"
DM

and V!!0"< 3H2
0M

2
Pl"

!0"
DE, we find

m2
0

H2
0

> 3"!0"
DMM

2
Pl

%f;!!

f

&

0

#
1( !

% f2;!
f;!!f

&

0

"!0"
DE

"!0"
DM

$
: (17)

The right-hand side is greater than unity for M2
Plf;!!=f *

1. In addition, as we will see later, ! * 1 for consistency
with observations of large-scale structure. These condi-
tions guarantee that fluctuations about the minimum of
the effective potential are small at the present time. For
concreteness, let us evaluate this in the case of f!!" &
exp!#!=MPl" and V!!" & M4!MPl=!"$:

m2
0

H2
0

> 3#2"!0"
DM

%
1( $( 1

$
"!0"

DM

"!0"
DE

&
: (18)

This is indeed larger than unity for $ & 1 and # * O!1",
the latter corresponding to a gravitational-strength interac-
tion between dark matter and dark energy.

Next we show that the field is slow-rolling along this
attractor solution. The proof is again straightforward.
Differentiating the condition at the minimum, Veff

;! & 0,
with respect to time, we obtain

_! & 3H
m2

"!0"
DM

a3
f;!
f0

& $ 3H
m2 V;!; (19)

where in the last step we have used Veff
;! & 0. Thus,

_!2

2V
& 9H2

2m4

V2
;!

V
<

9H2

2m2

1
!
: (20)

Since m>H along the attractor, and since ! * 1 as
mentioned earlier, Eq. (20) implies that ! has negligible
kinetic energy compared to potential energy, which is the
definition of slow roll.

The slow-roll property has many virtues. First of all, it
implies that our attractor solution is different than that
derived by Amendola and collaborators [18]. In their
case, during the matter-dominated era, the scalar field
kinetic energy dominates over the potential energy and
remains a fixed fraction of the critical density. This sig-
nificantly alters the growth rate of perturbations.
Microwave background anisotropy then constrains the
dark matter–dark energy coupling to be less than gravita-
tional strength: #< 0:1 for f!!" & exp!#!=MPl". In our
case, as we will see in Sec. V C, slow roll implies a nearly
identical growth rate to that in CDM models, even in the
interesting regime # * 1.

More importantly, slow roll means w! ' $1. As argued
below Eq. (13), this facilitates obtaining weff <$1.
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In essence, slow roll is enhanced by the dark matter
interaction term in Eq. (6) which acts to slow down the
field. To see this explicitly, note that in usual quintessence
models (without dark matter interaction), slow roll is
achieved in the large ! limit, for which

_!2

2V
! 1

4!
: (21)

Comparison with Eq. (20) shows that this ratio is further
suppressed by H2=m2 " 1 in our case.

The attractor solution described here has a large basin of
attraction. The covariant form of Eq. (6) involves T"

" , the
trace of the stress tensor of all fields coupled to !. These do
not exclusively consist of DM. For instance, in a super-
symmetric model where the DM is the lightest supersym-
metric particle, ! could conceivably couple to a host of
superpartners. Deep in the radiation-dominated era, the T"

"

source term is generally negligible compared to the Hubble
damping term, 3H _!. However, they become comparable
for about a Hubble time whenever a particle species
coupled to ! becomes nonrelativistic [28], therefore driv-
ing ! towards the minimum of its effective potential. This
provides an efficient mechanism for reaching the attractor
[20].

IV. AN EXPLICIT EXAMPLE

In this section we illustrate our mechanism within a
specific model. We consider an inverse power-law poten-
tial, V#!$ % M4#MPl=!$#, where the mass scale M is
tuned to &10'3 eV in order for acceleration to occur at
the present epoch. This potential is a prototypical example
of a tracker potential in quintessence scenarios. Its run-
away form is in harmony with nonperturbative potentials
for moduli in supergravity and string theories.

The coupling function is chosen to be f#!$ %
exp#$!=MPl$. The exponential form is generic in dimen-
sional reduction in string theory where ! measures the
volume of extra dimensions. Moreover, $ is expected to be
of order unity, corresponding to gravitational strength.
While the coupling to matter exacerbates the fine-tuning
of the quintessence potential [31], we find the phenome-
nological consequences of our model sufficiently interest-
ing to warrant sweeping naturalness issues under the rug.

In this example, the condition at the minimum reads

'#M4M#
Pl

!#(1 ( $
MPl

%#0$
DM

a3
e$#!'!0$=MPl % 0: (22)

Evaluating this today, and noting that V0 ! 3H2
0M

2
Pl"

#0$
DE

because of slow roll, we obtain

!0

MPl
! #

$
"#0$

DE

"#0$
DM

: (23)

Equations (22) and (23) combine to provide a simple
expression for the redshift evolution of ! as it follows

the minimum of the effective potential:
!
!
!0

"
#(1

% #1( z$'3e$#!0'!$=MPl : (24)

Next we calculate the resulting effective equation of
state. To do so, we first need an expression for %! as a
function of redshift. Notice that in the slow-roll approxi-
mation, %! ! V#!$. This does not imply, however, that
%! ! const, since %! does not obey the usual conservation
equation. Using Eq. (22), we instead have

%! ! V
V;!

V;! % $
#

!
MPl

%#0$
DM

a3
e$#!'!0$=MPl : (25)

Substituting this and Eq. (25) in the definition of x given in
Eq. (12), we arrive at

x % "#0$
DM

"#0$
DE

!0

!

#
exp

$
#
"#0$

DE

"#0$
DM

!
1' !

!0

"%
' 1

&
: (26)

This shows explicitly that x is a positive, monotonically
increasing function of z which vanishes today. Moreover,
since the field is slow rolling, we have w! ! '1.
Therefore, Eq. (13) implies

weff ! ' 1
1' x

) '1; (27)

with the approximate equality holding today. Hence this
yields an effective dark-energy fluid with w<'1 in the
recent past.

Note from Eq. (26) that x % 1 at some time in the past,
implying that jweffj momentarily diverges and then be-
comes positive again at higher redshifts. This is because
%eff
DE eventually becomes negative, at which point the ef-

fective dark-energy fluid has both negative pressure and
energy density. As z increases further and x becomes large,
one has weff ! 0, and the fluid behaves like dust.

In Fig. 1 we plot the redshift evolution of weff and w! for
# % 0:2, $ % 1 and "#0$

DE % 0:7. (As will be discussed in
the next section, a small value for # is required for con-
sistency with large-scale structure observations.) While w!

remains bounded from below by '1, weff is less than '1
for z * 0:1, as claimed above.

The evolution of weff#z$ shown in Fig. 1 is consistent
with the observational limits on redshift dependent pa-
rametrizations of the dark-energy equation of state [6].
One way to see this is to consider the weighted average

#w eff *
R
"eff#a$weff#a$daR

"eff#a$da
; (28)

where the integral runs from z % 0 up to the maximum
redshift of current SN Ia data, z& 1:5. This gives #weff !
'1:1, which lies within the allowed range of w found in
[1]. Note that while Fig. 1 was derived using the above
analytical expressions, we have checked these against
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numerical solutions of the equations of motion and found
very good agreement.

V. OBSERVATIONAL CONSTRAINTS AND
CONSEQUENCES

We have shown that the interaction between quintes-
sence and dark matter can mimic the cosmology of a
phantom fluid. In this section we discuss some observa-
tional consequences of this scenario and argue that it is
consistent with current observations. At the level of homo-
geneous cosmology this is certainly true, as long as pa-
rameters are chosen such that weff lies within the allowed
range. We argue that this is also the case when considering
inhomogeneities, at least at the linear level. The main
effect here is the fifth force between dark matter particles
mediated by !, which enhances the growth rate of density
perturbations.

A rigorous comparison with observations would require
a full likelihood analysis including a host of cosmological
probes, which is beyond the scope of this paper. We instead
contend ourselves with a simplified (and perhaps more
conservative) analysis to derive general constraints. As in
Sec. IV, we focus on an exponential coupling function and
inverse power-law potential.

A. Mass estimates from large-scale structure

The tightest constraint comes from various estimates of
the dark matter density at different redshifts. Since the dark
matter redshifts more slowly than a!3 in our model, then
for fixed present matter density this implies a smaller
matter density in the past compared to a CDM model.
Indeed, at early times (! " !0), the matter density differs
from that of a usual dust CDM model by

"DM

"CDM
! e!#!0=MPl # exp

!
!$

!$0%
DE

!$0%
DM

"
; (29)

where in the last step we have used Eq. (23).
It is reasonable to assume that this ratio cannot deviate

too much from unity, for otherwise we risk running into
conflict with estimates of the matter density at various
redshifts, e.g. from galaxy counts, Lyman-$ forest, weak
lensing, etc. This is supported by the fact that the allowed
range of !$0%

DM is almost independent of the specifics of the
dark energy, as derived from a general analysis [6,32] of
the combined SNIa Gold data [7], Wilkinson Anisotropy
Microwave Probe (WMAP) power spectra [33] and Two-
Degree Field (2dF) galaxy survey [34]. In particular
0:23 & !$0%

DM & 0:33 at 2% (see also [1,35]). Substituting
!$0%

DM # 0:33 in Eq. (29), we obtain

$ & 0:2: (30)

Thus dark matter density estimates require the scalar field
potential to be sufficiently flat, thereby making the attrac-

tor behavior and slow-roll condition discussed in Sec. III
more easily satisfied.

Equation (29) shows that "DM redshifts like normal
CDM (i.e., "DM & a!3) for most of the cosmological
history, except in the recent past. This is crucial in satisfy-
ing constraints on !$0%

DM and traces back to our choice of
inverse power-law potential. In contrast, the exponential
potential studied in [24] has a very different attractor
solution. In this case, dark energy remains a constant
fraction of the total energy density and modifies the DM
equation of state at all redshift. This in turn renders the
matter density negligibly small for z * 1. Therefore, in
order to satisfy constraints on !$0%

DM (as well as zeq), one
must introduce a second DM component, which is non-
interacting and dominates for most of the history.

Finally, we note that while Eq. (30) is an extra tuning on
V$!%, normal quintessence also suffers from the same
constraint. Indeed, ‘‘tracker’’ quintessence with V$!% #
M4$MPl=!%$ leads to a dark-energy equation of state

w! # ! 2
$' 2

: (31)

Imposing the current observational constraint w<!0:9
results in a bound on $ identical to Eq. (30).

B. CMB and SNIa observables

We now focus on cosmological distance tests, in par-
ticular, the SNIa luminosity-distance relation and the
angular-diameter distance to the last scattering surface as
inferred from the position of CMB acoustic peaks. We wish
to compare these observables for three different models,
namely, the interacting scalar field dark matter model with
$ # 0:2 and # # 1, a "CDM model, and a phantom
model with w # !1:2.

The position of Doppler peaks depends on the angular-
diameter distance to the last scattering surface,

dA$zrec% # $1' zrec%!1
Z zrec

0

dz
H$z% ; (32)

where zrec is the redshift at recombination. Observations of
SNIa, on the other hand, probe the luminosity distance

dL$z% # $1' z%
Z z

0

dz
H$z% : (33)

Figure 2(a) shows the luminosity distance for all three
models with !$0%

DM # 0:3, while Fig. 2(b) gives their per-
centage difference. The difference between our model and
"CDM is & 4% for z < 1:5; similarly the difference with
respect to the phantom model is within & 2%. Thus all
three models are degenerate within the uncertainties of
present SNIa data which determine dL$z% to no better
than &7%. Furthermore, this suggests that percent-level
accuracy from future SNIa experiments such as the
Supernova Acceleration Probe (SNAP) [36], combined
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with other cosmological probes, could distinguish between
them.

Since !!0"
DM is kept fixed in this case, the matter density

in the interacting dark-energy model differs in the past
from that in the "CDM and phantom cases, as seen from
Eq. (29). This results in a 10% difference in dA!zrec", which
is again within current CMB uncertainties.

Suppose we instead keep dA!zrec" fixed, which essen-
tially amounts to fixing the matter density at high redshift.
With !!0"

DM # 0:3 for both the "CDM and phantom mod-
els, this is achieved by setting !!0"

DM # 0:4 for our model.
These values are compatible with current limits, as men-
tioned earlier. The resulting luminosity distances and per-
centage differences are plotted in Fig. 3. In this case we find
that our model is nearly degenerate with "CDM. Since
!!0"

DMh
2 is tightly constrained by CMB temperature anisot-

ropy, however, such a difference in !!0"
DM implies a 10%

difference in h between our model and "CDM. This is
comparable to the uncertainty in the measured value of h
by the Hubble Key Project [37].

C. Growth of density perturbations

In the slow-roll approximation the evolution equation
for dark matter inhomogeneities, ! # !"DM="DM, is given
in synchronous gauge by [20]

!00 $ aH!0 # 3
2
a2H2

!
1$ 2#2

1$ a2V;$$=k2

"
!; (34)

where primes denote differentiation with respect to con-
formal time. This differs from the corresponding expres-
sion in CDM models only through the factor in square
brackets, normally equal to unity. Since this term accounts
for the self-attractive force on the perturbation, the extra
contribution proportional to #2 arises from the attractive
fifth force mediated by the scalar field. This force has a
finite range, which for an inverse power-law potential is

% # V%1=2
;$$ #

##################################
$&$2

&!&$ 1"M4M&
Pl

s
: (35)

Perturbations with physical wavelength much larger
than %, i.e., a=k & %, evolve as normal CDM. On the
other hand, perturbations with a=k ' %, evolve as if
Newton’s constant were a factor of 1$ 2#2 larger. Thus
the interaction with the quintessence field leads to an
enhancement of power on small scales [38]. In particular,
small-scale perturbations go nonlinear at higher redshift
than in "CDM, as shown recently in a closely related
context of chameleon cosmology [39]. (Numerical simu-
lations have also found that a similar attractive scalar
interaction for dark matter particles, albeit with a much
smaller range of 1 Mpc, results in emptier voids between
concentrations of large galaxies [40].)

Quantitatively, from Eqs. (23) and (24) in the limit & '
1, we obtain

FIG. 3. Same as in Fig. 2, except !!0"
DM # 0:4 for the interact-

ing scalar field dark matter model in this case. This gives equal
dA!zrec" for all three models.

FIG. 2. Upper panel shows the luminosity distance (dL) as a
function of redshift for our model (solid) a phantom model with
w # %1:2 (dash-dotted) and "CMD (dashed). We have fixed
!!0"

DM # 0:3. Lower panel shows the percentage difference be-
tween our model and phantom (dash-dot), and between our
model and "CDM (dashed), respectively.

DAS, CORASANITI, AND KHOURY PHYSICAL REVIEW D 73, 083509 (2006)

083509-6



V;!! ! H2
0"1# z$6e2""!%!0$=MPl

3"2

#
"!"0$

DM$2

!"0$
DE

; (36)

where H0 is the present value of the Hubble parameter.
This implies, for instance, that at the present epoch

$"0$ & H%1
0

!!!!!!!!!!!!!!!!!!!!!!!!
#!"0$

DE

3"2"!"0$
DM$2

vuut ! 0:7H%1
0 ; (37)

where in the last step we have taken # & 0:2, " & 1 and
!"0$

DM & 0:3. Hence the present range of this fifth force is
comparable to the size of the observable universe.
However, $ varies with redshift, and it is easily seen that
$ ' H%1 in the past. In particular, we do not expect
measurable effects in the CMB. This is in contrast with
quintessence models [4], as well as the interacting dark
matter/dark energy model of Amendola and collaborators
[18], where m(H along the attractor solution, leading to
imprints in the CMB.

We solve numerically Eq. (34) and compute the linear
matter power spectrum, "2"k$ / k3P"k$, normalized to
WMAP [33], where P"k$ & j%kj2. In Fig. 4(a) we plot
the resulting power spectrum for our model (solid line)
and #CDM (dash line) with !"0$

DM & 0:4 and 0.3, respec-
tively. The two curves are essentially indistinguishable by
eye.

In Fig. 4(b) we plot the fractional difference between the
two spectra. The discrepancy is <2% on the scales probed

by current large-scale structure surveys and consistent with
the experimental accuracy of 2dF Galaxy Redshift Survey
[34] and Sloan Digital Sky Survey (SDSS) [41]. On large
scales the perturbations in the two models evolve in a
similar way (k < 0:01 hMpc%1), while on intermediate
scales (0:01< k< 0:4 hMpc%1) the #CDM shows a few
percent excess of power which is mostly due to small
difference in the expansion rate of the two models after
decoupling. Most importantly, on smaller scales (k >
0:4 hMpc%1) the power spectrum of #CDM is suppressed
compared to our model. This is due to the fifth force which
enhances the clustering of dark matter perturbations com-
pared to the uncoupled case.

Thus deviations from #CDM are relevant only on small
scales, well within the nonlinear regime. Therefore pros-
pects for distinguishability using for instance the Lyman-#
forest matter power spectrum requires accurate N-body
simulations for this specific class of interacting dark mat-
ter/dark energy models. Another important probe is 21 cm
tomography [42], which will allow to measure the power
spectrum on very small scales and in a high enough redshift
range (30 & z & 200) that linear analysis is valid.

D. Galaxy and cluster dynamics

Since the !-mediated force is long-range today [see
Eq. (37)], our model is subject to constraints from galaxy
and cluster dynamics [38]. For instance, a fifth force in the
dark sector leads to a discrepancy in mass estimates of a
cluster acting as a strong lens for a high-redshift galaxy.
Lensing measurements probe the actual mass since pho-
tons are oblivious to the fifth force, while dynamical ob-
servations are affected and would overestimate the mass of
the cluster.

Other effects studied in [38] include mass-to-light ratios
in the Local Group, rotation curves of galaxies in clusters,
and dynamics of rich clusters. These combine to yield a
constraint of " & 0:8, consistent with our assumption of
"(O"1$. This is consistent with generic string compacti-
fications; if for instance ! is the radion field measuring the
distance between two end-of-the-world branes, " & 1=

!!!
6

p

[20].

VI. DISCUSSION

In this paper we have shown that an interaction between
dark matter and dark energy generically mimics w<%1
cosmology, provided that the observer treats the dark mat-
ter as noninteracting. Unlike phantom models, the theory is
well defined and free of ghosts.

Our model is consistent with current observations pro-
vided the scalar potential is sufficiently flat. For our fidu-
cial V"!$ & M4=!#, this translates into # & 0:2. This is
no worse than normal quintessence with tracker potential,
where a nearly identical bound follows from observational
constraints on w!.

FIG. 4. The upper panel shows the matter power spectrum
["2"k$] over the relevant range of scales for our model (solid)
and #CDM (dash) with !"0$

DM & 0:4 and 0.3, respectively. The
lower panel shows the percentage difference between the two
curves, which is well within current experimental accuracy.
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In fact our scenario is less constrained than other inter-
acting dark-energy/dark matter models studied in the lit-
erature. There is no need to introduce a noninteracting DM
component, as in [24]; nor does the coupling strength need
be much weaker than gravity, ! & 0:1, as in [18]. Instead,
our model allows for a single interacting DM species with
gravitational-strength coupling to dark energy—!!
O"1#. In both cases this traces back to a difference in
attractor solutions.

At the level of current uncertainties, the model is degen-
erate with both !CDM and phantom models. However, our
calculations of luminosity and angular-diameter distances
indicate that these models could be distinguished by the
next generation of cosmological experiments devoted to
the study of dark energy, such as SNAP, the Large Synoptic
Survey Telescope [43], the Joint Efficient Dark-Energy
Investigation (JEDI) [44], the Advanced Liquid-mirror
Probe for Astrophysics, Cosmology and Asteroids
(ALPACA) [45], and others.

A dark-sector interaction may reveal itself in various
ways in the data. A strong hint would be a preference for
w<$1 when fitting cosmological distance measurements
assuming CDM. Another indication is a discrepancy be-
tween the clustering matter density at various redshifts and
the expected "1% z#3 dependence in normal CDM models,
which could appear as a discrepancy in the inferred value
of ""0#

M .
We also uncovered modifications in the linear matter

power spectrum and large-scale structure. These are pri-
marily due to the attractive scalar-mediated force which
enhances the growth of DM perturbations on small scales.
Note that the opposite behavior obtains for a phantom
scalar coupled to dark matter, resulting in a repulsive scalar

force which damps perturbations [46]. As mentioned ear-
lier, nonlinear effects are important for the relevant range
of scales and would require N-body simulations. As an
example it would be particularly useful to study the evo-
lution of dark matter merging rates. Because of the fifth
force, the gravitational interaction between dark matter
halos is stronger than in standard CDM. This can poten-
tially lead to higher halo merging events during structure
formation and alleviate the so-called ‘‘dark matter halo
problem.’’ Other observational effects that could distin-
guish our model from !CDM and phantom include the
bias parameter. Since baryons are unaffected by the fifth
force, baryon fluctuations develop a constant large-scale
bias [47] which could be observable. Similarly, comparison
of the redshift dependence of the matter power spectrum,
P"k; z#, may be useful to constrain the scale ", which varies
with z. The integrated Sachs-Wolfe effect is another
mechanism worth studying. Since the present range of
our scalar force is comparable to the size of the observable
universe, it might account for the observed lack of power
on large scales in the CMB.
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We study the evolution of linear density perturbations in the context of interacting scalar field-dark

matter cosmologies, where the presence of the coupling acts as a stabilization mechanism for the runaway

behavior of the scalar self-interaction potential as in the case of the chameleon model. We show that, in the

‘‘adiabatic’’ background regime of the system, the rise of unstable growing modes of the perturbations is

suppressed by the slow-roll dynamics of the field. Furthermore, the coupled system behaves as an

inhomogeneous adiabatic fluid. In contrast, instabilities may develop for large values of the coupling

constant, or along nonadiabatic solutions, characterized by a period of high-frequency dumped oscil-

lations of the scalar field. In the latter case, the dynamical instabilities of the field fluctuations, which are

typical of oscillatory scalar field regimes, are amplified and transmitted by the coupling to dark matter

perturbations.

DOI: 10.1103/PhysRevD.78.083538 PACS numbers: 95.35.+d, 95.36.+x, 98.80.!k

I. INTRODUCTION

Cosmology has provided evidence of a dark physics
sector which is necessary to account for about 95% of
the cosmic matter content [1]. Despite the success of the
!CDM model to fit all cosmological observations, the
existence of the dark energy phenomenon as well as its
relation to the abundance and clustering of matter in the
Universe still pose puzzling questions.

Models of interacting dark energy-dark matter have been
proposed to address such problems. In this scenario, dark
energy is a fundamental scalar field which directly couples
to matter particles. This allows for a dynamical solution of
the so-called ‘‘coincidence’’ problem, since independently
of the initial conditions the scalar interaction drives the
dark energy-to-matter ratio toward a constant value (see,
e.g., [2–5]). These models are inspired by string and su-
pergravity theories, where the compactification of extra
dimensions in the low energy gives rise to massless scalars
coupled to matter fields with gravitational strength.
Therefore, a distinct feature of this scenario is that matter
particles experience a long-range scalar force and acquire a
time-dependent mass which cause violations of the equiva-
lence principle (EP). The tight bounds imposed by EP tests
are usually avoided as a consequence of other possible
mechanisms. As an example, Damour and Polyakov have
shown that in string theory the couplings between the
dilaton and different matter fields can be dynamically sup-
pressed [6]. An interesting possibility has been proposed in
the ‘‘chameleon’’ model [7], where the mass of the scalar
field is assumed to depend on the local matter density. In
such a case, fifth-force effects can be strongly suppressed
on Solar System scales, thus avoiding EP bounds. Another
possibility has been explored in Ref. [8], where the authors
consider a dilatonic field to be differently coupled to
various matter species such that the system can naturally
evolve toward a late time attractor solution where general

relativity is recovered. Nonminimally coupled models can
successfully describe the background expansion of the
Universe as probed by supernova type Ia luminosity dis-
tance or the position of the Doppler peaks in the cosmic
microwave background anisotropy power spectrum (see,
e.g., [9,10]). However, testing the formation of structure in
the Universe more than standard cosmological tests may
provide a key insight on this class of models. In fact, the
scalar coupling contributes to modifying the clustering
properties of matter, implying that an accurate study of
the evolution of density fluctuations in both the linear and
nonlinear phases of collapse can identify unique signatures
of dark sector interactions [11]. In the context of linear
perturbation theory, several interacting scalar field-dark
matter models have been studied in the literature (see,
e.g., [12]). In some specific realizations, it was found that
the growth of linear density perturbations is spoiled by the
presence of dangerous instabilities [13,14], as in the case of
‘‘mass varying neutrino’’ models [15]. Recently, a number
of works have analyzed the stability of perturbations in
more general setups. For instance, in Ref. [16] the authors
have studied models with a background evolution charac-
terized by an adiabatic regime and shown that unstable
growing modes of the perturbations exist for couplings
much greater than gravitational strength. On the other
hand, the authors of Refs. [17,18] have considered the
case of an interacting dark energy component with a con-
stant equation of state and found that, for couplings pro-
portional to the dark matter density, the perturbations are
unstable.
In this paper, we provide a more detailed study of these

instabilities, particularly in relation to the specificities of
the background scalar field evolution. The paper is organ-
ized as follows: In Sec. II, we introduce the interacting
scalar field-matter model as well as the background and
perturbation equations; in Sec. III, we present the results of
our analysis; finally, in Sec. IV, we present our conclusions.
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II. INTERACTING SCALAR FIELD-DARK
MATTER MODEL

Let us consider a scalar field ! with direct coupling to
matter particles via a Yukawa term fð!=MPlÞ !c c , where f
is the coupling function and c is a Dirac spinor represent-
ing the matter field (MPl ¼ 1=

ffiffiffiffiffiffiffiffiffiffi
8"G

p
is the reduced Planck

mass, withG being the Newton constant). The effect of the
scalar-dependent coupling is to induce a time-varying mass
of the matter particles, hence causing a violation of the EP.
As mentioned in the previous section, there are several
ways to evade the tight bounds from EP tests. Here we
assume that the scalar field couples only to dark matter
particles. Therefore, for the purposes of our analysis, we
neglect the baryon contribution and focus only on the
cosmological evolution of the coupled scalar field-dark
matter system.

As in the case of the chameleon cosmology [19], we
assume the ! field to have a self-interaction potential of
runaway type in the form of an inverse power law:

Vð!Þ ¼ M4þ#

!# ; (1)

where M is a mass scale and # is a positive constant. We
consider a coupling function of dilatonic type, fð!Þ ¼
expð$!=MPlÞ, with $ a dimensionless coupling constant.
The background evolution of this system has been studied
in detail in [9].

A. Background and linear perturbation equations

Let assume a flat Friedmann-Lemaitre-Robertson-
Walker metric [ds2 ¼ %dt2 þ aðtÞ2dx2], and the evolution
of the scalar factor is given by:

H2 &
"
_a

a

#
2
¼ 1

3
½%DM þ _!2=2þ Vð!Þ(; (2)

where %DM is the dark matter density and we have adopted
Planck units (MPl ¼ 1). The total energy momentum ten-

sor of the system is conserved: T&ðTÞ
';& & T&ðDMÞ

';& þ T&ð!Þ
';& ¼

0. In contrast, the nonminimal coupling implies that the
energy momentum tensor of each individual component is
not conserved. In such a case, we can consider

T&ðDMÞ
';& ¼ $!;'T

(ðDMÞ
( ; (3)

T&ð!Þ
';& ¼ %$!;'T

(ðDMÞ
( ; (4)

from which we obtain

_% DM þ 3H%DM ¼ $ _!%DM; (5)

€!þ 3H _!þ V;! ¼ %$%DM: (6)

Without loss of generality, we can rescale the coupling
function fð!Þ to its present value fð!0Þ. Hence the solu-
tion to Eq. (5) is

%DM ¼ %ð0Þ
DM

a3
e$ð!%!0Þ; (7)

where %ð0Þ
DM is the present matter density. We may notice

that as a consequence of the scalar interaction the dark
matter density deviates from the standard scaling a%3.
Furthermore, for coupling values $> 0, the system of
Eqs. (5) and (6) describes an energy transfer from the !
field to dark matter. In such a case, the scalar field evolves
in an effective potential

Veffð!Þ ¼ Vð!Þ þ %ð0Þ
DM

a3
e$ð!%!0Þ; (8)

which is characterized by the presence of a minimum.
In Fig. 1, we plot the effective potential for $ ¼ 1 and

# ¼ 0:2 at redshift z ¼ 1000, 10, 3, and 0, respectively.
For this choice of the model parameters, we have !0 )
0:7605 as obtained by integrating numerically the system
of Eqs. (2)–(5). The dashed line in Fig. 1 corresponds to the
position of the minimum at different epochs.
In synchronous gauge, the linearized equations for the

dark matter density contrast )DM, velocity gradient *DM,
and field fluctuation )! are given by

_) DM ¼ %
"
*DM
a

þ
_h

2

#
þ $) _!; (9)

_* DM ¼ %H*DM þ $
"
k2

a
)!% _!*DM

#
; (10)

) €!þ 3H) _!þ
"
k2

a2
þ V;!!

#
)!þ 1

2
_h _! ¼ %$%DM)DM;

(11)

FIG. 1. Scalar field effective potential at z ¼ 103, 10, 3, and 0
(solid lines) for # ¼ 0:2 and $ ¼ 1. The amplitude of the scalar
potential M is set such that today #DM ¼ 0:24 (#! ¼
1%#DM). The dashed line corresponds to the position of the
minimum of the effective potential at different epochs.
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respectively, where h is the metric perturbation given by

_h ¼ 2k2!

a2H
" 8"G

H
½#$% þ $DM#DM%; (12)

with #$% ¼ _%# _%þ V;%#% and

_! ¼ 4"G

k2
a½$DM&DM þ ak2 _%#%%: (13)

In Sec. III, we will present the results of the numerical
integration of this system of equations. However, for a
qualitative understanding of the conditions which lead to
the onset of instabilities during the growth of the density
perturbations, it is useful to introduce an effective unified
fluid description.

B. Effective unified fluid description

The conservation of the total energy momentum tensor
allows us to describe the interacting scalar field-dark mat-
ter system as a single unified fluid. The equation for the
background density is given by

_$ T ¼ "3Hð1þ wTÞ$T; (14)

with $T ¼ _%2=2þ Vð%Þ þ $DM and wT ¼ pT=$T , where
pT ¼ _%2=2þ Vð%Þ. Similarly, at linear order the pertur-
bation equations in synchronous gauge read as

_#T ¼ "3Hðc2sT " wTÞ#T " ð1þ wTÞ

(
!"

k2

a2H2 þ 9ðc2sT " c2aTÞ
#
aH2

k2
&T þ

_h

2

$
; (15)

_& T ¼ "Hð1" 3c2sTÞ&T þ c2sTk
2

að1þ wTÞ
#T; (16)

where c2aT ¼ _pT= _$T is the square of the adiabatic sound
speed of the unified fluid and c2sT ¼ #pT=#$T is the square
of the speed at which pressure perturbations propagate in
the fluid rest frame. For a barotropic fluid with a constant
equation of state (e.g., matter, radiation), c2s ¼ c2a ¼ w.
This is not the case for a generic fluid (e.g., scalar field),
and for this reason we may expect the effective unified
fluid to be nonbarotropic (i.e., c2sT ! c2aT ! wT). In terms
of the scalar field and dark matter variables, we have

c2aT ¼ 3H _%2 þ _%½2V;% þ '$DM%
3H _%2 þ 3H$DM

; (17)

c2sT ¼
_%# _%" V;%#%

_%# _%þ V;%#%þ $DM#DM

: (18)

These relations provide us with a simple way of determin-
ing the properties of the perturbation in the coupled sys-
tem. For example, in a given background regime,
instabilities of the perturbations may develop if the adia-
batic sound speed acquires sufficiently negative values.

III. SCALAR FIELD DYNAMICS AND EVOLUTION
OF DENSITY PERTURBATIONS

The nonminimally coupled scalar field model described
in Sec. II is characterized by the existence of an attractor
solution which is set by the minimum of the effective

potential. The minimum is given by V;%
eff ¼ 0; thus, along

the attractor solution, the following condition is always
satisfied:

V;% ¼ "'
$ð0Þ
DM

a3
e'ð%"%0Þ: (19)

Evaluating the derivative of Eq. (1) and substituting in
Eq. (19), we obtain the time evolution of the field at the
minimum:

%
%0

%min

&
(þ1

¼ 1

a3
e'ð%min"%0Þ; (20)

which depends on both the slope ( and the coupling '.
Equation (20) is a nonlinear algebraic equation which can
be solved numerically through standard bisection methods
(see dashed line in Fig. 1).
The field may reach the minimum from two different

sets of initial conditions: %ini <%ini
min (small field) or

%ini >%ini
min (large field). In the former case, % evolves

over the inverse power-law part of the effective potential,
where it minimizes the potential by slow-rolling as shown
in [9]. In fact, one can easily verify that throughout the

cosmological evolution the field mass (m2 ¼ V;%%
eff ) as well

as the ratio of its kinetic-to-potential energy satisfy the
conditions m>H and _%2=2V < 1, respectively. In con-
trast, starting from large field values, % rolls towards the
minimum along the steep exponential part of Veffð%Þ.
Thus, it rapidly acquires kinetic energy which subse-
quently dissipates through large high-frequency damped
oscillations around the minimum.
As we shall see next, the growth of linear perturbations

in these two regimes is significantly different.

A. Adiabatic regime

As mentioned in Sec. II B, we can obtain a qualitative
insight on the stability of the perturbations in the coupled
system by considering the effective unified fluid descrip-
tion. Let us evaluate the adiabatic sound speed equa-
tion (17) along the adiabatic solution equation (19); after
neglecting the term proportional to the kinetic energy of
the scalar field, we have

c2aT ¼ "'
_%

3H
; (21)

and, since _%> 0, it then follows that c2aT < 0, implying
that adiabatic instabilities may indeed develop. However,
we should remark that, during the adiabatic regime, the
field is slow-rolling (i.e., 3H _% ) 0); hence, the term
_%=3H can be negligibly small compared to ', such that

SLOW-ROLL SUPPRESSION OF ADIABATIC . . . PHYSICAL REVIEW D 78, 083538 (2008)

083538-3



c2aT ! 0, leading to a stable growth of the perturbations. In
contrast, instabilities will occur if the coupling assumes
extremely large values ! " 3H= _". This is consistent with
the analysis presented in Ref. [16], where the authors have
suggested that, during the adiabatic regime, perturbations
suffer of instabilities provided that ! " 1. Here we want
to stress two main points which were not addressed in that
study: first, that the rise of instabilities is suppressed by the
slow-rolling of the field in the adiabatic regime and, sec-
ond, that exactly because of the slow-roll condition, insta-
bilities can spoil the growth of dark matter perturbations
only for large unnatural values of the coupling. To give an
example, let us assume that, for a given model along the
adiabatic solution, the following condition occurs:
_"=3H # 10$2. In such a case, instabilities will develop
only if the coupling constant !> 100, corresponding to a
scalar fifth force which is 2000 times greater than the
gravitational strength.1

Moreover, during the adiabatic evolution, Eq. (18) reads
as

c2sT ¼ $ 1

1$ 1
!

#DM
#"

; (22)

and, assuming that the scalar field is nearly homogeneous,
#" & #DM (in Planck units), we have c2sT ! !#"=#DM;
for ! ! Oð1Þ, this implies c2sT ! 0. In other words, if the
scalar field fluctuations are small with respect to the dark
matter density contrast, then the coupled system behaves
has a single adiabatic inhomogeneous fluid (c2sT ! c2aT !
0).

These results are supported by the numerical study of the
system of Eqs. (9)–(13), with the scalar field evolution
given by Eq. (20). We have set the model parameters to
the following values: $ ¼ 0:2 and ! ¼ 1, with !DM ¼
0:24 and H0 ¼ 70 Km s$1 Mpc$1. As shown in Ref. [9],
this model has the interesting feature that the background
dynamics can mimic that of a phantom cosmology corre-
sponding to an uncoupled dark energy model with slightly
constant supernegative equation of state wDE ¼ $1:1.

The results of the numerical integration are shown in
Fig. 2. In the upper left panel, we plot the scalar field
equation of state w" (solid line) and the equation of state
for the effective unified fluid wT (dotted line). As we can
see, w" ¼ $1, which is consistent with the fact that _"=3H
is negligible, as can be seen from the plot in the upper right
panel. We can also notice that the unified fluid at early
times behaves as a matter component (wT ¼ 0) and devi-
ates toward negative values ($ 1<wT < 0) as the " field
becomes energetically dominant. In the lower left panel,

we plot the absolute value of c2aT and c2sTðkÞ for three
different scales k ¼ 10$3, 10$2, and 0:1 Mpc$1, respec-
tively. The adiabatic sound speed has negligible negative
values and evolves with a trend that matches that of _"=3H,
which is consistent with Eq. (21). We can also notice that
the speed of propagation of pressure perturbations in the
unified fluid remains ! 0. Hence during the adiabatic
regime the interacting system behaves as a single inhomo-
geneous adiabatic fluid. In the lower right panel, we plot
the evolution of the dark matter density contrast normal-
ized to the present value for k ¼ 10$3, 10$2, and
0:1 Mpc$1, respectively (for clarity, we have displaced
by a constant factor the different curves which would
otherwise nearly overlap). As expected, these different
modes manifest a standard power-law growth, and no
instabilities are present. These results have been obtained
for an inverse power-law potential; nevertheless, they can
be generalized to other scalar potentials—the only require-
ment is the existence of an adiabatic solution during which
the slow-roll condition is satisfied.

B. Nonadiabatic regime: Large field oscillations

Starting from initially large field values, the system
evolves along a nonadiabatic solution characterized by
rapid dumped field oscillations around the minimum of
the effective potential. We can see this explicitly in the
upper left panel of Fig. 3, where we plot the evolution of
the scalar field equation of state for the same model pa-
rameters as in Sec. III A and obtained by numerically
integrating Eq. (6) with initial conditions: "ðaini ¼
10$5Þ ¼ 0:15>"ini

min and _"ini ¼ 0. We can infer the
main features of the scalar field evolution from the behav-
ior of its equation of state shown in the upper left panel of
Fig. 3. As we can see, the field initially behaves as a stiff
component with w" ¼ 1; this is because the field starts
rolling on the steep exponential part of the potential, and
consequently its energy is dominated by the kinetic term.
As the field reaches the opposite side of the potential, it
undergoes a series of high-frequency dumped oscillations
around the minimum during which it dissipates most of its
kinetic energy. It then sets on the inverse power-law part of
the potential where it evolves along a tracker solution with
w" ! $2=ð2þ $Þ ! $0:9.
The evolution of density perturbations in the case of

oscillating scalar fields has been widely studied in the
literature, particularly in the context of inflation [21].
From these studies, it is well known that scalar field
fluctuations are unstable during oscillatory regimes. In
Ref. [22], the authors have presented a simple insightful
explanation for the onset of such instabilities. The idea is to
interpret the scalar fluctuation #" as the separation be-
tween two particles whose dynamics is described by two
coupled anharmonic oscillators. Then a simple stability
criterion is given by the relation between the frequency
of the oscillations ! and their amplitude ~" [23]. Let us

1As a consequence of the scalar interaction, dark matter
particles experience a gravitational force with effective
Newtonian constant Geff ¼ Gð1þ 2!2Þ. In contrast, baryonic
bodies may not experience such a modification due to the non-
linear nature of the scalar interaction [20].
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suppose that the frequency increases as the amplitude of
the oscillations diminishes; in such a case it has been
shown that the distance between the two particles in-
creases, thus causing the scalar field fluctuation to be
unstable [22]. This is indeed what occurs in the interacting
scalar field-dark matter system along the nonadiabatic
solution we are considering. In fact, we can see in the

upper right panel of Fig. 3 that, as the field starts oscillat-
ing, the frequency of the oscillations increases as the field
amplitude diminishes (d!=d ~!< 0). We can therefore ex-
pect the presence of instable modes. This is confirmed by
the numerical solutions of "!k and "DM obtained from the
integration of Eqs. (9)–(13). The evolution of the scalar
field fluctuation "!k is shown in the lower left panel of

0.01 0.1 1

-1

-0.5

0

0.01 0.1 1
-30

-20

-10

0

0.01 0.1 1
-30

-25

-20

-15

-10

-5

0.01 0.1 1

0.1

1

a

FIG. 2. Upper left panel: Evolution of the
scalar field equation of state w! and effective
unified fluid equation of state wT ; upper right
panel: evolution of the scalar field velocity with
respect to the Hubble rate. Lower left
panel: Redshift evolution of the adiabatic
sound speed c2aT and propagation of pressure
perturbations c2sT ; lower right panel: linear
growth factor of the dark matter density con-
trast at k ¼ 10"3, 10"2, and 0:1 Mpc"1.
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FIG. 3. Upper left panel: Evolution of the
scalar field equation of state w!; upper right
panel: evolution of the scalar field;. Lower left
panel: Evolution of the field fluctuations "!k at
k ¼ 10"3, 10"2, and 0:1 Mpc"1, respectively;
lower right panel: evolution of dark matter
density for k values as in the case of "!k.
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Fig. 3. We may notice the presence of an instability occur-
ring roughly at the same time of the first oscillation,
followed by a second stage of exponential growth at the
beginning of the second oscillation. From the plot in the
lower right panel, we can also see that the same instability
is passed to the dark matter perturbation, which is a direct
consequence of the coupling terms in Eqs. (9) and (10).
Such unstable modes are similar to those found in
Refs. [17,18]; in fact, by averaging over periods of time
larger than the characteristic time of the oscillations, the
scalar field behaves effectively as a dark energy component
with a constant equation of state.

IV. CONCLUSIONS

We have studied the evolution of linear perturbations in
the case of an interacting scalar field with runaway poten-
tial directly coupled to dark matter particles. We have
specifically analyzed the stability of perturbations during
the adiabatic evolution of the field and shown that, as a
consequence of the slow-roll condition, the onset of insta-
bilities is largely suppressed. This can be explained in
terms of the adiabatic sound speed of the effective unified
fluid. In fact, during the adiabatic regime, despite being
negative, it assumes negligibly small values, and as a

consequence of this the growth of linear density perturba-
tions remains stable. On the other hand, instabilities may
develop in strongly coupled adiabatic regimes, with a
coupling constant much greater than gravitational strength.
Interestingly, during the adiabatic evolution of the field, the
coupled system behaves as a single adiabatic inhomoge-
neous fluid. We have also shown that large instabilities can
spoil the growth of linear perturbations in the case of
nonadiabatic solutions characterized by large scalar field
oscillations. It is well known that scalar field fluctuations
are unstable during oscillatory regimes; in such a case, the
scalar coupling amplifies and propagates such instabilities
to the perturbations of the dark matter component.
Our analysis suggests that under minimal natural model

assumptions chameleonlike cosmologies are not affected
by instabilities of the perturbations and can provide a
viable period of structure formation more than previously
believed.
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ABSTRACT

Extinction by intergalactic grey dust introduces a magnitude redshift-dependent offset in the
standard–candle relation of supernova Type Ia. This leads to overestimated luminosity distances
compared to a dust-free universe. Quantifying the amplitude of this systematic effect is crucial
for an accurate determination of the dark energy parameters. In this paper, we model the
grey dust extinction in terms of the star formation history of the Universe and the physical
properties of the dust grains. We focus on a class of cosmic dust models which satisfy current
observational constraints. These can produce an extinction as large as 0.08 mag at z =
1.7 and potentially disrupt the dark energy parameter inference from future SN surveys. In
particular depending on the dust model, we find that an unaccounted extinction can bias the
estimation of a constant dark energy equation of state w by shifting its best-fitting value up to
20 per cent from its true value. Near-IR broad-band photometry will hardly detect this effect,
while the induced decrement of the Balmer lines requires high signal-to-noise spectra. Indeed,
IR-spectroscopy will be needed for high-redshift SNe. Cosmic dust extinction may also cause
a detectable violation of the distance–duality relation. A more comprehensive knowledge of
the physics of the intergalactic medium is necessary for an accurate modelling of intergalactic
dust. Due to the large magnitude dispersion current luminosity distance measurements are
insensitive to such possible extinction effects. In contrast, these must be taken into account
if we hope to disclose the true nature of dark energy with the upcoming generation of SN Ia
surveys.

Key words: dust, extinction – cosmology: theory.

1 I N T RO D U C T I O N

Dust particles are present in the interstellar medium causing the
absorption of nearly 30–50 per cent of light emitted by stars in the
Galaxy. On the other hand very little is known about dust particles
which may exists outside our galactic environment. Metal lines are
observed in the X-ray spectra of galaxy clusters (e.g. Buote 2002)
and in high-redshift Lyman α clouds (Cowie et al. 1995; Telfer
et al. 2002). Infrared (IR) emissions of distant quasars have been
attributed to the presence of large amounts of dust (Bertoldi et al.
2003; Robson et al. 2004). Therefore, it has been speculated that
some type of dust may be present in the low-density intergalactic
medium (IGM). Since conditions in the IGM are unfavourable to
the formation of dust grains, if such a component exists it originates
in stars. However, it is unlikely that its properties are similar to
those of interstellar grains. In fact because of the physical processes
which expel dust from formation sites, intergalactic dust particles

!E-mail: pierste@astro.columbia.edu

may undergo very different selection effects (Shustov & Vibe 1995;
Davies et al. 1998; Aguirre 1999).

Since the early search for distant supernovae Type Ia (SNe Ia)
(Riess et al. 1998; Perlmutter et al. 1999), cosmic dust extinction was
proposed to account for the observed dimming of SN luminosities
at high redshift (Aguirre 1999). From several other observations, we
have now compelling evidence of the cosmological nature of this
signal (De Bernardis et al. 2000; Percival et al. 2001; Scranton et al.
2003; Spergel et al. 2003; Tegmark et al. 2004). There is a general
consensus that it is caused by a recent accelerated phase of expansion
driven by a dark energy component. This can be the manifestation of
a cosmological constant, or an exotic specie of matter, or a different
regime of gravity on the large scales. Distinguishing between these
different scenarios has motivated a rich field of investigation.

Over the next decade, numerous experiments will test dark energy
using a variety of techniques. Surveys of SN Ia such as the proposed
SNAP, JEDI or ALPACA will play a leading role by providing
very accurate luminosity distance measurements. The success of
this programme will mostly depend on the ability to identify and
reduce possible sources of systematic uncertainties affecting the SN
Ia standard–candle relation.
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Here, we address the impact of cosmic ‘grey’ dust. Our aim is to
study this particular systematic effect from an astrophysical point of
view. Differently from the original proposal by Aguirre (1999), we
do not look for dust models which mimic the dimming of an accel-
erating universe. Instead, we estimate how an hypothetical cosmic
grey dust model which satisfies existing astrophysical constraints
may affect the dark energy parameter estimation from future SN
observations. In order to do so, we evaluate the dust extinction
from first principles by modelling the IGM dust in terms of the
star formation history (SFH) of the Universe and the physical prop-
erties of the dust grains. This will allow us to establish how the
uncertainties in the cosmic dust model, which depends on the com-
plex physics of the IGM, relate to expected cosmological parameter
errors.

This paper is organized as follows. In Section 2, we discuss the
existing constraints on cosmic grey dust and evaluate the expected
extinction for different IGM dust models. We evaluate the impact
on the dark energy parameter inference and describe the results of
our analysis in Section 3. In Section 4, we compute the signature of
dust models in near-IR photometric measurements and the decre-
ment of the Balmer lines. In Section 5, we discuss the violation of
the distance–duality relation. Finally in Section 6 we present our
conclusions.

2 C O S M I C G R E Y D U S T

2.1 Observational constraints

Typical dust extinction is correlated with reddening of incoming
light, therefore it can be revealed by simple colour analysis. Using
this technique, the interstellar extinction law has been estimated over
a wide range of wavelengths (e.g. Cardelli, Clayton & Mathis 1989).
However, this method is not effective for absorption caused by ‘grey’
dust. As suggested by Aguirre (1999), astrophysical processes which
transfer dust into the IGM can preferentially destroy small grains
over the large ones. Those surviving have radii a ! 0.01 µm. In
such a case intergalactic dust may consist of particles which induce
very little reddening (hence grey), while still able to cause large
extinction effects.

The possibility of grey dust being entirely responsible for the
dimming of high-redshift SN Ia has been now ruled out. For in-
stance, Aguirre & Haiman (2000) showed that the density of dust
necessary to reconcile SN data with a flat matter dominated uni-
verse is incompatible with the limits inferred from the far-infrared
background (FIRB) as measured by the DIRBE/FIRAS experiment.
Recently, Bassett & Kunz (2004b) have excluded this scenario at
more than 4σ by testing the distance–duality relation. Nevertheless,
the actual amount of dust in the IGM and its composition remain
unknown.

Constraints on cosmic dust extinction have been inferred from
colour analysis of distant quasars (Mortsell & Goobar 2003; Ostman
& Mortsell 2005). Assuming the interstellar extinction law (Cardelli
et al. 1989; Fitzpatrick 1999), these studies have confirmed that dust
dimming cannot be larger than 0.2 mag at z = 1 and also indicated
that if any grey dust component is present in the IGM it cannot induce
extinction larger than 0.1 mag. For an early study of the effect of
intergalactic extinction on cosmological expansion measurements
see also Meinel (1981).

Indeed IR observations may turn out to be more informative. As
an example, Aguirre & Haiman (2000) have suggested that resolv-
ing the FIRB will provide a definitive test of the IGM dust. Some

quantitative limits have also been derived from the thermal history
of the IGM (Inoue & Kamaya 2003).

A more direct constraint on the density of cosmic dust particles
has been obtained by Paerels et al. (2002) from the analysis of X-ray
scattering halo around a distant quasar at z = 4.30. In particular for
grains of size ∼ 1 µm the total cosmic dust density is "IGM

dust " 10−6,
while for 0.1 µm grains the constraint is one order of magnitude
weaker. Compatible limits were also found by Inoue & Kamaya
(2004) using existing bounds on SN Ia extinction and reddening.

As we will see in the next section a better knowledge of these
quantities is necessary if we hope to measure the dark energy pa-
rameters with high accuracy.

2.2 Intergalactic dust extinction

In order to estimate the extinction from intergalactic grey dust, we
need to determine the evolution of dust density in the IGM. Since
dust particles are made of metals, the first step is to evaluate the
evolution of the cosmic mean metallicity from the star formation
history of the universe (Aguirre & Haiman 2000). For simplicity,
we can assume that metals are instantaneously ejected from newly
formed stars. In such a case, the metal ejection rate per unit comoving
volume at redshift z can be written as (Tinsley 1980):

ρ̇Z (z) = ρ̇SFR(z)yZ , (1)

where ρ̇SFR is the star formation rate and yZ is the mean stellar
yield, namely the average mass fraction of a star that is converted
to metals. The value of yZ is slightly sensitive to the initial mass
function (IMF) and may also change with redshift if the IMF varies
with time. For simplicity, we assume yZ to be constant.

From equation (1) it follows that the mean cosmic metallicity is
given by (Inoue & Kamaya 2004):

Z (z) =
yZ

"bρc

∫ zS

z

ρ̇SFR(z′)
dz′

H (z′)(1 + z′)
, (2)

where "b is the baryon density, ρc is the current critical density, H(z)
is the Hubble rate and zS redshift at which star formation began.
There is little dependence on zS for z " 3 provided that the star
formation begin at zS ! 5. Without loss of generality we set its
value to zS = 10.

Following the notation of Inoue & Kamaya (2004), we introduce
a further parameter which describes the mass fraction of dust to the
total metal mass, χ = D/Z where D is the dust-to-gas ratio of the
IGM. The latter depends on the mechanism which expel dust from
galaxies and in principle may evolves with redshift according to
the dominant process responsible for the transfer (e.g. stellar winds,
SN II explosions and radiation pressure). Only recently, authors
have began to study the metal enrichment of the IGM using numer-
ical simulations (see for instance Bianchi & Ferrara 2005). As we
lack of any guidance, we simply assume that the dust-to-gas ratio
scales with the mean metallicity and consider χ as a constant free
parameter.

Another open issue concerns the spatial distribution of dust parti-
cles in the IGM. It has been argued that a clumped grey dust would
cause a dispersion of SN magnitudes larger than the observed one.
Consequently if a grey dust component exists it must be nearly
homogeneously distributed. However, this does not necessarily im-
ply a strong constraint on the grey dust hypothesis. In fact, the
overall dispersion at a given redshift goes roughly as % ∝ 1/

√
N

where N is the number of homogeneous dust patches along the line
of sight (Aguirre 1999). Numerical simulations indicate that dust
grains can diffuse in one billion years over scales of a few hundreds
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Kpc (Aguirre et al. 2001). This corresponds to N ! 1 for high-
redshift SNe, in which case the dispersion would be small. Indeed
more detailed studies are needed, but here we limit our analysis to
a homogeneous dust distribution.

The differential number density of dust particles in a unit physical
volume reads as

dnd

da
(z) =

χ Z (z) "bρc(1 + z)3

4πa3$/3
N (a), (3)

where $ is the grain material density and N(a) is the grain size
distribution normalized to unity.

The amount of cosmic dust extinction on a source at redshift z
observed at the rest-frame wavelength λ integrated over the grain
size distribution is then given by

Aλ(z)
mag

= 1.086π

∫ z

0

c dz′

(1 + z′)H (z′)

∫

a2 Qλ
m(a, z′)

dnd

da
(z′) da, (4)

where Qλ
m (a, z′) is the extinction efficiency factor which depends on

the grain size a and complex refractive index m and c is the speed of
light. Hence, the extinction at a given redshift depends on the dust
properties and the metal content of the IGM. More specifically for a
given cosmological background, a model of dust is specified by the
grain composition, size distribution and material density, the mean
interstellar yield, the star formation history and the IGM dust-to-
total-metal mass ratio.

None of these parameters is precisely known, leaving us with a
potentially large uncertainty about the level of cosmic dust extinc-
tion.

Figure 1. Cosmic grey dust extinction in the B-band (upper panels) and colour excess (lower panels) as function of redshift of the source for BF (left-hand
panel) and MRN (right-hand panel) grain size distributions in the range 0.02–0.15 µm. Solid and dashed lines correspond to silicate and graphite grains,
respectively. Thick (thin) lines correspond to high (low) SFH models.

In the following, we assume a standard flat & cold dark matter
(&CDM) model with Hubble constant H0 = 70 km s−1 Mpc−1

matter density "m = 0.30 and baryon density "b = 0.04.
Several studies have suggested that the size of IGM dust grains

varies in the range 0.05–0.2 µm (Ferrara et al. 1991; Shustov &
Vibe 1995; Davies et al. 1998). Smaller grains (a ! 0.05 µm) are
either destroyed by sputtering or unable to travel far from formation
sites as they are inefficiently pushed away by radiation pressure;
in contrast grains larger than ∼ 0.2 µm are too heavy and remain
trapped in the gravitational field of the host galaxy. However, these
analyses have provided no statistical description of the grain size
abundance. A common assumption is to consider a power-law dis-
tribution, N(a) ∝ a−3.5 usually referred as the MRN model (Mathis,
Rumpl & Nordsiek 1977). This describes the size distribution of dust
grains in the Milky Way, but there is no guarantee that this model
remains valid for IGM dust as well. On the other hand, Bianchi
& Ferrara (2005) have studied through numerical simulation the
size distribution of grains ejected into the IGM. Assuming an ini-
tial flat-size abundance they find that the post-processed distribution
remains nearly flat and due to erosion sputtering the size range is
slightly shifted towards smaller radii, 0.02–0.15 µm. We refer to
this as the BF model and evaluate the grey dust extinction for both
MRN and BF cases. We also consider a uniformly sized dust model
corresponding to a distribution N(a) = δ(a) with a = 0.1 µm and for
more descriptive purpose we also consider the less realistic value
a = 1.0 µm.

The exact intergalactic dust composition is also not known,
we focus silicate and graphite particles with material density
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! = 2 g cm−3 and optical properties specified as in Draine & Lee
(1984). Using these specifications, we compute the extinction effi-
ciency factor Qλ

m (a, z) by solving numerically the Mie equations
for spherical grains (Barber & Hill 1990).

We set the mean interstellar yield to yZ = 0.024 (Madau et al.
1996) corresponding to the value inferred from the Salpeter IMF
(Salpeter 1955).

The star formation rate at different redshifts is known from a
large body of measurements. The trend at redshifts z ! 1 is well
established with

ρ̇SFR(z)
M" yr−1 Mpc−3

= 0.0158 (1 + z)3.10, (5)

being the best fit to existing data (Hopkins 2004). On the other
hand there is less agreement on the exact behaviour at higher red-
shifts, with recent observations favouring a flat redshift dependence
(Giavalisco et al. 2004). We follow the analysis of Inoue & Kamaya
(2004) and consider two possible star formation rates at z > 1:

ρ̇SFR(z)
M" yr−1 Mpc−3

=

{

0.156 (high SFH)
0.156 (1 + z)−1.5 (low SFH)

(6)

in units of solar mass M" per year per Mpc volume.
Consistently with constraints derived in (Inoue & Kamaya 2004)

we set χ = 0.01. Since equation (4) is linear in this parameter the
results can be simply rescaled for different values. For this particular
choice, the total dust density up to z = 4.3 is %IGM

dust ∼ 10−6 which is
consistent with the direct constraints found in Paerels et al. (2002).
In addition, dust grains in the IGM can absorb the UV light in the
Universe and re-emit in the far-IR contributing the FIRB. From the
analysis of Aguirre & Haiman (2000), we find that for χ = 0.01
cosmic grey dust would produce a background signal at 850 µm

Figure 2. As in Fig. 1 for a uniform-sized grains with a = 0.1 µm (left-hand panel) and a = 1.0 µm (right-hand panel).

roughly 10 per cent of the FIRB and only 1 per cent at 200 µm thus
well within the DIRBE/FIRAS limits.

In Fig. 1, we plot the B-band extinction (upper panels) and red-
dening (lower panels) as function of the redshift for BF (left-hand
panels) and MRN (right-hand panels) grain size distributions. The
solid and dashed lines correspond to silicate and graphite grains, re-
spectively. Thick (thin) lines correspond to high (low) SFH models.
Low SFH gives smaller extinction than the high case, consistently
with the fact that low SFH produces a smaller amount of dust. The
extinction is larger for graphite grains than silicate. Note also that
the extinction for the BF distribution is smaller than for the MRN
case. This is because in the B-band the efficiency factor is constant,
thus equation (4) scales as N(a)/a. Since smaller grains are more
abundant in the MRN model than in the BF case, the corresponding
extinction is larger.

As it can be seen from the plots of the colour excess |E(B − V)|
these models cause very little reddening. Photometric measurements
more accurate than 1 per cent would be needed to detect the imprint
of grey dust at high redshift.

In Fig. 2, we plot the case of uniformly sized grains with radii a =
0.1 and 1.0 µm. As expected a = 0.1 µm grains cause an extinction
nearly a factor of 10 larger than 1.0 µm particles, consistently with
the 1/a dependence of AB . Although these models are unrealistic
from a purely astrophysical stand point, we can see that for a =
0.1 µm the expected extinction and reddening are in agreement with
those estimated assuming more realistic grain size distributions.
Therefore without loss of generality we can use the uniform size
approximation to study the effect of dust extinction on the dark
energy parameter inference without the need to specify the exact
form of N(a). We can simply focusing on the typical size of grey
particles and the other parameters specifying the IGM dust model.
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3 DA R K E N E R G Y I N F E R E N C E

SN Ia observations measure the luminosity distance through the
standard–candle relation,

m B(z) = MB + 5 log H0 dL(z), (7)

where mB(z) is the apparent SN magnitude in the B-band, MB ≡
MB − 5 log H0 + 25 is the ‘Hubble-constant-free’ absolute magni-
tude and dL(z) is the luminosity distance.

Extinction modifies the standard–candle relation such that the
observed SN magnitude is

m̃ B(z) = m B(z) + AB(z), (8)

with AB(z) given by equation (4) evaluated at the B-band centre
rest-frame wavelength, λ = 0.44 µm. Hence SNe are systematically
dimmer than in a dust-free universe, and overestimate luminosity
distances. Note that the extinction term in equation (8) corresponds
to a redshift-dependent magnitude offset. Previous studies of SN
systematics have limited their analysis to a simple magnitude offset
that linearly increases with redshift (Weller & Albrecht 2002; Kim
et al. 2004). On the contrary here we approach this type of system-
atic from a physically motivated standpoint. Having modelled the
grey dust extinction as in equation (4), we can determine how astro-
physical uncertainties in the cosmic dust model parameters affect
dark energy parameter inference.

3.1 Monte Carlo simulations

Using equation (8), we proceed by Monte Carlo simulating a sample
of SN Ia data in the B band in a given cosmological background for
dust models listed in Table 1. Then for each of these samples, we
recover the background cosmology by inferring the best-fitting dark
energy parameter values and uncertainties in a dust-free universe
through standard likelihood analysis.

We consider a constant dark energy equation of state w and a
time-varying equation of state of the form (Chevallier & Polarski
2001; Linder 2003):

w(z) = w0 + w1
z

1 + z
. (9)

For simplicity, we focus on an SN experiment such as SNAP which
goes very far in redshift. We assume the survey characteristics as
specified in Kim et al. (2004). We consider a flat universe with
"m = 0.3 and assume a Gaussian matter density prior σ"m = 0.01.

First, we consider the case of a fiducial $CDM cosmology. In
Fig. 3, we plot the marginalized 1 and 2σ contours in the "m − w

plane inferred from the data samples generated in models A (red
dashed curve), B (red dotted curve) and C (black solid curve) for
low (left-hand panel) and high SFH (right-hand panel). It can be
seen that the overall effect of extinction is to shift the confidence
regions towards more negative value of the dark energy equation of
state. This is because the extinction dims SNe increasingly with
the redshift. Thus inferred distances are bigger than in a dust-free
universe mimicking a more rapid accelerating expansion. For fixed

Table 1. Grey dust models. For a = 1.0 µm, we only consider
silicate dust since graphite causes the same extinction.

χ a Type SFH

A 0.01 0.1 Graphite Low/high
B 0.01 0.1 Silicate Low/high
C 0.01 1.0 Silicate Low/high

Ω
m

w

high SFH

0.25 0.3 0.35

–1.35

–1.3

–1.25

–1.2

–1.15

–1.1

–1.05

–1

–0.95

–0.9

Ω
m

w

low SFH

0.25 0.3 0.35

–1.35

–1.3

–1.25

–1.2

–1.15

–1.1

–1.05

–1

–0.95

–0.9

Figure 3. Marginalized 1 and 2σ confidence contours in the plane "m − w

plane inferred from data generated in models A (red dashed curve), B (red
dotted curve) and C (black solid curve) in $CDM background. The left- and
right-hand panels correspond to high- and low-SFH models, respectively.
The cross point indicates the parameter values of the fiducial cosmology.

Ω
m

w

high SFH

0.25 0.3 0.35
–1.3

–1.25

–1.2

–1.15

–1.1

–1.05

–1

–0.95

–0.9

–0.85

–0.8

Ω
m

w

low SFH

0.25 0.3 0.35
–1.3

–1.25

–1.2

–1.15

–1.1

–1.05

–1

–0.95

–0.9

–0.85

–0.8

Figure 4. As in Fig. 3 with w = −0.9 dark energy fiducial cosmology.

values of "m, this requires the dark energy equation of state to be
< −1. As a result, an unaccounted extinction moves the best-fitting
dark energy model many sigma away from the true one. The effect
is more dramatic in model A since AB(z) ! 0.01 at z > 0.5 while
it is negligible in model C since the extinction is a factor of 10
smaller. From Fig. 3, it is evident that the existence of grey dust
particles with size ∼0.1 µm and a dust-to-total-metal mass ratio of
0.01 in $CDM cosmology would cause an extinction that effectively
mimic a phantom dark energy model, hence misleading us on the
true nature of dark energy.

In the same manner, IGM dust may prevent us from detecting a
quintessence-like dark energy. For instance in Fig. 4, we plot the
confidence contours in the case of a fiducial dark energy cosmology
with w = −0.9. Again the effect of dust extinction is to shift the con-
fidence regions towards more negative values of w. The amplitude
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Figure 5. Marginalized 1 and 2σ contours in the plane w0 − w1 for dust
models as in Fig. 3.

of this effect is similar to the previous "CDM case and therefore is
fiducial cosmology independent.

To be quantitative, the extinction in model A causes a 20 per cent
bias on the inferred values of w and 10 per cent in model B. On the
contrary, model C does not affect the parameter inference.

A similar trend occurs for the constraints on the redshift
parametrization (equation 9). We plot in Fig. 5 the marginalized
1 and 2σ contours in the w0 − w1 plane for a fiducial "CDM
cosmology. Note that the size of the ellipses is altered, besides the
amplitude of the shift is smaller than for the constant equation of
state parameter. In fact while in model A the fiducial cosmology
still lies many sigma away from the 95 per cent confidence region,
it is within the 2σ contours for model B. This is because the effect
of the extinction is spread over two degenerate equation of state
parameters. Indeed IGM dust parameters should be included in the
cosmological fit along the line suggested by Kim & Miquel (2006).

3.2 SN-gold data analysis

Can dust extinction affect the dark energy parameters inference from
current SN Ia data? Despite the recent progress in the search for SN
Ia, the magnitude dispersion is still large (∼0.1 mag). Therefore,
the extinction effect is well within the experimental errors. As an
example, we consider the Gold sample (Riess et al. 2004) which
extends up to zmax ∼ 1.7 and therefore is more likely to be sensitive
to grey dust extinction than the SNLS data set (Astier et al. 2006)
for which zmax ∼ 1. In addition, the estimated SN extinctions in the
Gold data set appear to be correlated with the magnitude dispersion
(Jain & Ralston 2006). We assume a flat universe with prior #m =
0.27 ± 0.04. Using equation (8), we fit the Gold data accounting
for the extinction of dust model A. We find w = −0.90 ± 0.17

0.21 at
1σ . On the contrary, the fit without extinction gives w = −0.96 ±
0.18
0.16. Thus the shift is less than 1σ . The fact that the best-fitting
value is slightly >−1 should not be surprising. Comparison with the
SNLS data shows that SNe in the Gold sample are slightly brighter.
Nevertheless the "CDM is within 1σ uncertainty. Note that the
direction of the shift is consistent with the result of the Monte Carlo
analysis. In fact accounting for the extinction term allows models
with a larger value of w to be consistent with the data.

Figure 6. Absolute value of colour excess E(V − J), E(R − J) and E(I − J)
versus redshift for models A (short-dashed line), B (solid line) and C (long-
dashed line) in the case of high (left-hand panel) and low SFH (right-hand
panel).

4 N E A R - I R C O L O U R A NA LY S I S A N D
D E C R E M E N T O F BA L M E R L I N E S

As we have seen in Section 2.2, it is very difficult to detect the sig-
nature of grey dust through reddening analysis in the optical wave-
lengths. It has been suggested that broad-band photometry in the
near-IR could be more effective. For instance, Goobar, Bergstrom
& Mortsell (2002) estimated in 1 per cent the spectrophotometric
accuracy necessary to detect the dust reddening in the I, J and R
bands. In Fig. 6, we plot the colour excess |E(V − J)|, |E(R − J)|
and |E(I − J)| for our test-bed of cosmic dust models. For low-SFH
models, the colour excess is too small to be detectable with 1 per cent
photometry. Only model A in the high-SFH case would be
marginally distinguishable. In general, we find that our estimates
are a factor of 2 smaller than those in Goobar et al. (2002). Given
the difficulty of performing such accurate near-IR measurements,
distinguishing the effect of cosmic dust will be a challenging task.

A possible alternative is to consider the decrement in the rela-
tive strength of the Balmer lines in the host galaxy spectrum. The
recombination of ionized hydrogen atoms causes the well-known
Hα and Hβ emission lines at 6563 and 4861 Å respectively, with
intensity ratio rHα/Hβ = 2.86. Deviations from this value are indica-
tive of selective absorption. For instance in the case of an extinction
law with negative slope, the blue light is dimmed more than the red
one, hence causing rHα/Hβ

> 2.86. In Fig. 7 we plot the absolute
value of the relative decrement of the Balmer lines as function of
redshift for models A, B and C. We may notice that the amplitude
of the decrement for models A and B is within standard accuracy
of high signal-to-noise spectroscopy. It is also worth noticing that
for 1.0-µm silicate grains (model C) the extinction law at z > 0.4
changes slope, thus causing rHα/Hβ

< 2.86. Deep redshift spec-
troscopic surveys can in principle be used to track the trend of the
Balmer line decrement and provide a complementary method to test
the cosmic dust extinction. However, IR observations are necessary
in order to measure the Hα emission of high-redshift sources. As
an example, the SDSS catalogue of galaxy and quasar spectra spans
the range 3800 < λ < 9200 Å therefore the Hα cannot be detected
for objects at z ! 0.25. The next generation of satellite surveyors
will be equipped for IR-spectroscopy and capable to provide such
measurements.
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Figure 7. Relative decrement of Balmer lines for dust models as in Fig. 6.

5 T E S T I N G D I S TA N C E – D UA L I T Y R E L AT I O N

A well-known result of metric theories of gravity is the uniqueness of
cosmological distances (Etherington 1933). Thus measurements of
the luminosity distance dL(z) and angular diameter distance dA(z)
at redshift z are linked through the duality relation (Linder 1988;
Schneider, Ehlers & Falco 1992):

Y ≡
dL(z)

dA(z)(1 + z)2
= 1. (10)

As discussed in (Bassett & Kunz 2004b) testing this equality with
high accuracy can be a powerful probe of exotic physics. Violations
of the duality relation are predicted by non-metric theories of gravity,
varying fundamental constants and axion–photon mixing (Bassett
& Kunz 2004a; Uzan, Aghanim & Mellier 2004) just to mention a
few. Also astrophysical mechanisms such as gravitational lensing
and dust extinction can cause deviation from equation (10).

From equations (7) and (8), it is easy to show that in the presence
of dust extinction the deviation from equation (10) is given by

!Y (z) = 101/5AB (z) − 1. (11)

Therefore if SN Ia are dimmed by intergalactic dust absorption, this
would be manifested in the violation of the duality relation.

The distance–duality relation can be tested using SN Ia data and
angular diameter distance measurements from detection of baryon
acoustic oscillations (BAOs) in the galaxy power spectrum (Bassett
& Kunz 2004b; Linder 2005). Over the next decade, several surveys
of the large-scale structures will measure dA(z) with a few per cent
of accuracy over a wide range of redshifts. Similarly future SN Ia
surveys such as SNAP are designed to control intrinsic SN systemat-
ics within a few per cent which would provide luminosity distances
measurements with 1–2 per cent accuracy.

We forecast the sensitivity of future distance–duality test by error
propagation of equation (10). We assume the expected errors on the
angular diameter distance for a galaxy survey of 10 000 deg2 with
spectroscopic redshifts as quoted in (Glazebrook & Blake 2005).

In Fig. 8, we plot equation (11) for dust models A and B in the
case of high (thick lines) and low SFH (thin lines). The error bars
correspond to the expected uncertainty of the distance–duality test.
It can be seen that for high SFH, silicate and graphite particles of size
0.1 µm would cause a clearly detectable violation of the distance–
duality relation.

Figure 8. Percentage deviation from the distance–duality relation as func-
tion of redshift. The dashed and solid lines represent the violation caused by
dust extinction for 0.1 µm graphite and silicate grains, respectively. Thick
(thin) lines correspond to high (low) SFH. The error bars are the errors on
the duality test as expected from upcoming SN Ia and BAO surveys. At z <

0.5, the errors on angular diameter distance measurements are not accurate
enough for testing the duality.

6 C O N C L U S I O N

The goal of the next generation of SN Ia experiments is to determine
the dark energy parameters with high accuracy. For this to be pos-
sible, systematic effects must be carefully taken into account. Here,
we have studied the impact of intergalactic grey dust extinction.
We have used an astrophysical-motivated modelling of the IGM
dust in terms of the star formation history of the Universe and the
physical properties of the dust grains. We have identified a number
of models, which satisfy current astrophysical constraints such as
those inferred from X-ray quasar halo scattering and the amplitude
of the FIRB emission. Although characterized by negligible red-
dening IGM dust may cause large extinction effects and strongly
affect the dark energy parameter estimation. In particular for high
star formation history, we find that dust particles with size ∼0.1 µm
and a total dust density "IGM

dust ∼ 10−6 may bias the inferred values
of a constant dark energy equation of state up to 20 per cent. Cur-
rent SN Ia data are insensitive to such effects since the amplitude of
the induced extinction is well within the SN magnitude dispersion.
Near-IR colour analysis would require an accuracy better than 1 per
cent to detect the signature of these IGM dust particles. On the other
hand, IGM dust arising from high SFH can be distinguished from the
decrement of Balmer lines with high signal-to-noise spectroscopy.
We have also shown that cosmic dust violates the distance–duality
relation, and depending on the dust model this may be detected with
future SN Ia and BAO data.

It is worth remarking that a number of caveats concerning the
physics of the IGM have been assumed throughout this analysis.
Specifically, we have considered a redshift-independent dust-to-
total-metal mass ratio. Unfortunately, we are still lack of a satisfac-
tory understanding of the intergalactic medium both theoretically
and observationally which would allow us to make more robust pre-
diction about IGM dust extinction. Indeed if we happen to live in
a Universe with a total grey dust density "IGM

dust ∼ 10−6, extinction
effects on SN Ia observations must be considered more than previ-
ously thought. The risk is to miss the discovery of the real nature of
dark energy.
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COSMIC DUST INDUCED FLUX FLUCTUATIONS: BAD AND GOOD ASPECTS
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ABSTRACT

Cosmic dust extinction alters the flux of Type Ia supernovae (SNe Ia). Inhomogeneities in the dust distribution
induce correlated fluctuations of the SN fluxes. We find that such correlation can be up to 60% of the signal caused by
gravitational lensing magnification, with an opposite sign. Therefore, if not corrected, cosmic dust extinction is the
dominant source of systematic uncertainty for future SNe Ia lensing measurement, limiting the overall S/N to beP10.
On the other hand, SN flux correlation measurements can be used in combination with other lensing data to infer the
level of dust extinction. This will provide a viable method to eliminate gray dust contamination from the SN Ia Hub-
ble diagram.

Subject headinggs: dust, extinction — gravitational lensing — large-scale structure of universe —
supernovae: general

Online material: color figures

1. INTRODUCTION

Gravitational lensing causes several observable effects, such as
distortion of galaxy shape (‘‘cosmic shear’’), variation of galaxy
number density (‘‘cosmic magnification’’), and mode coupling in
cosmic backgrounds. Over the coming years, measurements of
these effects will provide an accurate mapping of the matter dis-
tribution in the universe (for reviews, seeBartelmann&Schneider
2001; Refregier 2003).

Recently, several other lensing reconstruction methods have
been proposed. One possibility is to measure the spatial correla-
tion of lensing-induced supernova (SN) flux fluctuations. In fact,
due to lensing magnification,5 the SN flux is altered such that
F ! F! ’ F(1þ 2"), where F is the intrinsic SN flux, ! is the
lensingmagnification, and " is the lensing convergence. Intrinsic
fluctuations of the SN flux are random (analogous to intrinsic gal-
axy ellipticities in cosmic shear measurement). In contrast, those
induced by lensing magnification (see, e.g., Kantowski et al. 1995;
Frieman 1996; Holz 1998; Dalal et al. 2003) are correlated with the
overall matter distribution (analogous to the shear signal). There-
fore, the lensing signature can be inferred either from spatial cor-
relation measurements of SN fluxes (Cooray et al. 2006a) or from
the rms of fluxfluctuations of high-redshift SNe forwhich the lens-
ing signal is dominant (Dodelson & Vallinotto 2006).

Gravitational lensing also induces scatter in the galaxy funda-
mental plane through magnification of the effective radius, Re !
Re!1/2 ’ Re(1þ "). Since intrinsic scatters in the fundamental
plane are random, spatial correlation measurements can be used
to infer the lensing signal (Bertin & Lombardi 2006). A similar
analysis can be applied to the Tully-Fisher relation as well.

Astrophysical effects may limit the accuracy of thesemethods.
For instance, extinction by cosmic gray dust can be an important

source of systematic uncertainty. This is because dust absorption
changes the apparent SN flux and may induce correlation of the
flux fluctuations. It also induces scatters in the fundamental plane
by dimming the galaxy surface brightness and affects the Tully-
Fisher relation through dimming the galaxy flux. These effects po-
tentially cause nonnegligible systematics in the corresponding
lensing measurements.

Although the existence of gray dust in the intergalactic medium
(IGM) remains untested, this scenario could account for the metal
enrichment of the IGM (Bianchi & Ferrara 2005, and references
therein). Testing the gray dust hypothesis is also relevant for cos-
mological parameter inference from Type Ia supernova (SN Ia)
luminosity distancemeasurements. Recently, Corasaniti (2006) has
pointed out that gray dust models that pass current astrophysical
constraints can induce a"20% bias in the estimate of the dark en-
ergy equation of statew using the Hubble diagram of future SN Ia
experiments.

In this paper, we study the impact of cosmic gray dust on SN
lensing measurements, under the optimistic assumption that con-
taminations of reddening dust can be perfectly corrected. The ef-
fects on lensing reconstruction based on the fundamental plane and
theTully-Fisher relation can be estimated similarly. For supernovae,
the key point is that extinction caused by dust inhomogeneities
along the line of sight causes flux fluctuations that are anticorrelated
with the lensing magnification signal and thus wash out its imprint.
In particular, we find that dust-induced correlation can bias SN
lensingmeasurements by 10%–60%. Therefore, this effect is likely
to be the dominant source of systematics for future SN surveys
characterized by large sky coverage and sufficiently high surface
number density. If not corrected, the dust-induced correlationwould
limit the signal-to-noise ratio (S/N) toP10. This is low compared
to the S/N achieved by current cosmic shear measurements (e.g.,
Jarvis et al. 2005; VanWaerbeke et al. 2005; Hoekstra et al. 2006)
and that of proposed methods such as cosmic microwave back-
ground (CMB) lensing (Seljak & Zaldarriaga 1999; Zaldarriaga
& Seljak 1999; Hu 2001; Hu & Okamoto 2002), 21 cm back-
ground lensing (Cooray 2004; Pen 2004; Zahn & Zaldarriaga
2005; Mandel & Zaldarriaga 2005), and cosmic magnification of
21 cm emitting galaxies (Zhang & Pen 2005, 2006).

Nevertheless, we suggest thatmeasurements of the SNflux cor-
relation still carry valuable information. In fact, in combination

A

1 Shanghai Astronomical Observatory, Chinese Academy of Science, Shanghai,
China; pjzhang@shao.ac.cn.

2 Joint Institute for Galaxies and Cosmology (JOINGC) of SHAO and USTC.
3 Institute for Strings, Cosmology, andAstroparticle Physics (ISCAP), Columbia

University, New York, NY; pierste@astro.columbia.edu.
4 Department of Astronomy, Columbia University, New York, NY.
5 Throughout this paper, the term ‘‘lensing magnification’’ refers to both the

cases of magnification (! > 1) and demagnification (! < 1). To be more specific,
the spatial correlation functions and the corresponding power spectra (C" andC"#$ )
investigated hereafter are averaged over the full distribution of !.

71

The Astrophysical Journal, 657:71–75, 2007 March 1
# 2007. The American Astronomical Society. All rights reserved. Printed in U.S.A.



with other lensing data they will provide a viable method to de-
tect and eliminate cosmic gray dust contamination from future
SN Ia luminosity distance measurements.

2. DUST-INDUCED FLUX FLUCTUATIONS

The observed flux of a SN Ia at redshift z in the direction n̂ of
the sky is

Fobs(n̂; z) ¼ F!e"" ; ð1Þ

where F is the intrinsic flux and " is the optical depth caused by
dust extinction along the line of sight. The lensing magnification
can be written as ! % 1/½(1" #)2 " $ 2' ’ 1þ 2#, with # and $
being the lensing convergence and shear, respectively. In the pres-
ence of dust density inhomogeneities, the optical depth can be
decomposed into a homogeneous and isotropic part "̄ and a fluc-
tuation %" (" % "̄ þ %" ). To first order, equation (1) reads

F obs(n̂; z) ’ Fe""̄(z) 1þ 2#(n̂; z)" %" (n̂; z)½ ': ð2Þ

It is worth noting that the lensing and dust extinction terms have
opposite sign. Since !̄ ¼ 0 (ensemble average) and #̄ ¼ 0, the av-
erage flux of a SN Ia sample in a given redshift bin is F̄obs(z) ’
F̄e""̄ (z).

The angular correlation of the flux fluctuations can be inferred
from the estimator %F (n̂; z) % Fobs /F̄obs " 1 (Cooray et al. 2006a).
From equation (2) we then have %F ¼ 2#" %" ; hence, %F provides
an estimate of the gravitational lensing only if fluctuations in the
optical depth are negligible.

The lensing convergence # is related to the three-dimensional
(3D) matter overdensity %m by

# ¼ 3

2
!m

H 2
0

c2

Z
%mW (&;&s) d&; ð3Þ

whereW (&;&s) is the lensing geometry function. For a flat universe
W (&;&s) ¼ (1þ z)&(1" &/&s), with & and &s the comoving di-
ameter distance to the lens and source, respectively.

Following the derivation of Corasaniti (2006), the average op-
tical depth to redshift z is

"̄(z) ¼ 1

2:5 log e

Z z

0

dĀ

dz0
c dz0; ð4Þ

where c is the speed of light and

1

2:5 log e

dĀ

dz
¼ 3

4%

'̄d(z)

(1þ z)H(z)

Z
Qk

m(a; z)N (a)
da

a
; ð5Þ

where '̄d is the average dust density, % is the grain material den-
sity, a is the grain size,Qk

m is the extinction efficiency factor at the
rest-frame wavelength k that depends on the grain size and com-
plex refractive index m, and N (a) is the size distribution of dust
particles. The extinction efficiency factor is computed by numer-
ically solving theMie equations for spherical grains (Barber &Hill
1990). Since dust particles are made of metals, we estimate the
evolution of the average cosmic dust density '̄d from the red-
shift dependence of the average cosmicmetallicity as inferred by
integrating the star formation history (SFH) of the universe. Such
amodeling is an extension of that presented inAguirre (1999) and
Aguirre & Haiman (2000), since, in addition to estimating the
amount of cosmic dust density in terms of the measured SFH, it
accounts for the physical and optical properties of the dust grains.

This approach differs from that used in some of the SN Ia lit-
erature (see for instance Riess et al. 2004). In these studies the cos-
mic dust dimming is estimated by modeling the evolution of dust
density as a redshift power law with different slopes corresponding
to different cosmic dust models. More importantly, these studies
assume the empirical interstellar extinction law, typically in the
form inferred by Cardelli et al. (1989). However, cosmic dust par-
ticles undergo very different selection mechanisms from those of
interstellar grains and therefore are unlikely to cause a similar
extinction.
In this perspective, our modeling is rather robust, since the cos-

mic dust absorption is computed from first principles and in terms
of astrophysical parameters that can bemeasured through several
observations, such as X-ray quasar halo scattering (see Paerels
et al. 2002) or high-resolution measurements of the far-infrared
background (FIRB;Aguirre&Haiman2000). Formore details on
these cosmic dust models and their cosmological impact, see
Corasaniti (2006).
The fluctuation in the optical depth is then given by

%" ¼ 1

2:5 log e

Z z

0

dĀ

dz0
%d(z

0)c dz0; ð6Þ

where %d is the fractional dust density perturbation. The resulting
autocorrelation power spectrum of %F is

1

4
C%F (l ) ¼ C# þ

1

4
C%" " C#%" ; ð7Þ

where C#, C%" , and C#%" are the angular power spectra of #, %" ,
and the #-%" cross correlation. Using the Limber’s approximation,
these read (Limber 1954; Kaiser 1998)

l 2C#

2(
¼ (

l

3!mH
2
0

2c2
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&; z

! "
W 2(&;&s)& d&; ð8Þ
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l
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dĀ
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and

l 2C#%"

2(
¼ (

l

3!mH
2
0

5c2 log e

Z
"2

%%d

l

&; z

! "
W &;&sð Þ dĀ

d&
& d&; ð10Þ

where"2
% % k 3P%(k)/2(2 is the dimensionlessmatter density var-

iance and P% is the matter density power spectrum. The nonlinear
"2

% is calculated using the Peacock-Dodds fitting formula (Peacock
&Dodds 1996);"2

%%d and"
2
%d
are defined analogously. The spatial

distribution of IGM dust is not known; the simplest assumption
is that dust traces the total mass distribution. In such a case,
"2

%d ¼ b2d"
2
% and "2

%%d ¼ bd"
2
%, where bd is the dust bias.

Defining #L % (3/2)!m(H
2
0 /c

2)
R
W (&;&s) d&, one has %" /

# ) bdĀ/#L, and hence, C%" /C# ) b2
d (Ā/#L)

2 and C#%" /C# )
bd (Ā/#L). This indicates that cosmic dust contamination is negli-
gible only if Ā(z)T#L(z).
We adopt a flat$CDM cosmology, with!m ¼ 0:3,!$ ¼ 0:7,

h ¼ 0:7, !b ¼ 0:04, )8 ¼ 0:9, and the primordial power index
n ¼ 1. We assume the BBKS transfer function (Bardeen et al.
1986). For the dust extinction we limit our analysis to a test bed
of four cosmic dust models studied in Corasaniti (2006). These
are characterized by model parameter values motivated by astro-
physical considerations. In particular, the particle size distribution
is in the range 0.05–0.2 !m, consistent with the fact that smaller
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grains are destroyed by sputtering,while larger ones remain trapped
in the gravitational potential of the host galaxy (Ferrara et al. 1991;
Shustov & Vibe 1995; Davies et al. 1998). The grain composition
consists of silicate or graphite particles, and we consider both low
and high star formation history scenarios.

Models A and B assume graphite particles with low and high
SFH, respectively, while models C and D use silicate grains. The
total dust density for thesemodels is within the limits imposed by
the DIRBE/FIRAS data (Aguirre & Haiman 2000) and coincides
with the upper limit obtained from the analysis of X-ray quasar halo
scattering (Paerels et al. 2002). These gray dust models cause little
reddening of the incoming light and induce a color excess in the
optical and near-IR bands smaller than 0.01 mag.

A further assumption concerns the gray dust spatial distribution,
of which we have little knowledge. This model uncertainty may
affect the results presented in this paper significantly. One can
imagine an extreme case where gray dust distributes homoge-
neously. Then therewill be no fluctuations in ! and thus no induced
correlation in SNfluxfluctuations. However, current understanding
of gray dust formation implies that gray dust is associated with
the overall matter distribution. So a more appropriate treatment of
gray dust distribution is the bias model "d ¼ bd"m, as adopted in
this paper. Although it is natural to expect bd to be redshift- and
scale-dependent, since we have little knowledge of it, for sim-
plicity we assume bd ¼ 1.

From Figure 1 we can see that!L is comparable to the B-band
dust extinction Ā; hence, dust contamination cannot be neglected.
Therefore, C"! and C#"! in equation (7) are sources of systematic
errors that need to be corrected if we want to measure the conver-
gence power spectrum.

In Figure 2 we plot the lensing convergence power spectrum
l2C# /2$ and the dust contamination power spectrumC#"! " C"! /4
for our test bed of dust models for sources at zs ¼ 1. We find that
C"! is smaller thanC#"! ,mainly due to the 1/4 prefactor. SinceC#"!

has a sign opposite that of the lensing signal in equation (7), its over-
all effect is to suppress the spatial correlation of SN Ia flux fluctu-
ations and consequently diminish the variance and covariance of

flux fluctuations. Since statistical errors on cosmological param-
eter constraints from SNe Ia Hubble diagram are proportional to
the square root of the variance and covariance (see, e.g., Cooray
et al. [2006b] for discussions), the existence of cosmic dust extinc-
tion fluctuations decreases the statistical uncertainties, although
the mean dust extinction will induce a systematic bias unless
corrected.

Dust contamination can be quantified by the ratio % # jC#"!"
C"! /4j/C#. Since both # and "! trace the same large-scale struc-
ture (enforced by the simplification bd ¼ constant), the multipole
dependence of C#,C"! , andC#"! are similar, such that % is roughly
constant. In Table 1 we list its values for sources at redshift zs ¼
0:5, 1.0, and 1.7, respectively. As can be seen, model A causes the
largest contamination, inducing a systematic error as large as 60%
of the lensing signal. Even for model D the contamination is still
$10%, which is comparable to the statistical error expected from
future SN Ia lensing measurements. Consequently, dust-induced
systematics will be the dominant source of uncertainty for this type
of measurement.

Furthermore, we find that the relative error can be approximated
by % ¼ &bdĀ/!L, where & ’ 0:7 with a dispersion <0.1 over the
redshifts investigated for our test bed of dust models. This relation
suggests that if we can measure % in combination with an inde-
pendent lensing measurement, it would be possible to infer Ā given
knowledge of bd . In x 3 we discuss how these type of measure-
ments can be used to remove cosmic dust contamination in the
SN Ia Hubble diagram.

3. REMOVING COSMIC DUST CONTAMINATION

Flux fluctuations induced by lensing and extinction are small
compared to intrinsic SN flux fluctuations and therefore can only
be extracted statistically, except for the strongly lensed or heavily
extincted SNe. Accurate lensing measurements can be obtained
from a variety of astrophysical observations of cosmic shear and
cosmic magnification. In combination with correlation measure-
ments of SNfluxes, these can be used to quantify the level of cosmic

Fig. 1.—Lensing normalized matter surface density !L and the B-band dust
extinction AB for different dust models (see text). Since AB and!L are comparable,
dust extinction effects cannot be neglected in lensingmeasurements of SN flux cor-
relation. [See the electronic edition of the Journal for a color version of this figure.]

Fig. 2.—Lensing and dust contamination power spectra. The upper line is the
lensing convergence l2C# /2$. Other lines areC#"! " C"! /4 for dustmodel A, B, C,
andD, respectively, with bd ¼ 1.We have assumed all SNe to be at zs ¼ 1. Clearly,
the existence of cosmic dust would degrade or even prohibit measurement of the lens-
ing signal. [See the electronic edition of the Journal for a color version of this figure.]

COSMIC DUST INDUCED FLUX FLUCTUATIONS 73No. 1, 2007



dust extinction and provide a viablemethod of removing dust sys-
tematics from the SN Ia Hubble diagram. The idea is to infer !
from the comparison of C"F and C#. As discussed before, ! ’
0:7bdĀ/!L would allow us to measure Ā up to model uncertain-
ties in bd andmeasurement errors inC"F . The estimated value of Ā
can then be used to correct the standard candle relation of SNe Ia.

The efficiency of this method depends on the sky coverage and
the SN number density of the survey. For instance, in order to
measure Ā to 10% accuracy, the overall S/N of C"F must be k10
(1/! ! 1). This implies that for model A, C"F should be measured
with S/N of "10, while for model B, C, and D, it would require a
S/N # 40–100. In the case of a survey with 104 SNe and covering
20 deg2 of the sky, the S/N is "10 (Cooray et al. 2006a). Since
S/N / f 1/2sky , reaching S/N ¼ 40–100 requires a factor of 20–100
times higher in sky coverage and total number of observed SNe.
This could be achieved by the proposed Advanced Liquid-mirror
Probe for Astrophysics, Cosmology, and Asteroids (ALPACA)
experiment (Corasaniti et al. 2006).

Galaxy-quasar correlation measurements provide another
method of estimating the level of cosmic dust extinction. For a
given line of sight, dust extinction reduces the observed number of
galaxies above flux F from N (>F ) to N (>F exp ½$̄ þ "$ ') ’
N (>F )½1! %($̄ þ "$)'. Here, % ¼ !d ln N /d ln F is the (nega-
tive) slope of the intrinsic galaxy luminosity function N (>F ),
and we have assumed $T1. Thus, dust inhomogeneities induce
a fractional fluctuation!%"$ in the galaxy number density. Since
"$ is correlated with the matter density field, dust extinction in-
duces a correlation between foreground galaxies and background
galaxies (quasars) such that wf b(&) ¼ !%h"$ a0ð Þ" f

g a0 þ að Þi,
where, " f

g is the foreground galaxy number overdensity. On the
other hand, lensing-induced fluctuations in galaxy number den-
sity are 2(%! 1)# (Bartelmann & Schneider 2001), where the
!1 term accounts for the fact that lensing magnifies the surface
area and thus decreases the number density. Because of the different
dependence on the slope %, the signal of extinction and lensing
can be separated simultaneously.

The SloanDigital Sky Survey (SDSS) galaxy-quasar cross cor-
relation measurement (Scranton et al. 2005) is consistent with the
%! 1 scaling and thus the dust contamination, if any, remains sub-
dominant. Our dust models are consistent with this measurement,
since the expected fractional contribution from dust extinction is

! %

2 %! 1ð Þ
"$" f

g

D E

#" f
g

D E "! %

%! 1ð Þ ; 0:27; 0:11; 0:08; 0:03ð Þ

for dust model A, B, C, and D, respectively. However, such
measurement is already at the edge of providing interesting dust

constraints. For instance, model A induces, at & ¼ 0:01*, a neg-
ative correlation with amplitude"0:003%bg, where bg is the SDSS
galaxy bias. This signal is already very close to the measurement
uncertainty (Fig. 7 of Scranton et al. [2005], and the averaged
%h i ’ 1 from their Table 2). In principle, by combining color and
flux dependences of the galaxy-quasar cross correlation and the
color-galaxy cross correlation, it will be possible to separate the
contribution of lensing magnification, gray, and reddening simul-
taneously (B. Menard 2006, private communication). The next
generation of galaxy surveys, such as the Large Synoptic Survey
Telescope (LSST), ALPACA, or PanSTARRSwill provide fore-
ground galaxy-quasar measurements that can achieve a S/N310.
This will allow us to discriminate the above dust models un-
ambiguously, thus providing accurate constraints on the cosmic
dust extinction and clustering properties.

4. CONCLUSIONS

Several new methods have been proposed for inferring the
lensing magnification signal from a variety of correlation mea-
surements. These involve SN Ia flux, the fundamental plane, and
Tully-Fisher relation of optical galaxies. In this paper we have
shown that contamination of cosmic dust extinction may severely
degrade such measurements. As an example, inhomogeneities
in the cosmic dust distribution may limit the S/N of SN lensing
measurements to the P10 level.
Billions of galaxies can be detected/resolved by the Square

Kilometer Array6 through the 21 cm hyperfine transition line
emission, which is not affected by dust extinction. In such a case
the only scatters other than intrinsic ones in the Tully-Fisher re-
lation (L / v4c ) are induced by lensing magnification, L ! L(1þ
2#). Therefore, lensing reconstruction using these galaxies is an
attractive possibility, since it is free of some systematics associated
with cosmic shear, such as shape distortion induced by the point-
spread function.
On the other hand, measurements of SN flux spatial correlation

or galaxy-quasar cross-correlation will constrain the amount of
cosmic gray dust and its clustering properties to high accuracy.
This will provide not only a better understanding of IGM dust
physics, but also a valuable handing of dust contamination in the
SN Ia Hubble diagram.

We thank BriceMenard and Ryan Scranton for helpful discus-
sions on dust contamination in SDSS samples.We are also thankful
to Yipeng Jing and Alexandre Refregier for useful discussions.
P. J. Z. is supported by theOne-Hundred-Talent Programof Chinese
Academy of Science and the NSFC grants (10543004, 10533030).

TABLE 1

Relative Error Caused by Extinction with Respect to Lensing

Graphite Silicate

Source Redshift
(zs) High SFH Model A Low SFH Model B High SFH Model C Low SFH Model D

0.5........................ 0.65 0.33 0.24 0.11

1.0........................ 0.45 0.20 0.21 0.08
1.7........................ 0.36 0.13 0.19 0.06

Note.—The relative error caused by extinction with respect to lensing, ! ¼ jC#"$ ! C"$ /4j/C#, at different source red-
shifts for our test bed of dust models. Here, ! is roughly independent of multipole l, since shapes of C#, C#"$ , and C"$ are
very similar.

6 SKA, see: http://www.skatelescope.org/.
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We compute the dark matter halo mass function using the excursion set formalism for a diffusive barrier

with linearly drifting averagewhich captures themain features of the ellipsoidal collapsemodel.We evaluate

the non-Markovian corrections due to the sharp filtering of the linear density field in real space with a path-

integral method. We find an unprecedented agreement with N-body simulation data with deviations& 5%
over the range ofmasses probed by the simulations. This indicates that the excursion set in combinationwith

a realistic modeling of the collapse threshold can provide a robust estimation of the halo mass function.
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A large body of evidence suggests that dark matter (DM)
plays a crucial role in the formation, evolution, and spatial
distribution of cosmic structures [1–4]. Central to the DM
paradigm is the idea that initial density fluctuations grow
under gravitational instability eventually collapsing into
virialized objects, the halos. It is inside these gravitation-
ally bounded structures that cooling baryonic gas falls
in to form the stars and galaxies we observe today.
Consequently, the study of the halo mass distribution is
of primary importance in cosmology. In the Press-
Schechter approach [5], the number of halos in the mass
range [M, Mþ dM] can be written as

dn

dM
¼ fð!Þ !"

M2

d log!%1

d logM
; (1)

where !" is the background matter density and !ðMÞ is the
root-mean-square fluctuation of the linear dark matter
density field smoothed on a scale RðMÞ (containing a
mass M), with

!2ðMÞ & SðMÞ ¼ 1

2#2

Z
dkk2PðkÞ ~W2½k; RðMÞ(; (2)

where PðkÞ is the linear DM power spectrum and ~Wðk; RÞ is
the Fourier transform of the smoothing (filter) function
in real space. In Eq. (1), the function fð!Þ ¼ 2!2F ð!2Þ,
known as ‘‘multiplicity function,’’ encodes the effects of
the gravitational processes responsible for the formation of
halos through its dependence on F ðSÞ & dF=dS, with
FðSÞ being the fraction of mass elements in halos of
mass >MðSÞ. Hereafter, we will refer to fð!Þ simply as
the halo mass function.

The collapse of halos is a highly nonlinear gravitational
process that has been primarily investigated using numeri-
cal N-body simulations. Over the past few years several
numerical studies have measured fð!Þ at few percent
uncertainty level for various cosmologies and using differ-
ent halo detection algorithms (see, e.g., [6–9]). On the
other hand, we still lack an accurate theoretical estimation
of the halo mass function. Following the seminal work by

Press and Schechter [5], the excursion set theory [10] has
provided us with a consistent mathematical framework for
computing fð!Þ from the statistical properties of the initial
DM density field (for a review, see [11]). Nevertheless, an
analytical derivation of fð!Þ can be obtained only for a
top-hat filter in Fourier space (sharp-k filter). Although
Monte Carlo simulations can be used in the case of generic
filters (see, e.g., [10,12]), most of the work in the literature
has focused on the modeling of the halo collapse condi-
tions and the comparison with N-body simulations using
numerical and semianalytical techniques which assume the
sharp-k filter (see, e.g., [13–16]). However, such a smooth-
ing function does not correspond to any realistic halo mass
definition. The issue has been recently addressed by
Maggiore and Riotto [17] who made a major contribution
by introducing a path-integral method that extends the
analytical computation to generic filters.
In this Letter we present the first thorough comparison

against N-body simulation data of the excursion set mass
function with top-hat filter in real space for a stochastic
barrier model which encapsulates the main characteristics
of the ellipsoidal collapse of dark matter. A detailed deri-
vation of these results is given in a companion paper [18].
Let us consider the DM density contrast, $ðxÞ, smoothed

on the scale R,

$ðx; RÞ ¼
Z

d3yWðjx% yj; RÞ$ðyÞ; (3)

where Wðx; RÞ is the smoothing function in real space.
Bond et al. [10] have shown that at any given point in
space, $ðx; RÞ performs a random walk as a function of the
variance of the smoothed linear density field SðRÞ.
The formation of halos of mass M corresponds to trajecto-
ries $ðSÞ crossing for the first time a barrier B at SðMÞ,
i.e., $ðSÞ ¼ B, where the value of B depends on the
assumed gravitational collapse criterion. In the case of
the spherical collapse model [19] B ¼ $c, that is the
linearly extrapolated density of a top-hat spherical pertur-
bation at the time of collapse. Then, the evaluation of fð!Þ
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is reduced to computing the rate at which the randomwalks
hit the barrier for the first time, i.e., F ðSÞ ¼ dF=dS.

The nature of the random walk depends on the filtering
procedure, which specifies the relation between the
smoothing scale R and the halo mass definition M. For a
sharp-k filter, ~Wðk; RÞ ¼ !ð1=R$ kÞ, and Gaussian initial
conditions, "ðSÞ performs a Markov random walk de-
scribed by the Langevin equation:

@"

@S
¼ #"ðSÞ; (4)

with noise #"ðSÞ such that h#"ðSÞi ¼ 0 and
h#"ðSÞ#"ðS0Þi ¼ "DðS$ S0Þ, where "D is the
Dirac function (for the full derivation, see, e.g., [11,17]).
As first shown in [10], the probability distribution of the
trajectories satisfies a simple Fokker-Planck equation with
absorbing boundary at "ðSÞ ¼ "c. The resulting first-
crossing distribution gives the Press-Schechter formula
[5] with the correct normalization factor (the so called
‘‘extended Press-Schechter’’).

However, the spherical collapse model is a simplistic
approximation of the nonlinear evolution of matter density
fluctuations. As shown in [20], initial Gaussian perturba-
tions are highly nonspherical. Hence, the collapse of a
homogeneous ellipsoid (see, e.g., [21]) should provide a
far better description. In such a model the critical density
threshold depends on the eigenvalues of the deformation
tensor, which are random variables with probability distri-
butions that depend on the statistics of the linear density
field [14,20,22–26]. Because of this, the barrier behaves
as a stochastic variable itself, performing a random
walk whose properties depend on the specificities of the
collapse model considered. For example, Sheth et al. [14]
showed that the average of the barrier is hBðSÞi ¼
"c½1þ $ðS="2

cÞ%', with $ ¼ 0:47 and % ¼ 0:615.
The recent analysis of halos in N-body simulations has

confirmed the stochastic barrier hypothesis [27]. Maggiore
and Riotto [28] have modeled these features assuming a
stochastic barrier with average hBðSÞi ¼ "c and variance
hðB$ hBðSÞiÞ2i ¼ SDB, where DB is a constant diffusion
coefficient. Here, we improve their barrier model by assum-
ing a Gaussian diffusion with linearly drifting average
hBðSÞi ¼ "c þ $S [13] which approximates the ellipsoidal
collapse prediction [14]. Recently, a general analysis of
nondiffusive moving barriers has been presented in [29].
However, this work has mainly focused on the mass func-
tion in the presence of non-Gaussian initial conditions
rather than the comparison with Gaussian N-body simula-
tions. The Langevin equation for this barrier model reads as

@B

@S
¼ $þ #BðSÞ; (5)

where the noise #BðSÞ is characterized by h#BðSÞi ¼ 0 and
h#BðSÞ#BðS0Þi ¼ DB"DðS$ S0Þ. Without loss of general-
ity we can assume that #BðSÞ and #"ðSÞ are uncorrelated.
It is convenient to introduce Y ¼ B$ " and rewrite
Eqs. (4) and (5) as a single Langevin equation:

@Y

@S
¼ $þ #ðSÞ; (6)

with white noise #ðSÞ ¼ #"ðSÞ þ #BðSÞ such that
h#ðSÞi ¼ 0 and h#ðSÞ#ðS0Þi ¼ ð1þDBÞ"ðS$ S0Þ. The
Fokker-Planck equation associated with Eq. (6) and de-
scribing the probability !0ðY0; Y; SÞ reads as

@!0

@S
¼ $$

@!0

@Y
þ 1þDB

2

@2!0

@Y2 ; (7)

where we indicate with the ‘‘0’’ underscore the fact that!0

is associated to a Markov process.
The system starts at f"ð0Þ ¼ 0; Bð0Þ ¼ "cg; hence, we

solve Eq. (7) with initial condition Y0 ¼ "c and impose the
absorbing boundary condition at Y ¼ 0, i.e.,!0ð0; SÞ ¼ 0.
For a concise notation we omit the dependence on Y0

and simply refer to !0ðY; SÞ. By rescaling the variable
Y ! ~Y ¼ Y=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þDB

p
, a factorizable solution can be

found in the form !0ð ~Y; SÞ ¼ Uð ~Y; SÞ exp½cð ~Y $ cS=2Þ',
where c ¼ $=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þDB

p
and Uð ~Y; SÞ satisfies a diffusion

equation. Using the above initial condition, the latter can
be solved with the image method [30] or by Fourier trans-
form. Thus, we obtain

!0ðY; SÞ ¼
eð$=1þDBÞðY$Y0$$ðS=2ÞÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2&Sð1þDBÞ

p

(
"
e$ðY$Y0Þ2=ð2Sð1þDBÞÞ $ e$ðYþY0Þ2=ð2Sð1þDBÞÞ

#
:

(8)

In general the Fokker-Planck equation for random walks
with nonlinear biased diffusion and absorbing boundary
condition does not have an exact analytic solution. This is
why we have assumed the linearly drifting average barrier
rather than the prediction of the ellipsoidal collapse model
[14]. As we will see later, having an exact analytical
solution greatly simplify the evaluation of the corrections
due to the smoothing function. We should remark that
the above solution is defined only for Y > 0. Since
the number of trajectories is conserved, then the
first-crossing distribution is obtained by derivingR
S
0 F 0ðS0ÞdS0 ¼ 1$ R1

0 !0ðY; SÞdY from which we fi-
nally obtain the Markovian mass function

f0ð'Þ ¼
"c

'
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þDB

p
ffiffiffiffi
2

&

s
e$ð"cþ$'2Þ2=ð2'2ð1þDBÞÞ; (9)

for $ ¼ 0 and DB ¼ 0 this coincides with the
standard Markovian solution that gives the extended
Press-Schechter formula, while for DB ¼ 0 we recover the
solution for the nondiffusive linearly drifting barrier [11].
As mentioned earlier, a crucial point of this derivation is

the assumption of the sharp-k filter. In numerical N-body
simulations the mass definition depends on the halo detec-
tion algorithm. For instance, the spherical overdensity
(SOD) halo finder detects halos as groups of particles in
a spherical regions of radius R" containing a density
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!! ¼ ! "!, with ! an overdensity parameter usually fixed
to ! ¼ 200. Thus, the halo mass is M ¼ 4=3"R3

!!!,
which is equivalent to having a sharp-x filter, or ~Wðk; RÞ ¼
3=ðkRÞ3½sinðkRÞ % kR cosðkRÞ&. However, in this case the
stochastic evolution of the system is no longer Markovian.
Hence, in order to consistently compare the excursion set
mass function with SOD estimates of fð#Þ it is necessary
to account for the correlations induced by ~Wðk; RÞ.

Maggiore and Riotto [17] have shown that these correla-
tions can be treated as perturbations about the ‘‘zero’’-order
Markovian solution. More specifically, the noise variable
$ðSÞ acquires a perturbative correction, h$ðSÞ$ðS0Þi ¼
ð1þDBÞ%DðS% S0Þ þ!ðS; S0Þ, which in the case of the
sharp-x filter can be approximated by !ðS; S0Þ ( &SðS0 %
SÞ=S0. For the concordance # cold DM model we find & (
0:47. Using the path-integral technique described in [17],
we compute the corrections to $0ðY; SÞ to first order in &.
These consist of a ‘‘memory’’ term,

$m
1 ¼%@Y

Z S

0
dS0!ðS0;SÞ$f

0ðY0;0;S
0Þ$f

0ð0;Y;S%S0Þ;

(10)

and a ‘‘memory-of-memory’’ term

$m%m
1 ¼

Z S

0
dS0

Z S

S00
dS00!ðS0; S00Þ$f

0ðY0; 0; S
0Þ

)$f
0ð0; 0; S00 % S0Þ$f

0ð0; Y; S% S0Þ; (11)

where$f
0ðY0; 0; SÞ,$f

0ð0;Y;SÞ and$
f
0ð0; 0; SÞ in Eqs. (10)

and (11) are given by the finite time corrections of the
Markovian solution near the barrier (see [18]). We find

$f
0ðY0; 0; SÞ ¼

aY0

S3=2
ffiffiffiffi
"

p e%ðaðY0þ'SÞ2Þ=ð2SÞ; (12)

$f
0ð0; Y; SÞ ¼

aY

S3=2
ffiffiffiffi
"

p e%ðaðY%'SÞ2Þ=ð2SÞ; (13)

$f
0ð0; 0; SÞ ¼

1

S3=2

ffiffiffiffiffiffiffi
a

2"

r
; (14)

where a * 1=ð1þDBÞ. Equation (10) can be computed
analytically, we find

$m
1 ¼ %~&aY0@Y

"
Yea'ðY%Y0%'ðS=2ÞÞErfc

# ffiffiffiffiffiffi
a

2S

r
ðY0 þ YÞ

$%
;

(15)

where ~& ¼ &=ð1þDBÞ. Since Eq. (15) is linear in Y, the
integration of F m

1 ðSÞ ¼ %@=@S
R1
0 $m

1 dY vanishes.
Thus, the memory term does not contribute to the mass
function independently of the barrier behavior (in agree-
ment with [17]). The double integral in the memory-of-
memory term cannot be computed analytically, in such a
case we expand the integrands in powers of ' (given that
from the ellipsoidal collapse we expect'< 1). By comput-
ing Fm%m

1 ðSÞ ¼ %@=@S
R1
0 $m%m

1 dY and expressing the
results directly in terms of fð#Þ, we find the non-Markovian
correction to zero order in ' (i.e., ' ¼ 0) to be

fm%m
ð1Þ;'¼0ð#Þ ¼ %~&

%c

#

ffiffiffiffiffiffi
2a

"

s #
e%ða%2

cÞ=ð2#2Þ % 1

2
%
&
0;
a%2

c

2#2

'$
;

(16)

where %ð0; zÞ is the incomplete Gamma function. Not
surprisingly this expression coincides with the memory-
of-memory term in [17]. The first order correction in ' is
given by

fm%m
1;'ð1Þ ð#Þ ¼ %'a%c

#
fm%m
1;'¼0ð#Þ þ ~&Erfc

&
%c

#

ffiffiffi
a

2

r '$
; (17)

and the second order reads

fm%m
1;'ð2Þ ð#Þ ¼ '2a%c~&

"
a%cErfc

&
%c

#

ffiffiffi
a

2

r '

þ #

ffiffiffiffiffiffiffi
a

2"

r #
e%ða%2

cÞ=ð2#2Þ
&
1

2
% a%2

c

#2

'

þ 3

4

a%2
c

#2 %
&
0;
a%2

c

2#2

'$%
: (18)

For '=ð1þDBÞ< 1, corrections Oð>'2Þ are negligible
(see, e.g., Fig. 1); hence, Eqs. (9) and (16)–(18) give the
relevant contributions to the mass function.
In principle the values of ' and DB as well as their

redshift and cosmology dependence can be predicted in a
given halo collapse model by computing the average and
variance of the probability distribution of the collapse
density threshold. However, this requires a dedicated study
which should also include environmental effects that have
been shown to play an important role in determining the

FIG. 1. Contributions to the halo mass function ftot (solid line)
for ' ¼ 0:2 and DB ¼ 0:6. The different curves correspond to
the Markovian mass function f0 (dotted line), fm%m

1;'¼0 (short-

dashed line), fm%m
1;'ð1Þ (long-dashed line), fm%m

1;'ð2Þ (dot–short dashed

line), fm%m
1;'ð3Þ (dot–long dashed line).
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properties of the halo mass distribution [26]. This goes
beyond the scope of this Letter.

Here, we take a different approach. ! and DB are
physical motivated model parameters which we can cali-
brate against N-body simulation data, and test whether the
mass function derived above provides an acceptable de-
scription of the data. To this purpose we use the measure-
ments of the halo mass function obtained by Tinker et al.
[6] using SOD(200) on a set of WMAP–1 yr and WMAP–
3 yr cosmological N-body simulations. For these cosmo-
logical models the spherical collapse predicts "c ¼ 1:673
at z ¼ 0 (for a detailed calculation see [8]). Using such a
value, we run a likelihood Markov chain Monte Carlo
analysis to confront the mass function previously com-
puted against the data at z ¼ 0. We find the best fit values
to be ! ¼ 0:057 and Db ¼ 0:294. The data strongly con-
strain these parameters, with errors #! ¼ 0:001 and
#DB

¼ 0:001, respectively. In Fig. 2 (upper panel) we
plot the corresponding mass function (red dash line)
against the simulation data together with the four-
parameter fitting formula by Tinker et al. [6] for ! ¼
200 (solid blue line). For comparison we also plot the
diffusive barrier case by Maggiore and Riotto [28] which
best fit the data with DB ¼ 0:235 (green dotted line). In
Fig. 2 (lower panel) we plot the relative differences with
respect to the Tinker et al. formula. We may notice the
remarkable agreement of the diffusive drifting barrier with
the data. Deviations with respect to Tinker et al. (2008) are
& 5% level over the range of masses probed by the simu-
lations. This is quite impressive given the fact that our

model depends only on two physically motivated
parameters.
In the upcoming years a variety of astrophysical obser-

vations will directly probe dn=dM. The halo mass function
we have derived here can provide the base for a through
cosmological model comparison. In a companion paper we
will describe in detail the derivation of these results, as
well as extensive discussion on the redshift evolution of the
mass function and halo bias.
We are especially thankful to J. Tinker for kindly pro-

viding us with the mass function data. It is a pleasure to
thank J.-M. Alimi, Y. Rasera, T. Riotto, and R. Sheth for
useful discussions. I. Achitouv is supported by the
‘‘Ministère de l’Education Nationale, de la Recherche et
de la Technologie’’ (MENRT).
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Tinker et al. (2008)

Diffusive Drifting Barrier

Maggiore & Riotto (2010)

FIG. 2 (color online). Halo mass function at z ¼ 0 given by the
Tinker et al. fitting formula for ! ¼ 200 (solid blue line),
diffusing drifting barrier with ! ¼ 0:057 and Db ¼ 0:294 (red
dashed line) and Maggiore and Riotto [28] with DB ¼ 0:235
(green dotted line). Data points are from [6]. (Lower panel)
Relative difference with respect to the Tinker et al. fitting
formula. The thin black solid lines indicates 5% deviations.
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