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Abstract
Polarized general-relativistic radiative transfer in the vicinity of black holes
and other compact objects has become a crucial tool for probing the prop-
erties of relativistic astrophysics plasmas. Instruments like GRAVITY, the
Event Horizon telescope, Atacama Large Millimeter/submillimeter Array,
or Imaging x-ray Polarimetry Explorer make it very timely to develop such
numerical frameworks. In this article, we present the polarized extension of
the public ray-tracing code Gyoto, and offer a python notebook allowing to
easily perform a first realistic computation. The code is very modular and
allows to conveniently add extensions for the specific needs of the user. It is
agnostic about the spacetime and can be used for arbitrary compact objects. We
demonstrate the validity of the code by providing tests, and show in particular
a perfect agreement with the ipole code. Our article also aims at pedagogically
introducing all the relevant formalism in a self-contained manner.
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1. Introduction

Generating synthetic images of black hole environments is tricky because of relativistic
effects such as aberration, Doppler beaming, gravitational redshift and light bending. General-
relativistic radiative transfer (GRRT) computation through ray-tracing method, i.e. integration
of photons trajectories (null geodesics, assuming no impact other than gravitation on the tra-
jectory), allows to naturally account for all relativistic effects to generate synthetic observ-
ables of such environments that can be compared to observational data. This technique is key
to obtain meaningful constraints on the parameters describing the emitting accretion flow or
the spacetime geometry. It can be used either on analytically described accretion flows, or in
post-processing of general relativistic magnetohydrodynamical (GRMHD) simulations. For
example, the Numerical Observatory of Violent Accreting system (NOVAs; Varniere et al
2018, Mignon-Risse et al 2021) combines GRMHD simulations of accretion flows around
black holes as computed by the code GR-AMRVAC (Casse et al 2017), with the ray-tracing
code Gyoto (Vincent et al 2011) to produce various synthetic observables.

The recent development of instruments now allows tomeasure the polarization of light com-
ing from the extremely close environment of black holes. The Event Horizon Telescope (EHT)
released the millimetric polarized image of M87∗ (Event Horizon Telescope Collaboration
et al 2022). GRAVITY (GRAVITY Collaboration et al 2018, 2023) in the near infrared, and
the Atacama Large Millimeter/submillimeter Array (ALMA, Wielgus et al 2022) have detec-
ted a polarized signature of the radiation flares associated with the supermassive black hole at
the center of the Galaxy, Sagittarius A∗ (Sgr A∗). Moreover, the Imaging x-ray Polarimetry
Explorer (IXPE) has obtained important constraints on the geometry of the accretion flow of
an x-ray binary by measuring its polarized radiation (Krawczynski et al 2022).

Thus, polarized ray-tracing codes are of particular interest to generate synthetic observables
from accretion models, be they analytic (see e.g. Broderick et al 2016, Gralla et al 2018, 2019,
2020, Vincent et al 2019, GRAVITY Collaboration et al 2020, Nalewajko et al 2020, Dovčiak
et al 2022, Vos et al 2022, Aimar et al 2023, Cárdenas-Avendaño and Lupsasca 2023), or
numeric (see e.g. Chan et al 2015, Mościbrodzka et al 2016, Chael et al 2018, 2019, Davelaar
et al 2018, Event Horizon Telescope Collaboration et al 2019, Anantua et al 2020, Dexter et al
2020, Porth et al 2021). In particular, polarization signatures might allow probing the nature of
spacetime close to the event horizon of black hole candidates, making GRRT a crucial tool for
constraining general relativity (GR) in the strong-field regime (Himwich et al 2020, Jiménez-
Rosales et al 2021, Vincent et al 2023).

The need for ray tracing when computing images in GR led to the development of multiple
codes. Many of them were developed for unpolarized light (Noble et al 2007, Dexter and Agol
2009, Dauser et al 2010, Vincent et al 2011, Pu et al 2016, Bronzwaer et al 2018, Chan et al
2018, Younsi et al 2020). Some codes also keep track of the electric vector position angle and
polarization degree, assuming a geometrically thin equatorial accretion flow (Dovčiak et al
2008, Gelles et al 2021, Cárdenas-Avendaño et al 2023), the latter two being specialized for
highly-lensed features by implementing adaptive ray tracing. Only a handful of codes are able
of treating the most demanding problem of integrating the full polarized radiative transfer:
grtrans (Dexter 2016), ipole (Mościbrodzka andGammie 2018), Arcmancer (Pihajoki et al
2018), Bhoss (Younsi et al 2020), Raptor (Bronzwaer et al 2020), Blacklight (White 2022),
as well as Lemon (Xiao-lin et al 2021) which specializes on polarized radiative transfer with
scattering. Some of these polarized GRRT codes were recently compared by Prather et al
(2023).
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Gyoto (Vincent et al 2011) is a backwards ray-tracing code (i.e. integrating from the
observer to the source), operating in any given (analytically or numerically computed) metric,
and solving the radiative transfer equation. It can also integrate timelike geodesics for comput-
ing e.g. stellar orbits (Grould et al 2017). The code is publicly available7 , built to be modular
so that extensions are easy to integrate and user-friendly with XML and python interfaces.

The goals of this paper are the following: (i) providing the new version of Gyoto, with full
polarized GRRT included, publicly available at the same address as the older version, with the
addition of a python snippet8 to allow the interested reader to immediately be able to compute
a non-trivial setup; (ii) providing a pedagogical, in-depth presentation of the formalism of GR
polarization, as well as a detailed description of the technical implementation. In the following
discussion, we will focus on polarized synchrotron radiation, as it is the dominant emission
mechanism for our sources of primary scientific interest (Sgr A∗ andM87). But the code is able
to compute polarized observables for other emission mechanism as soon as the electric field
is provided in the model. Section 2 presents the formalism of GR polarized radiative transfer.
In section 3, we present various tests that we made to validate our code. The last section is
dedicated to discussion and conclusion.

2. Formalism

We will discuss the problem of polarized GRRT taking the usual point of view of ray tracing.
We thus consider a light ray (mathematically speaking, a null geodesic) integrated backwards
from a distant observer’s screen towards some source of radiation. The problem can then be
divided into three main parts that will be discussed hereafter:

• The definition of a wave vector at the distant observer’s screen, tangent to the considered
null geodesic, together with a pair of spacelike vectors forming an orthonormal basis of the
observer’s screen;

• The backwards parallel propagation along the considered null geodesic of the wave vector
together with the screen basis, until a source of radiation is reached;

• The integration of polarized radiative transfer within the source.

Before describing these three steps in detail, we will start by providing important definitions
in the next section.

2.1. Geometric optics, light ray, covariant and observer-specific polarization vectors

We consider a monochromatic plane electromagnetic wave propagating in a given spacetime.
The geometrical optics approximation of Maxwell’s equations under Lorenz gauge condition
allows to describe this wave as follows.

The complex 4-potential 1-form reads

Â= âeiΦ, (1)

7 https://github.com/gyoto/Gyoto/blob/master/INSTALL.Gyoto.md.
8 https://github.com/gyoto/Gyoto/blob/master/doc/examples/Gyoto_Polar_example.ipynb.
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where â is the amplitude 1-form, assumed to vary much slower than the phase Φ (this is the
basic idea of the geometrical optics approximation). The hat reminds that we are dealing with
complex quantities. The Faraday electromagnetic 2-form,

F̂ = dÂ, (2)

then reads in components

F̂αβ =∇αÂβ −∇βÂα

= eiΦ∇αâβ + âβ i e
iΦ∇αΦ −

(
eiΦ∇β âα + âα i e

iΦ∇βΦ
)

≈ i(âβ kα − âα kβ) e
iΦ, (3)

where we introduce the wave vector

k≡∇Φ, (4)

and use the geometric optics approximation to neglect the variations of the amplitude, i.e. the
∇αâβ terms.

Plugging this into Maxwell’s equations and assuming Lorenz gauge (that is, the divergence
of Â should vanish) leads to the following results:

• k is a null vector parallel propagated along itself,

k ·k= 0, ∇kk= 0, (5)

so that it defines a null geodesic, which we define as a light ray;
• We can introduce the unit spacelike covariant polarization vector

f̂≡ â
a
, (6)

where â is the complex vector corresponding to the amplitude 1-form introduced in
equation (1) by metric duality (we use the same notation for both quantities in order to
simplify the notation). The scalar quantity a is the modulus of the complex vector â,

a=
√
âµâµ∗. (7)

Our naming convention specifies that this vector is covariant in order to differentiate it from
the polarization vector as observed by a specific observer, which will be our quantity of
prime interest in the following. The covariant polarization vector satisfies the two following
important properties: (i) it is perpendicular to the wave vector k (this is a consequence of
the Lorenz gauge choice), and (ii) it is parallel transported along k in vacuum (this is a
consequence of Maxwell’s equations):

f̂ ·k= 0, ∇k f̂= 0. (8)

We can thus reexpress the Faraday tensor in terms of the polarization and wave vectors as
follows

F̂αβ = ia
(̂
fβ kα − f̂α kβ

)
eiΦ. (9)

4



Class. Quantum Grav. 41 (2024) 095010 N Aimar et al

From this expression we deduce the important property that it is possible to add any multiple
of the wave vector k to the polarization vector f̂ without altering the Faraday tensor. So the
polarization vector can be arbitrarily transformed under

f̂ 7→ f̂+ qk (10)

for any scalar field q (note that q is not necessarily a constant, it is an arbitrary scalar field).
So far, we have only used global quantities that are not defined with respect to any particular

observer. We now want to introduce the electric and magnetic fields as observed by the distant
observer,O, the oscillations of which define the observed electromagnetic wave. Let us denote
by u0 the 4-velocity of observer O. By definition, the electric linear form and the magnetic
vector as measured by a generic observer with 4-velocity u read9

Êα = F̂αµ u
µ,

B̂α =−1
2
ϵαµνρ F̂µν u

ρ, (11)

where ϵ is the Levi-Civita tensor. The electric field vector Ê0 as observed by the distant
observer O thus reads

Êρ = gρα Êα

= gρα F̂αβ u
β

= iaeiΦ gρα
(̂
fβ kα − f̂α kβ

)
uβ

= iaeiΦ
(̂
fβ k

ρ − f̂ρ kβ
)
uβ

= iaeiΦ
((

f̂0 ·u0
)
kρ +ω0̂f

ρ
)
, (12)

where we drop the lower index 0 for the components of the various tensors for simplicity (all
of them being evaluated at the distant observer’s location), and we introduce ω0 ≡−k0 ·u0,
where k0 is the wave vector at the distant observer’s location. This quantity ω0 is the pulsation
of the photon as measured by O. All vectors with a lower index 0 are defined at the distant
observer’s screen.

Let us decompose the vectors f̂0 and k0 in parts parallel and orthogonal to the observer’s
4-velocity:

k0 = ω0u0 +K0, K0 ⊥ u0,

f̂0 =−
(
f̂0 ·u0

)
u0 + f̂⊥0 , f̂⊥0 ⊥ u0. (13)

Note that

f̂⊥0 · f̂⊥0 = 1+
(
f̂0 ·u0

)2
(14)

9 We highlight that the electric and magnetic fields discussed here are the electromagnetic fields describing the mono-
chromatic wave that reaches the observer’s screen. They should not be confused with the electromagnetic fields that
might exist at the source location, for instance the magnetic field of the accretion flow surrounding the black hole.
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so that f̂⊥0 is not a unit vector in general. It is normalized only if f̂0 ·u0 = 0, in which case we
simply have f̂⊥0 = f̂0. Similary, K0 is not a unit vector and it is easy to show that

K0 ·K0 = ω2
0 . (15)

The vector K0 coincides with the incident wave vector as measured by observer O.
In terms of the vectors normal to u0 we immediately obtain the final expression of the

electric vector as observed by O:

Ê0 = iaeiΦ
(
ω0 f̂⊥0 − K0 · f̂⊥0

ω0
K0

)
. (16)

This vector is clearly orthogonal to the direction of propagation K0, and it is also orthogonal
to the 4-velocity u0, as it should for a vector living in the local rest space of the observer.

Then, the magnetic field vector B̂0 as observed by O reads

B̂ρ =−1
2
ϵρµναF̂µνu

α

=−1
2
iaeiΦ ϵρµνα

(̂
fνkµ − f̂µkν

)
uα

=−iaeiΦ ϵρµνα f̂νkµu
α

=−iaeiΦ ϵρµναu
αkµ f̂ν

= iaeiΦ ϵ ρ
αµν u

αkµ f̂ν

= iaeiΦ ϵ ρ
αµν u

αKµ f̂⊥ν , (17)

where we have used extensively the antisymmetric nature of the Levi-Civita tensor. The last
expression exactly coincides with the definition of the cross product in the vector space ortho-
gonal to u0 (which we label by ×u0), such that finally the magnetic field vector as measured
by O reads

B̂0 = iaeiΦK0 ×u0 f̂
⊥
0 . (18)

This vector is also obviously orthogonal to the direction of propagationK0, and to the electric
vector.

We can now define the notion of polarization vector as measured by observer O:

F̂0 =K0 ×u0 B̂0, (19)

which is by construction normal to the direction of propagation and to themagnetic field vector.
We note that this quantity depends on the observer, just as the electric and magnetic fields,
while the covariant polarization vector f̂0, defined in equation (6), is a covariant quantity. They
obviously differ given that by construction F̂0 is orthogonal to the observer’s 4-velocity u0,
while f̂0 is defined independently from u0. A natural question is to investigate the relation
between F̂0 and f̂⊥0 that both live in the vector space orthogonal to u0. These two vectors are
completely independent a priori, because F̂0 is by construction orthogonal to both K0 and
B̂0 (see equation (19)), while f̂⊥0 is only orthogonal to B̂0 (see equation (18)), but not to K0.
Indeed, from equations (8) and (13), we have
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f̂0 ·k0 = 0

⇔
(
f̂0 ·u0

)
ω0 + f̂⊥0 ·K0 = 0 (20)

so that only if f̂0 ·u0 = 0 (which has no reason to hold in general) is f̂⊥0 orthogonal to K0.
In this special case, we saw in equation (13) that f̂⊥0 = f̂0, so that when f̂0 ·u0 = 0, and only
then, f̂0 is the unit vector along F̂0. However, we have seen in equation (10) that the covariant
polarization vector is defined up to a term proportional to the wavevector, the proportionality
coefficient being a scalar field.We can thus choose to work with a covariant polarization vector
f ′ such that, at the distant observer’s location

f̂ ′0 = f̂0 +
f̂0 ·u0
ω0

k0. (21)

This vector is such that

f̂ ′0 ·u0 = 0, (22)

and we saw just above that this implies that f̂ ′0 is then the unit vector along F̂0. Thanks
to the degree of liberty in the definition of the covariant polarization vector expressed by
equation (10), we can thus confuse the covariant and non-covariant polarization vectors at
the observer, f̂0 and F̂0.

By virtue of the double vector product law we have(
K0 ×u0 B̂0

)α
= i aeiϕ

[(
K0 · f̂⊥0

)
Kα − (K0 ·K0) f̂

⊥α
]

= i aeiϕω0

[
K0 · f̂⊥0
ω0

Kα −ω0 f̂
⊥α

]
(23)

so that finally

F̂0 =
(
K0 ×u0 B̂0

)
=−ω0 Ê0. (24)

We thus conclude that the polarization vector as measured by O coincides, up to a normaliz-
ation factor, with the electric field as measured by O. The various vectors lying in observer
O’s local rest space (that is, the vector space orthogonal to the 4-velocity u0) are depicted in
figure 1. We introduce in this figure the electric vector position angle (EVPA), defined in the
local frame of the distant observer, which is the angle between a reference direction (the local
North of the distant observer) and the polarization vector F̂0.

2.2. Polarization basis defined at the distant observer’s screen

We take here the typical point of view of a ray-tracing problem where the initial conditions
are fixed at the far-away observer’s screen, and the integration is performed backwards in time
from the screen towards the source. This allows to save a lot of computing time by integrating
only those geodesics that will approach the source by shooting light rays only within a small
solid angle subtending the source. The aim of this subsection is to explicitly describe our initial
conditions at the observer’s screen, which is illustrated in figure 2. In order to be specific, we
will consider a black hole spacetime, but the discussion is very general and is not restricted to
this particular case.
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Figure 1. Vectors lying in the distant observer O’s local rest space (the vector space
orthogonal toO’s 4-velocity u0).K0 is the wave vector projected orthogonal to u0. The
vectors w̄0 and n̄0 are unit vectors pointing towards the local West and North direc-
tions, so that (K0, w̄0, n̄0) forms a direct orthogonal triad. Ê0 and B̂0 are the electric
and magnetic vectors as measured by O, associated with the incident light wave, so
that (K0, Ê0, B̂0) is a direct orthogonal triad. F̂0 is the polarization vector as measured
by O (defined in equation (19)), which is antiparallel to Ê0 as stated by equation (24).
f̂⊥0 is the covariant polarization vector (defined in equation (6)) projected orthogonal to
u0. The plane orthogonal to K0 (observer’s screen plane) is drawn in green. It contains
the electric and magnetic field vectors, and the polarization vector as measured by O.
The plane orthogonal to B̂0 is drawn in blue-green. It contains the photon’s wave vector
K0, the electric vector Ê0, and both the covariant and O’s specific polarization vectors.
The observed Electric Vector Position Angle (EVPA0), measured East of North in the
screen’s plane, is shown in dark red.

The observer’s screen is considered to be a pin-hole camera, with the various pixels cor-
responding to different directions on sky. The local rest space of the observer is spanned by a
direct orthonormal triad (ē1, ē2, ē3). Here and in the following, a bar on top of a vector denotes
a spacelike unit vector. The vector ē3 is along the line of sight, normal to the screen, towards
the black hole. If we consider spherical coordinates centered on the black hole (e.g. Boyer–
Lindquist coordinates) and a direct orthonormal triad (ēr, ēθ, ēφ) associatedwith these coordin-
ates, then ē3 =−ēr. The screen’s plane is spanned by (ē1, ē2), and we consider the special
case ē2 =−ēθ, which boils down to assuming that the projection of the black hole’s angular
momentum on the screen is along ē2. For a N×N pixels screen, one pixel with indices (i, j),
with i, j = 1 . . .N, corresponds to a pair of equatorial angles (see figure 2)

α=
f
N

(
i − N+ 1

2

)
,

δ =
f
N

(
j − N+ 1

2

)
, (25)

8



Class. Quantum Grav. 41 (2024) 095010 N Aimar et al

Figure 2. Initial condition of the polarized ray-tracing problem at the distant observer’s
screen. Left: A black hole (BH) spacetime is represented for being specific, but the figure
is very general and applies to any kind of spacetime. We consider spherical coordin-
ates and the spacelike orthonormal basis associated with these coordinates are labeled
(ēr, ēθ, ēφ). The observer’s local rest space is described by a direct orthonormal triad,
(ē1, ē2, ē3), where ē3 =−ēr, and where the screen’s plane is contained in Span(ē1, ē2).
We consider here that the ‘upwards’ direction of the observer’s screen coincides with
the projection of the black hole’s angular momentum on the screen, i.e. that ē2 =−ēθ .
The unit direction of photon reception at the observer’s screen is K̄0. The local polar-
ization basis at the observer’s screen, (K̄0, w̄0, n̄0), is shown, and corresponds to the
central pixel of the screen, that is, to the purely radial incoming direction of the photon.
Right: zoom on the local rest space (ē1, ē2, ē3) and local celestial sphere of the observer.
For a source of radiation located at S on the local celestial sphere, the unit direction of
incidence is K̄0 (it is −K̄0 on the figure because ē3 points towards the source, while
the incidence direction is of course in the opposite direction). The vector K̄0 is here not
purely along the radial direction ē3 (in contrast with the left panel): it thus corresponds
to a pixel that is not located at the center of the screen. The corresponding equatorial
angles labeling the source, (α,δ), are shown, together with the corresponding spher-
ical angles on the observer local sky, (a, b). For typical ray-tracing problems where the
observer is far away, we have a≪ 1.

where f is the field of view of the observer. The corresponding spherical angles (see figure 2)
on the local sky of the observer are given by standard spherical trigonometry relations:

cosa= cosα cosδ,

tanb=
tanα
sinδ

. (26)

The local unit direction of photon incidence then reads

K̄0 =−sinacosb ē1 − sinasinb ē2 − cosa ē3

=
cosa
√
grr

∂r+
sinasinb
√
gθθ

∂θ +
sinacosb
√
gφφ

∂φ, (27)

9



Class. Quantum Grav. 41 (2024) 095010 N Aimar et al

where we have used the relations

ēr =
∂r√
grr

, ēθ =
∂θ√
gθθ

, ēφ =
∂φ√
gφφ

, (28)

where ∂i are spherical coordinate basis vectors, and gii = ∂i ·∂i are the corresponding metric
coefficients. The null 4-vector tangent to the null geodesic when incident on the observer’s
screen then reads

k0 = ∂t+ K̄0, (29)

where we consider that the observer’s 4-velocity is u0 = ∂t (assuming a static observer, and
that gtt →−1 at the observer’s location) and where we have assumed that−k0 ·u0 = 1, so that
the spacelike vector K̄0 in the last equation is normalized. This last assumption means that
the photon’s energy as measured by the far-away observer is unity, which does not change
anything to the problem, it simply scales the energy, and physical values of energies can be
easily retrieved when radiative transfer calculations are performed.

Once the photon arrival direction K̄0 has been defined, it must be completed by two other
vectors to form the local orthonormal polarization basis (K̄0, w̄0, n̄0). The vector K̄0 corres-
ponding to the central pixel of the screen coincides with a purely radial direction of arrival,
K̄cen

0 =−ē3 (the superscript ‘cen’ refers to the central pixel of the screen), see the left panel of
figure 2. This particular vector can be easily completed by w̄cen

0 =−ē1 and n̄cen0 = ē2, see the
left panel of figure 2. In the general case of a vector K̄0 defined by the two spherical angles
(a, b) (see the right panel of figure 2), appendix A shows that the observer’s screen polarization
basis reads

w̄0 =
[
−sin2 b(1− cosa)− cosa

]
ē1 + sinbcosb(1− cosa) ē2 + cosbsina ē3,

n̄0 =−sinbcosb(1− cosa) ē1 +
[
cos2 b(1− cosa)+ cosa

]
ē2 − sinbsina ē3. (30)

It is straightforward to check that these vectors are unit vectors, orthogonal to each other,
and to K̄0. Moreover, in a typical ray-tracing problem where a� 1, we have as we should
w̄0 ≈ w̄cen

0 =−ē1, and n̄0 ≈ n̄cen0 = ē2. We note that the plane (w̄0, n̄0) (where the polarization
angle will be defined) strictly speaking only coincides with the screen’s plane (ē1, ē2) for the
central pixel of the screen (with a= 0). We will neglect this small difference between the
polarization plane and the screen’s plane, which is perfectly valid as long as a� 1, that is, as
long as the field of view is sufficiently small.

At this point, we have fully defined our initial condition by specifying the triad (k0, w̄0, n̄0)
at the observer’s screen. The next step is to parallel transport these vectors along the light ray
towards the source.

2.3. Relevant frames, parallel transport of polarization basis, EVPA

Let us start by introducing the three relevant frames for describing the polarized GRRT prob-
lem. We will focus on synchrotron radiation, which is our primary science interest, but most
of the discussion is rather general. The frames of interest are:

• The observer frame, described in detail in the previous section, defined by the 4-velocity u0,
• The fluid frame, defined by the 4-velocity u describing the bulk motion of the emitting fluid
(for instance, Keplerian motion around a black hole),

• The particle frame, which follows the helical motion of the synchrotron-emitting electron
around the magnetic field lines described in the fluid frame.

10
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This section will mostly deal with the fluid frame, and the link with the particle frame is further
discussed in appendix B.

We consider a light ray, modeled by a null geodesic, joining the far-away observer to the
emitting accretion flow surrounding a black hole. We want to parallel-transport the null 4-
vector k tangent to the null geodesic, backwards from the observer towards the emitter.Wewill
also parallel-transport the local West and North unit spacelike directions, w̄ and n̄. Note that
the index 0 used for these three vectors in the previous section meant that they were considered
at the screen position. We now consider their evolution along the ray and drop the index. So
we must integrate the following equations

∇kk= 0,

∇kw̄= 0,

∇kn̄= 0, (31)

with the initial conditions that (k, w̄, n̄) = (k0, w̄0, n̄0) at the screen. The integration is solved
by means of a Runge–Kutta–Fehlberg algorithm of seventh order with an error estimator of
order eight (RKF78), with an adaptive step. The absolute and relative tolerance values for
the integration can be set by the user. The integration goes on until one of the following stop
conditions is fulfilled (more details in Vincent et al (2011)):

• The plasma becomes optically thick,
• The photon escapes too far from the area of interest (could be set by the user),
• The photon approaches too closely to the event horizon,
• The number of integration steps reach the maximum.

Given that the parallel transport preserves the scalar product between vectors10, and given
that (k, w̄, n̄) are mutually orthogonal at the observer, they remain mutually orthogonal when
parallel-transported at the emitter, and w̄ and n̄ remain unit vectors.

It is useful at this point to note that, in vacuum, the EVPA is a conserved quantity along a
geodesic. Let us demonstrate this result. We have seen that, at the distant observer’s location,
we might confuse the covariant and non-covariant polarization vectors, f̂0 and F̂0. Let us con-
sider the point along a photon’s geodesic corresponding to the exit from the emitting source
region, meaning that the part of the geodesic located in between this point and the distant
observer is in vacuum. We hereafter call this point the exit point. We can make the exact same
reasoning at the exit point as we made at the distant observer’s location, and conclude that we
can confuse the covariant and non-covariant polarization vectors at the exit point, ˆfexit and ˆFexit,
where ˆFexit is the polarization vector as measured by the emitter at the exit point. This implies
more generally that f̂ and F̂ can be confused at any point along the part of the geodesic located
in vacuum. Given that f̂ and the screen basis (w̄, n̄) are parallel propagated along the geodesic
in vacuum (see equations (8) and (31)), the angle between f̂ and the basis vectors is conserved
in vacuum, hence the EVPA is conserved along the part of the geodesic located in vacuum.
This is of course no longer valid in the source region, where the covariant polarization vector
is no longer parallel propagated (the parallel propagation of f̂ is a consequence of Maxwell’s
equations in vacuum).

10 This is an obvious property: let us consider two vectors aµ and bµ parallel-transported along kµ, then∇k (a · b) =
kµ∇µ

(
gαβaαbβ

)
= gαβ

(
aαkµ∇µbβ + bβkµ∇µaα

)
= 0, because of the parallel-transport relations kµ∇µaα =

0 and kµ∇µbβ = 0. We used the fact that the connexion∇ is compatible with the metric to get∇µgαβ = 0 and take
the metric tensor out of the covariant derivative.

11
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We want to project the parallel-transported basis vectors (k, w̄, n̄) orthogonally to the 4-
velocity u of the emitting fluid, that is, project them in the local rest space of the fluid. By doing
so without further precaution, we would of course lose the mutual orthogonality between these
vectors, which is not preserved in a projection. Let us consider

w̄ ′ = w̄− w̄ ·u
k · u

k,

n̄ ′ = n̄− n̄ ·u
k · u

k, (32)

where the denominator, k ·u, is minus the energy of the photon as measured in the fluid frame,
and as such, non zero, so that these expressions are well defined. It is easy to check that these
two vectors are spacelike unit vectors, orthogonal to u, to each other, and to

K̄=
k+(k ·u) u

|k ·u|
, (33)

the normalized projection of k orthogonal to u, which coincides with the unit direction of
emission of the photon in the fluid frame. We thus obtain a well-defined orthonormal direct
triad (K̄, w̄ ′, n̄ ′) of the fluid frame, illustrated in figure 3. We note that if we consider a vector
F in the fluid frame, normal to K̄, then our definition leads to

F · n̄= F · n̄ ′, (34)

and similarly for w, so that our definition allows to keep unchanged the angles between such
a vector F and the reference directions, be they primed or unprimed. This will be important
later.

Let us now consider the magnetic field 4-vector b of the accretion flow, as measured in
the fluid frame. By construction, this vector lies in the local rest frame of the fluid, so it is
orthogonal to u. We are also interested in its normalized projection orthogonally to K̄, which
reads

b̄⊥ =
b−

(
b · K̄

)
K̄

||b−
(
b · K̄

)
K̄||

, (35)

(note that the minus sign in the numerator and denominator of the rhs, compared to the plus
sign in the numerator of the rhs of equation (33), comes from the fact that K̄ is spacelike while
u is timelike), and in the unit polarization vector as measured in the fluid frame

F̄=
K̄×b

||K̄×b||
= K̄× b̄⊥. (36)

We thus have constructed a second orthonormal direct triad of the fluid rest space, (K̄, b̄⊥, F̄).
We note that it is not obvious that the vector defined by equation (36) coincides with the emis-
sion polarization vector for synchrotron radiation, that is, with the direction of the radiation
electric field emitted by an electron moving around the b field lines, given that we have never
discussed the emitting electron motion so far. In appendix B, by relating the particle frame
and the fluid frame, we demonstrate that, provided the emitting electron is relativistic, this is
indeed so.

12
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Figure 3. Frames of interest for the polarized ray-tracing problem. The far-away
observer’s rest frame (orthogonal to the observer’s 4-velocity u0) is shown in green, it
is a simplified version of figure 1 and shows the local incidence direction K̄0 (spacelike
vector) of the observed light ray, together with the null 4-vector tangent to the incid-
ent null geodesic k0, the local North and West spacelike directions (w̄0, n̄0), such that
(K̄0, w̄0, n̄0) is a direct orthonormal triad, and the polarization vector as measured by
the far-away observer, F̄0. The observed EVPA is labelled EVPA0, lying between the
screen’s North direction and the observed polarization vector F̄0. Starting from the far-
away observer, a null geodesic is integrated backwards towards the source (red line),
until it reaches the accretion flow (black line) surrounding the black hole (black disk).
The fluid frame (orthogonal to the emitter’s 4-velocity u) is shown in blue. The null 4-
vector tangent to the null geodesic at the emission point is called k. The magnetic field
spacelike 4-vector as measured in the fluid frame (thus, orthogonal to u) is called b. The
synchrotron-emitting electron’s trajectory is represented by the pale black helix. The
local direction of photon emission, as measured in the fluid frame, is the spacelike unit
vector K̄. The pair of vectors (n̄ ′, w̄ ′) is related to the pair (n̄0, w̄0), parallel-propagated
along the null geodesic (see text for details), such that (K̄, w̄ ′, n̄ ′) is a direct orthonor-
mal triad. The unit polarization vector as measured by the emitter is called F̄. The radi-
ation field Erad associated with the helical motion of the electron is shown in pale black,
and lies along F̄ for a relativistic electron (see appendix B for a demonstration). The
unit projection of the magnetic 4-vector orthogonal to K̄ is called b̄⊥. Thus (K̄, b̄⊥, F̄)
is also a direct orthonormal triad, rotated with respect to (K̄, w̄ ′, n̄ ′) by the emission
EVPA, labeled EVPAe, lying between the parallel-transported North direction and the
fluid-frame polarization vector F̄.

We have thus at hand two orthonormal triads of the fluid frame, the observer-related
(K̄, w̄ ′, n̄ ′), and the magnetic-field-related (K̄, b̄⊥, F̄). These two frames are rotated with
respect to each other by the angle

χ ≡
(
n̄ ′, F̄

)
=
(
n̄, F̄
)
≡ EVPAe, (37)

the EVPA in the fluid frame, where the index e reminds that we are dealing with an emission
EVPA, as compared to the observed EVPA of figure 1. Both angles are illustrated in figure 3.
We note that the emission EVPA evolves as the light ray evolves through the emitting fluid; the
EVPA is only conserved in vacuum as demonstrated above. So a sequence of emission EVPAs

13
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Figure 4. Polarization ellipse of a general monochromatic wave (in blue). The black
axes (x, y) label the frame of interest where we want to formulate the problem, while
the blue axes (x ′,y ′) are along the major and minor axes of the ellipse and are therefore
naturally adapted to the elliptically polarized wave. The angle between the two bases
is called χ (it would coincide with the notion of EVPA for a linearly polarized wave
along the x axis), and the quantity tanβ encodes the ellipse axes ratio. The dashed black
axes (a, b) are tilted by 45◦ relative to (x, y) and are useful for defining the U Stokes
parameter.

corresponds to a unique observed EVPA. Note that the second equality in equation (37) is a
consequence of equation (34). This emission EVPA will be crucial in the polarized radiative
transfer formalism that we introduce in the next section. A practical, code-friendly expression
for the emission EVPA is the following

EVPAe =
π

2
− atan2

(
b̄⊥ · w̄ ′, b̄⊥ · n̄ ′) . (38)

After having discussed the parallel transport of the vectors of interest along the null
geodesic, the last step of the polarized GRRT problem is to integrate the polarized radiative
transfer within the accretion flow surrounding the compact object.

2.4. Polarized radiative transfer

2.4.1. Stokes parameters. The most general monochromatic electromagnetic wave has an
elliptical polarization, in the sense that the electric field vector describing the wave draws
an ellipse during its time evolution in the plane normal to the direction of propagation, see
figure 4.

Let us introduce the electric field complex vector of the monochromatic wave

Ê= Êxēx+ Êyēy, (39)

decomposed in an arbitrary orthonormal basis (ēx, ēy) of the plane orthogonal to the direction
of propagation, where Êx and Êy are the complex components along the axes. The polarization
ellipse described by the vector Ê can be equivalently described by two sets of parameters. From
a geometrical point of view, it is very natural to provide the total intensity |Ê|2, together with
two angles χ and β. The angle χ lies between the basis (ēx, ēy) and the basis corresponding
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to the axes of the ellipse, while tanβ encodes the ellipse axes ratio (see figure 4). However,
this parametrization is not practical from a physical point of view given that the two angles
are not directly observable. So from a physical point of view, it is more natural to consider the
following set of four Stokes parameters (Rybicki and Lightman 1979)

I= |Êx|2 + |Êy|2,
Q= |Êx|2 − |Êy|2 = I cos2χ cos2β,

U= |Êa|2 − |Êb|2 = I sin2χ cos2β,

V= |Êr|2 − |Êl|2 = I sin2β, (40)

where Êa and Êb are the complex components of the electric field in an orthonormal basis
(ēa, ēb) rotated by 45◦ compared to (ēx, ēy), see the dashed black axes in figure 4. The quant-
ities Êr and Êl are the complex components of the field in an orthonormal complex basis,
ēl,r =

√
2/2(ēx± i ēy). These relations clearly show that the Stokes parameters are all sums or

differences of intensities along specific directions, and as such are directly observable and well
adapted to being evolved in a radiative transfer problem. Equation (40) show how to construct
the Stokes parameters from the geometrical angular parameters χ, β of the polarization ellipse.
The reverse expression is easy to find and reads

tan2χ =
U
Q
,

sin2β =
V
I
. (41)

For a circular polarization, β = π/4, so

Q= 0, U= 0, V= I (circular polarization) , (42)

while for a linear polarization, β= 0, and

Q= Icos2χ, U= Isin2χ, V= 0 (linear polarization) , (43)

and if the wave is polarized along the x axis of figure 4, then Q= I and U= 0, while if the
wave is polarized at 45◦ from the x axis, then Q= 0 and U= I. So Q and U encode linear
polarization along the directions ēx or ēy and ēa or ēb, respectively, and V encodes circular
polarization.

Let us consider the Stokes parameters (I,Q,U,V) defined in a basis (ēx, ēy), and the para-
meters (I ′,Q ′,U ′,V ′) defined in a basis (e ′x,e

′
y), rotated by an angle χ with respect to (ēx, ēy),

see figure 4. It is easy to show that the Q and U Stokes parameters transform following(
Q
U

)
=

(
cos2χ −sin2χ
sin2χ cos2χ

)(
Q ′

U ′

)
, (44)

while I and V are invariant.
For a monochromatic radiation, there must exist a relation between the four Stokes paramet-

ers, that are equivalent to the set of three parameters (I,χ,β), and thus cannot be independent.
This relation reads

I2 = Q2 +U2 +V2 (monochromatic / fully polarized) (45)
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and the radiation is then said to be fully polarized. For a superimposition of waves at different
frequencies, the radiation is only partially polarized and the resulting Stokes parameters verify

I2 ⩾ Q2 +U2 +V2 (partially polarized) . (46)

It is then useful to introduce the degree of polarization

dp =

√
Q2 +U2 +V2

I
, (47)

and the degree of linear polarization

dlp =

√
Q2 +U2

I
. (48)

2.4.2. Stokes parameters for synchrotron radiation, conventions. We are primarily interested
in polarized synchrotron radiation given that our main science interest is the millimeter and
infrared radiation emitted by nearby supermassive black hole environments. Let us consider
a single electron following a helical motion around the field lines of a magnetic field b as
measured in the fluid frame. The emitted synchrotron radiation is elliptically polarized, with
the minor axis of the polarization ellipse aligned along the direction of the magnetic field
projected orthogonally to the direction of propagation, and major axis along the fluid-frame
polarization vector (Huang et al 2009). The Stokes parameters are thus naturally expressed
in a basis aligned with the axes of this polarization ellipse, that is, the (F̄,−b̄⊥) basis (see
the illustration in figure 5). We call this basis the synchrotron polarization basis. This basis is
rotated by the emission EVPA with respect to the observer-related (n̄ ′,−w̄ ′) basis. This last
basis is called the parallel-transported polarization basis. For integrating the radiative transfer
in the observer’s frame, we will need to take care of this rotation between the synchrotron and
the parallel-transported polarization bases. This is described in the next section.

Our sign conventions for the Stokes parameters are illustrated in figure 5. It complies with
the convention of the International Astronomical Union (Transactions of the International
Astronomical Union 1973, Hamaker and Bregman 1996, see figure 1 of the second reference).

2.4.3. Transfer equation. Just like in the unpolarized version of Gyoto (Vincent et al 2011),
we will integrate the radiative transfer equation in the fluid frame, and then transform the
quantities to the observer’s frame. The unpolarized radiative transfer equation used by Gyoto
reads

dIemν
ds

= jν −αν I
em
ν , (49)

where Iemν is the specific intensity (the index ν means that we are considering an intensity per
unit of frequency), ds is the element of optical path length, jν and αν are the specific emission
and absorption coefficients, all these quantities being measured in the fluid frame (hence the
superscript ‘em’ for the intensity, referring to the emitting fluid; we discard it for the other
quantities for simplicity). The intensity in the observer frame (superscript ‘obs’) then follows
from

Iobsν = Iemν

(
νobs

νem

)3

, (50)
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Figure 5. Geometry of the polarized synchrotron problem and Stokes parameter illus-
tration. All quantities depicted here are defined in the fluid frame. The magnetic field
is b, which lies along the ēz unit vector. The direction of emission in this frame is K̄,
which lies along the ēc unit vector. We define the ēa unit vector as lying along the major
axis of the synchrotron polarization ellipse (shown in dashed pale blue). This vector is
defined up to an unimportant sign convention. The ēb unit vector is such that (ēa, ēb, ēc)
is a direct orthonormal triad of the fluid frame. The vector ēx is parallel to ēa. The ēy
unit vector is such that (ēx, ēy, ēz) is a direct orthonormal triad of the fluid frame. The
angle between b and K̄ is called θB. The Stokes parameters Q and U are defined in the
(ēa = F, ēb =−b̄⊥) basis, that we call the synchrotron polarization basis, illustrated
by the zoom on the right of the figure. This zoom shows the synchrotron polarization
basis (in blue; subscript ‘synch’) as well as the parallel-transported polarization basis
(in green; subscript ’∥trans’), (~ea = n̄,~eb =−w̄). These two bases are rotated by the
emission EVPA angle. The sign conventions of the Stokes parameters are as shown in
this zoom. Note that the orientation convention used in this figure is the same as that
used by e.g. Huang and Shcherbakov (2011), Dexter (2016), which results in a positive
emission coefficient for Stokes Q. Some authors use an alternative orientation conven-
tion, taking ēa along the minor axis of the polarization ellipse, see Shcherbakov (2008),
Marszewski et al (2021). This simply leads to Stokes Q being multiplied by −1, and to
a negative emission coefficient for Stokes Q.

which is a consequence of Liouville’s theorem (Misner et al 1973).
The polarized radiative transfer equation is naturally written in the synchrotron polarization

basis of the fluid frame. In this basis, the transfer equation reads

d
ds


Iem;synch
ν

Qem;synch
ν

Uem;synch
ν

Vem;synch
ν

=


jν,I
jν,Q
jν,U
jν,V

−


αν,I αν,Q αν,U αν,V

αν,Q αν,I rν,V −rν,U
αν,U −rν,V αν,I rν,Q
αν,V rν,U −rν,Q αν,I




Iem;synch
ν

Qem;synch
ν

Uem;synch
ν

Vem;synch
ν

 ,

(51)
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where the ‘em;synch’ label is here to remind that we are dealing with Stokes parameters
expressed in the synchrotron polarization basis of the emitting fluid frame; moreover, jν,X and
αν,X are emission and absorption coefficients for the Stokes parameter X, rν,Q and rν,U are
Faraday conversion parameters, and rν,V is the Faraday rotation parameter. All these transfer
coefficients are defined in the synchrotron polarization basis of the fluid frame (we discard the
superscript for simplicity). We refer to figure 5 for the details of the sign conventions.

However, we rather want to integrate this equation in the parallel-transported polarization
basis, (n̄ ′,−w̄ ′), which is rotated by the emission EVPAwith respect to the synchrotron polar-
ization basis, see figure 5. In the parallel-transported polarization basis of the fluid frame, the
transfer equation reads

d
ds


Iem;∥trans
ν

Qem;∥trans
ν

Uem;∥trans
ν

Vem;∥trans
ν

=R(χe)


jν,I
jν,Q
jν,U
jν,V



−R(χe)


αν,I αν,Q αν,U αν,V

αν,Q αν,I rν,V −rν,U
αν,U −rν,V αν,I rν,Q
αν,V rν,U −rν,Q αν,I

R(−χe)


Iem;∥trans
ν

Qem;∥trans
ν

Uem;∥trans
ν

Vem;∥trans
ν

 ,

(52)

where the superscript ‘em;‖trans’ reminds that we are dealing with Stokes parameters defined
in the parallel-transported polarization basis of the emitting fluid frame, and

R(χe) =


1 0 0 0
0 cos2χe −sin2χe 0
0 sin2χe cos2χe 0
0 0 0 1

 (53)

is a rotation matrix describing the rotation by the angle χe ≡ EVPAe, the emission EVPA,
between the synchrotron and the parallel-transported polarization bases. This is the exact same
transformation as that described by equation (44).

Solving equation (52) is a well-known problem that we briefly discuss in appendix C. The
corresponding Stokes parameters in the observer frame then follow from

Xobs
ν = Xem;∥trans

ν

(
νobs

νem

)3

, (54)

similarly as in equation (50), where X is either of the Stokes parameters.

2.4.4. Polarized synchrotron coefficients. We now need to express the synchrotron coeffi-
cients in the synchrotron polarization basis. In this basis, the transfer coefficients for the Stokes
parameter U, i.e. jν,U, αν,U and rν,U are zero by definition. However, the computation of emis-
sion, absorption and rotation synchrotron coefficients for the others Stokes parameters, from
an arbitrary distribution of electrons could be quite heavy. Indeed, even for isotropic distri-
butions, the computation of the emission coefficients require a double integral (Rybicki and
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Lightman 1979) and the others are even more complex using the susceptibility tensor (see
appendix B of Marszewski et al 2021). Fortunately, Huang and Shcherbakov (2011), Dexter
(2016), Marszewski et al (2021) derived fitted formulae for the emissivities, absorptivities and
rotativities for well-defined isotropic distributions of electrons : Thermal (Maxwell-Jüttner),
Power Law or Kappa (thermal core with a power law tail). We choose to implement the for-
mulae of Marszewski et al (2021) in Gyoto to compute the synchrotron coefficients as they
are the only one who provides formulae for a kappa distribution. These formulae are valid for
a specific range of parameters.

For a thermal distribution, parametrized by the dimensionless temperatureΘe = kBT/mec2,
the fits are accurate for 3<Θe < 40 and for ν/νc � 1 with νc = eB/(2πmec) the cyclotron
frequencies (Marszewski et al 2021).

For a Power Law distribution, parametrized by a minimum and maximum Lorentz factor,
γmin and γmax respectively, and by a power law index p, the fits are accurate for γmin < 102,
1.5< p< 6.5 and, as before, for ν/νc � 1 (Marszewski et al 2021).

The Kappa distribution is characterized by two parameters w (equivalent to the dimen-
sionless temperature) and κ= p+ 1. Contrary to the other distributions where the fits are
continuous functions of the parameters, the fits for rotation coefficients for the Kappa dis-
tribution have been done for four specific values of κ= (3.5,4.0,4.5,5.0) and are not defined
for any other value. The fits are valid while 3< w< 40, ν/νc � 1 and Xκ � 10−1 where
Xκ = ν/νc(wκ)2 sinθ with θ the angle between the magnetic field vector and the photon tan-
gent vector (Marszewski et al 2021).

For some tests in section 3, we will use the formulae from Dexter (2016), especially for the
comparison with the ray-tracing code ipole which use the formulae of Dexter (2016) (as the
code grtrans). The order of the maximum relative error between all the fits in Marszewski
et al (2021) and the true values is of 30%. For the typical parameters of the accretion flow of
Sgr A∗, the difference between the formulae of Marszewski et al (2021) and Dexter (2016) is
lower or equal to 10%.

3. Tests

3.1. Test of the parallel transport

The first test that we have to make is to check that the observer polarization basis’ vectors, i.e.
n̄ and w̄, are well parallel transported along the null geodesics. The parallel transport equation
given by equation (31) is fully general and agnostic about the particular spacetime considered.
However, in the special case of the Kerr spacetime, it is well known that the special algebraic
kind of the spacetime allows the existence of theWalker-Penrose constant (Walker and Penrose
1970), defined as follows. If k is the tangent vector to a null geodesic, and if f is a vector
orthogonal to k and parallel-transported along k, then the following complex quantity

K1 − iK2 = (r− iacosθ)

[
(ktf r− krf t)+ asin2 θ (krfφ − kφ f r)

− i sinθ
{(
r2 + a2

)(
kφ fθ − kθfφ

)
− a
(
ktfθ − kθf t

)}]
, (55)

here expressed in Boyer–Lindquist coordinates, is conserved along the null geodesic. Thus,
knowing the evolution of k along the null geodesic, the vectors n̄ and w̄ (that obviously fulfill
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the conditions on f in equation (55)) can be immediately obtained without further computation
by using this constant. This Kerr-specific result is only used for testing purposes in Gyoto.
The code is agnostic about the spacetime and does not use this property.

We thus check the conservation of K1 and K2 for specific geodesics and obtain a conserva-
tion to within 10−5 for default integration parameters of Gyoto (relative and absolute toler-
ance value of 10−6). This can be improved by setting a lower tolerance value for the integration
steps, but at the cost of a longer calculation time.

3.2. EVPA calculation test

Parallel transport having been tested, the observer polarization basis is well defined in the rest
frame of the emitter (K̄, w̄ ′, n̄ ′), through equation (32). As said in section 2.3, the natural basis
to express the synchrotron coefficients is (K̄, b̄⊥, F̄)with K̄ a common vector between the two
bases. Thus, to express the radiative transfer in the observer-related basis, rather than in the
synchrotron basis, we just need to apply the rotation matrix defined in equation (53). The angle
between these two bases corresponds to the emission EVPA (see section 2.3).

We define a simple setup to check the computation of this crucial angle. We consider a
Page-Thorne disk (geometrically thin, optically thick; Page and Thorne 1974) in a Minkowski
metric (to avoid GR effects), seen face-on. The screen resolution is 300× 300 pixels with
a field of view of 40rgx40rg and placed at a distance of 100rg. We consider two magnetic
field configurations b, toroidal and radial. Expressed in Boyer–Lindquist coordinates, the two
magnetic field configurations read, in the rest frame of the emitter

Toroidal: bα =


bt =

√
gφφ

gtt
Ω2

gtt+gφφΩ2 ,

br = 0,
bθ = 0,

bφ =
√

gtt
gφφ

1
gtt+gφφΩ2 ,

(56)

where Ω= uφ/ut and u is the 4-velocity of the emitting fluid assumed to be Keplerian, and

Radial: bα =


bt = 0,

br =
√

1
grr
,

bθ = 0,
bφ = 0.

(57)

In the toroidal case, for all azimuthal angles of the disk, the wave-vector K̄ is made of two
components, one almost vertical (face-on view), and one azimuthal component resulting from
special-relativistic aberration (Vincent et al 2023). The magnetic field b is in the toroidal dir-
ection. Thus, the resulting polarization vector F̄= K̄× b̄⊥ is in the radial direction. Similarly,
for the radial magnetic field, the resulting polarization vector is in the toroidal direction.

We consider an arbitrary Iν = 1 emission for unpolarized intensity. Gyoto computes
images for the four Stokes parameters fromwhich we can compute the orientation of the polar-
ization vector, i.e. the EVPA. As we are only interested by the computation of the EVPA for
the moment, i.e. without radiative transfer, we assume a fully linearly polarized radiation by
taking Qν = Iν cos(2 ∗EVPA) and Uν = Iν sin(2 ∗EVPA). This means that we do not take
into account any absorption nor Faraday rotation.

We show in the left panel of figure 6 in background the unpolarized images of the setup
described above and the polarization vector with the green ticks. The position angle of these
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Figure 6. Image of total (unpolarized) intensity of a Page-Thorne disk with Keplerian
orbit in a Minkowski space-time seen face-on for two magnetic field configurations (tor-
oidal left, radial right). The inner radius is at r= 3rg. The green lines represent the
orientation of polarization vectors.

vectors is the observed EVPA. As expected, the polarization vectors are radial for a toroidal
magnetic field and toroidal for radial magnetic field.

We now want to make a similar test in curved spacetime using a Kerr metric. To validate
the computation of EVPA in Gyoto, we compute the polarization from a geometrically thin
ring as in Gelles et al (2021) taking as previously Iν = 1, Qν = Iν cos(2 ∗EVPA) and Uν =
Iν sin(2 ∗EVPA). Gelles et al (2021) consider a synchrotron emission that we discard here, our
only interest being in testing the EVPA. Here, we are only interested in the orientation of the
polarization vector, that is, in the EVPA, at r1 = 3rg and r2 = 6rg (the inner and outter radius of
the ring). Figure 7 shows the tick plots for three magnetic field configurations : radial, toroidal
and vertical with the same setup as in figure 1 of Gelles et al (2021), the fluid being assumed
to be comoving with the Zero Angular Momentum Observer frame. The vertical configuration
implemented in Gyoto reads

Vertical bα =


bt = 0,
br = cosθ√

grr
,

bθ = sinθ√
gθθ

,

bφ = 0.

(58)

The results of Gyoto shown in figure 7 are in perfect agreement with the ones in the figure 1
in Gelles et al (2021). We note that Gelles et al (2021) scale the length of the ticks by the
observed synchrotron intensity, while our ticks are all of unit length: we are only interested in
the EVPA. This confirms that the calculation of the EVPA works correctly and we can now
test the radiative transfer part and compare the results with another ray-tracing code.

3.3. Comparison with ipole

To check that all parts of our code work correctly, we compare the results of Gyoto with the
ones of another polarized ray-tracing code : ipole (Mościbrodzka and Gammie 2018). We
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Figure 7. Polarized tick plots for three idealized magnetic field configurations: radial
(left), toroidal (middle), and vertical (right) from a geometrically thin ring seen by
an almost face-on observer i = 0.1◦. The fluid is comoving with the zero angular
momentum observer frame. Each plot shows two spins (a= 0 and a=−0.99 in red
and blue, respectively) as two emission radii (r1 = 3rg and r2 = 6rg, corresponding to
the inner and outer rings, respectively).

will focus on polarized observables of a thick disk around a Schwarzschild black hole. We
take power law profiles of the physical quantities following Vos et al (2022) (we invite the
readers to refer to Vos et al (2022) for full details of the disk model). To compute the emission,
absorption and rotation coefficients for the radiative transfer, we assume a thermal distribution
of electrons (as in Vos et al 2022), and, for this comparison only, we use the fitting formula
of Dexter (2016) as used in Ipole (we remind that Gyoto implements the formulae from
Marszewski et al 2021).

We compared the three magnetic field configurations (toroidal, radial and vertical)
described in Vos et al (2022) at two inclinations, close to face-on with i = 20◦ and close to
edge-on with i = 80◦. We define, as in Prather et al (2023), the normalized mean squared error
(NMSE) as

NMSE(A,B) =

∑
|Aj−Bj|2∑
|Aj|2

, (59)

where Aj and Bj are the intensities of a particular Stokes parameter in two images at pixel
j. The results of Gyoto are in perfect agreement with Ipole with a NMSE <10−4 for all
configurations and Stokes parameters except for Stoke U in the radial cases at high inclination
for which the NMSE is around 10−3. This can be compared to the worst NMSE of ∼ 0.01
obtained in the code comparison made in Prather et al (2023) showing the perfect agreement
between Gyoto and Ipole.

We also performed pixel-to-pixel comparisons, not restricting our comparison to integrated
quantities like the NMSE. Figure 8 illustrates this for 128× 128 pixels images of the four
Stokes parameters computed by Gyoto and their relative difference with Ipole, in a field of
view of 40rg, for the three magnetic field configurations described above, at low inclination
i = 20◦. The relative error map is very close to zero for the vast majority of pixels, with typical
values≲0.1%. Higher values are only reached on specific tracks, that correspond to the zeroes
of the corresponding Stokes parameters (as is clear by comparing with the panels showing the
maps of the corresponding Stokes parameters). It is thus not surprising to get higher residuals
there, and it does not affect the radiative transfer, given that the Stokes parameters are anyway
close to zero in these regions. Besides these tracks corresponding to the zeroes of the Stokes
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Figure 8. The first, third and fifth lines show images from left to right of the four Stokes
parameters (I), (Q), (U), (V) generated by Gyoto and Q2 +U2 as the last column for
the three magnetic field configuration at low inclination (i = 20◦). Their relative error
maps with ipole images are shown in the second, fourth and sixth lines. The relative
errors scale is linear between ±5%.
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parameters, the interior of the ‘shadow’ region (i.e. geodesics that asymptotically approach
the horizon when backward ray traced) lead to higher error. This is due to the stop condition
of the geodesic integration that differs in the two codes. Given that this part of the image is
anyway strongly redshifted and leads to a very low flux, this has no impact on the field-of-view
integrated comparison of the NMSE.

4. Conclusion

This article presents the polarized version of the ray-tracing code Gyoto. After reviewing the
formalism for polarized GRRT, our main aim is to explain the details of our implementation,
and to provide tests of our code. In particular, we have shown that in the framework of the
GRRT computation of a geometrically thick, optically thin accretion flow, we find results in
perfect agreement with the ipole code.

Polarized GRRT is of fundamental importance for interpreting current and future observed
data, in particular that of GRAVITY, the EHT, the polarized loops of ALMA associated with
Sgr A∗ flares, or the data of IXPE. Properly interpreting these data is key to better understand-
ing the properties of plasmas in the extreme environments of black holes, and might offer new
interesting probes of strong-field gravity.

The polarized Gyoto code is public, actively maintained, and in constant development for
offering ever more diversed setups for relativistic astrophysics. The recent polarized version of
the code is accompanied by a python notebook, available at https://github.com/gyoto/Gyoto/
blob/master/doc/examples/Gyoto_Polar_example.ipynb, offering a quick and user-friendly
first example of the new environment.
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Appendix A. Observer’s screen polarization basis

A general vector K̄0, defined by the two spherical angles (a, b), see the right panel of figure 2,
is obtained by rotating the vector K̄cen

0 by an angle a in a plane containing ē3 and making an
angle b with the ē1 vector (see the red plane in figure A1). This corresponds to a rotation of
angle a around the vector v=−sinb ē1 + cosb ē2. The corresponding rotation matrix reads
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Figure A1. Local observer’s basis (ē1, ē2, ē3), in green, as represented in figure 2. The
polarization basis corresponding to the central pixel of the screen, that is, to a purely
radial direction of incidence, is (K̄cen

0 , w̄cen
0 , n̄cen0 ), and is aligned with the oberver’s local

basis vectors. When considering a non-central pixel, the direction of photon incidence is
no longer purely radial. The corresponding vector K̄0 is obtained from K̄cen

0 by a rotation
of angle a around the vector v (in red) normal to the red plane that contains ē3 and makes
an angle b with ē1. The same applies for w̄0 and n̄0.

R(a,b) =

 sin2 b(1− cosa)+ cosa −sinbcosb(1− cosa) cosbsina
−sinbcosb(1− cosa) cos2 b(1− cosa)+ cosa sinbcosa

−cosbsina −sinbsina cosa

 . (A.1)

The general vector K̄0 then reads K̄0 = R(a,b)K̄cen
0 , and similarly for the two other polariz-

ation vectors. It is then easy to express the general local unit West and North directions that
complete the local incoming photon direction given by equation (27). They read

w̄0 =
[
−sin2 b(1− cosa)− cosa

]
ē1 + sinbcosb(1− cosa) ē2 + cosbsina ē3,

n̄0 =−sinbcosb(1− cosa) ē1 +
[
cos2 b(1− cosa)+ cosa

]
ē2 − sinbsina ē3.

(A.2)

Appendix B. Electron gyration and polarization vector direction

Our discussion of the polarization vector in section 2.3 took place in the fluid frame. Here,
we need to discuss a third natural frame (after the observer frame and the fluid frame) nat-
urally associated with the GRRT problem, namely the particle frame, the frame comoving
with an individual electron swirling around the magnetic field lines and emitting synchrotron
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Figure B1. Geometry of the synchrotron-emitting electron motion in the fluid frame. β
is the velocity 3-vector, K̄ is the direction of emission, b is the magnetic vector, all these
quantities defined in the fluid frame. The emission angle between the magnetic field
direction and the direction of emission is called θB while α is the pitch angle between
the magnetic field direction and the velocity of the electron.

radiation as a consequence of this accelerated motion (see figure 3). The description of this
infinitesimal11 motion is the topic of this appendix. Our goal is to express the radiation elec-
tric field of an individual electron, as measured in the fluid frame. The direction of this vector
should coincide with that of the polarization vector, which was introduced in equation (36)
without any reference to the electron’s motion, nor to its radiation field.

Let us consider the standard picture of synchrotron emission by a relativistic electron illus-
trated in figure B1, using the same notation and following the derivation of Westfold (1959).
In the fluid frame, we consider a direct orthonormal triad, (I,J ,K), such that I is antipar-
allel to the acceleration vector at some initial time t= 0 (coinciding with the proper time of
the fluid frame), K is along the ambient magnetic field b (measured in the fluid frame), and
J completes the triad. We call β the velocity 3-vector of the electron in the fluid frame and β̇
the corresponding acceleration. A synchrotron wave is emitted by the accelerated electron in
the unit direction K̄ (measured in the fluid frame). The emission angle θB and the pitch angle
α are illustrated in figure B1.

The velocity and acceleration read

β = β sinα(−sinωBtI + cosωBtJ )+β cosα

β̇ =−ωBβ sinα(cosωBtI + sinωBtJ ) ,K, (B.1)

where β is the velocity of the electron in units of the speed of light, and ωB is the cyclotron
gyrofrequency. It is easy to check that at t= 0, the projection of the velocity vector orthogonal
to b is along J , and the acceleration vector is along −I , which is the setup illustrated in
figure B1.

The radiation field of the moving charge in the fluid frame satisfies

Erad ∝ K̄×
[(
K̄−β

)
× β̇

]
. (B.2)

11 Infinitesimal as compared to the natural scale of our problem coinciding with the gravitational radius.
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Let us consider the unit direction of emission of a synchrotron photon, written in full gen-
erality as

K̄= aI + bJ + cK, (B.3)

where (a,b,c) are arbitrary real numbers such that K̄ is a unit vector. It is easy to show that

Erad ·K∝ β cosα− c. (B.4)

The lhs quantity represents the projection of the radiating electric field along the ambient mag-
netic field direction. It is well known that the beaming effect leads to the radiation being con-
fined within a narrow cone around the pitch angle of the relativistically moving electron (see
figure 6.5 of Rybicki and Lightman 1979). This exactly means that

β cosα− c≈ 0, (B.5)

such that the radiating electric field is orthogonal to the ambient magnetic field. It follows that

Erad ∝ K̄×b, (B.6)

so that the rhs can be used to define the direction of the synchrotron polarization vector, as
done in equation (36).

Appendix C. Solving the polarized radiative transfer equation

Let us start with the unpolarized radiative transfer equation in the emitter frame

dI
ds

=−αI+ j (C.1)

with obvious notations. The formal solution reads

I(τ) =
ˆ s

s0

exp(−(τ − τ ′))S(τ ′)dτ ′ (C.2)

where S= j/α is the source function, dτ = αδs is the optical depth, s is the proper length in
the emitter frame and s0 is some initial value of s where the intensity is assumed to be zero.
This equation can equivalently be written

I(s) =
ˆ s

s0

exp(−α(s− s ′)) j(s ′)ds ′, (C.3)

where α is assumed constant over the integration interval. Considering a small range δs=
s− s ′ between some previous location s′ and some current location s, over which interval j
and α can be considered constant in a realistic problem, the increment of intensity reads

δI(s) = j(s) δsexp(−α(s) δs) . (C.4)

Let us now come back to the polarized version of the radiative transfer equation (equation (52))
which reads

dI
ds

=−KI +J , (C.5)
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where I is the vector of Stokes parameters and

K= R(χ)


αI αQ αU αV
αQ αI rV −rU
αU −rV αI rQ
αV rU −rQ αI

R(−χ) ; J = R(χ)


jI
jQ
jU
jV

 (C.6)

with R(χ) being the rotation matrix given in equation (53). Its formal solution is the direct
generalization of equation (C.2), provided that K is constant with s:

I (s) =
ˆ s

s0

exp(−K(s− s ′))J (s ′)ds ′. (C.7)

Let us introduce the matrix

O(s,s ′) = exp(−K(s− s ′)) . (C.8)

Over a small interval of proper length δs= s− s ′, over which the absorption matrix and emis-
sion vector can be considered constant, the elementary increase of Stokes parameters is

δI (s) =O(δs)J (s)δs (C.9)

which is the direct generalization of equation (C.4). This is the equation used in Gyoto to
update the Stokes parameters along the light ray.

We still need to compute the exponential of matrix appearing in equation (C.8). Landi
Degl’Innocenti and Landi Degl’Innocenti (1985) have given an expression for this matrix.
It reads

O(δs) = exp(−αIδs){[cosh(Λ1δs)+ cos(Λ2δs)]M1/2

−sin(Λ2δs)M2

−sinh(Λ1δs)M3

+[cosh(Λ1δs)− cos(Λ2δs)]M4/2} (C.10)

with

M1 = 1,

M2 =
1
Θ


0 Λ2α̃Q −σΛ1 r̃Q Λ2α̃U −σΛ1 r̃U Λ2α̃V −σΛ1 r̃V

Λ2α̃Q −σΛ1 r̃Q 0 σΛ1α̃V +Λ2 r̃V −σΛ1α̃U −Λ2 r̃U
Λ2α̃U −σΛ1 r̃U −σΛ1α̃V −Λ2 r̃V 0 σΛ1α̃Q +Λ2 r̃Q
Λ2α̃V −σΛ1 r̃V σΛ1α̃U +Λ2 r̃U −σΛ1α̃Q −Λ2 r̃Q 0

 ,

M3 =
1
Θ


0 Λ1α̃Q +σΛ2 r̃Q Λ1α̃U +σΛ2 r̃U Λ1α̃V +σΛ2 r̃V

Λ1α̃Q +σΛ2 r̃Q 0 −σΛ2α̃V +Λ1 r̃V σΛ2α̃U −Λ1 r̃U
Λ1α̃U +σΛ2 r̃U σΛ2α̃V −Λ1 r̃V 0 −σΛ2α̃Q +Λ1 r̃Q
Λ1α̃V +σΛ2 r̃V −σΛ2α̃U +Λ1 r̃U σΛ2α̃Q −Λ1 r̃Q 0

 ,

M4 =
2
Θ

×


(
α̃2 + r̃2

)
/2 α̃V r̃U − α̃U r̃V α̃Q r̃V − α̃V r̃Q α̃U r̃Q − α̃Q r̃U

α̃U r̃V − α̃V r̃U α̃2
Q + r̃2Q −

(
α̃2 + r̃2

)
/2 α̃Qα̃U + r̃Q r̃U α̃Vα̃Q + r̃V r̃Q

α̃V r̃Q − α̃Q r̃V α̃Qα̃U + r̃Q r̃U α̃2
U + r̃2U −

(
α̃2 + r̃2

)
/2 α̃Uα̃V + r̃U r̃V

α̃Q r̃U − α̃U r̃Q α̃Vα̃Q + r̃V r̃Q α̃Uα̃V + r̃U r̃V α̃2
V + r̃2V −

(
α̃2 + r̃2

)
/2

 ,

(C.11)
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where

α̃2 = α̃2
Q+ α̃2

U+ α̃2
V,

r̃2 = r̃2Q+ r̃2U+ r̃2V,

Λ1 =

√√
1
4
(α̃2 − r̃2)2 +(α̃Qr̃Q+ α̃Ur̃U+ α̃Vr̃V)

2
+

1
2
(α̃2 − r̃2),

Λ2 =

√√
1
4
(α̃2 − r̃2)2 +(α̃Qr̃Q+ α̃Ur̃U+ α̃Vr̃V)

2 − 1
2
(α̃2 − r̃2),

Θ= Λ2
1 +Λ2

2,

σ = sign(α̃Qr̃Q+ α̃Ur̃U+ α̃Vr̃V) , (C.12)

and where the tilde quantities α̃X, r̃X take into account the basis rotation by an angle χ and
read (

α̃Q
α̃U

)
=

(
cos2χ −sin2χ
sin2χ cos2χ

)(
αQ
αU

)
, (C.13)

and similarly for r̃Q and r̃U, while α̃I,V and r̃V are the same as their counterparts without a tilde,
given that I and V are not affected by the rotation.
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Nalewajko K, Sikora M and Różańska A 2020 Astron. Astrophys. 634 A38
Noble S C, Leung P K, Gammie C F and Book L G 2007 Class. Quantum Grav. 24 S259–74
Page D N and Thorne K S 1974 Astrophys. J. 191 499–506
Pihajoki P, Mannerkoski M, Nättilä J and Johansson P H 2018 Astrophys. J. 863 8
Porth O, Mizuno Y, Younsi Z and Fromm C M 2021 Mon. Not. R. Astron. Soc. 502 2023–32
Prather B S et al (Event Horizon Telescope Collaboration) 2023 Astrophys. J. 950 35
Pu H Y, Yun K, Younsi Z and Yoon S J 2016 Astrophys. J. 820 105
Rybicki G B and Lightman A P 1979 Radiative Processes in Astrophysics (Wiley)
Shcherbakov R V 2008 Astrophys. J. 688 695–700
Transactions of the International Astronomical Union 1973 Trans. Int. Astron. Union 15 165–7
Varniere P, Casse F and Vincent F H 2018 SF2A-2018: Proc. Annual Meeting of the French Society of

Astronomy and Astrophysics ed P Di Matteo, F Billebaud, F Herpin, N Lagarde, J B Marquette,
A Robin and O Venot p Di

Vincent F H, Abramowicz M A, Zdziarski A A, Wielgus M, Paumard T, Perrin G and Straub O 2019
Astron. Astrophys. 624 A52

Vincent F H, Paumard T, Gourgoulhon E and Perrin G 2011 Class. Quantum Grav. 28 225011
Vincent F H, Wielgus M, Aimar N, Paumard T and Perrin G 2023 arXiv:2309.10053
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