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Abstract. We present calculations of quasi-equilibrium sequences of irrotational binary neutron stars based on realistic equa-
tions of state (EOS) for the whole neutron star interior. Three realistic nuclear EOSs of various softness and based on different
microscopic models have been joined with a recent realistic EOS of the crust, giving in this way three different EOSs of a
neutron-star interior. Computations of quasi-equilibrium sequences are performed within the Isenberg-Wilson-Mathews ap-
proximation to general relativity. For all evolutionary sequences, the innermost stable circular orbit (ISCO) is found to be given
by mass-shedding limit (Roche lobe overflow). The EOS dependence on the last orbits is found to be quite important: for two
1.35 M� neutron stars, the gravitational wave frequency at the ISCO (which marks the end of the inspiral phase) ranges from
800 Hz to 1200 Hz, depending upon the EOS. Detailed comparisons with 3rd order post-Newtonian results for point-mass
binaries reveals a very good agreement until hydrodynamical effects (dominated by high-order functions of frequency) become
important, which occurs at a frequency ranging from 500 Hz to 1050 Hz, depending upon the EOS.
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1. Introduction

Detection of gravitational waves (GW) with the use of
ground-based laser interferometers, such as VIRGO (Acernese
et al. 2004), LIGO (Abbot et al. 2004), GEO600 (Hewitson
et al. 2003), or TAMA300 (Ando et al. 2001) will provide cru-
cial information about various astrophysical objects. Among
them, coalescing binary neutron stars (NS) are particularly in-
teresting for the use of GWs to probe their interiors. Matched
filtering techniques involving high-order post-Newtonian ef-
fects will provide the individual masses and spins of the NSs.
The last few orbits before the final merger are dominated by
the strong tidal forces acting between the components. The
tidal deformation of NSs shape and of the matter distribution
in the stellar interior are expected to depend rather strongly
on the poorly known equation of state (EOS) of dense mat-
ter. The GW signal carries therefore some imprint of the EOS.
In particular, the final frequency of the last stable circular or-
bit is strongly correlated with the compactness parameter M/R

� Present address: Department of Physics, University of Illinois at
Urbana-Champaign, Urbana, Illinois 61801, USA.

(Faber et al. 2002; Taniguchi & Gourgoulhon 2003), and thus
can provide direct constraints on the theory of dense hadronic
matter above the nuclear saturation density. A related event po-
tentially rich in information about the dense matter EOS is the
merger of a neutron star and a black hole (Prakash & Lattimer
2004; Prakash et al. 2004). In addition to locating the transi-
tion from inspiral to the merger phase, computations of the last
stable orbits of binary NSs are also required for providing ini-
tial data to compute the dynamical merger phase (Shibata et al.
2003, and references therein).

The last orbits of inspiraling binary neutron stars
have been studied by a number of authors in the
quasi-equilibrium approximation, and in the framework
of Isenberg-Wilson-Mathews (IWM) approximation of general
relativity (see Baumgarte & Shapiro 2003, for a review).
The quasi-equilibrium assumption approximates the evolu-
tion of the system by a sequence of exactly circular orbits
(as the time evolution of the orbit is much larger than the
orbital period). The IWM approximation amounts to using
a conformally flat spatial metric (the full spacetime metric
remaining non-conformally flat), which reduces the problem
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to solving only five of the ten Einstein equations. Within these
two approximations, the most realistic studies have considered
irrotational binaries, as opposed to synchronized ones, as
the viscosity of neutron star matter is far too low to ensure
synchronization during the late stage of the inspiral (Bildsten
& Cutler 1992; Kochaneck 1992).

The quasi-totality of the existing quasi-equilibrium
IWM studies (Bonazzola et al. 1999; Marronetti et al. 1999;
Uryu & Eriguchi 2000; Uryu et al. 2000; Gourgoulhon et al.
2001; Taniguchi & Gourgoulhon 2002b, 2003) employ a poly-
tropic EOS to model the neutron star interior. The only excep-
tion is the recent work of Oechslin et al. (2004) who have used
two EOSs: (i) a pure nuclear matter EOS, based on a relativistic
mean field model; and (ii) a “hybrid” EOS with a phase transi-
tion to quark matter at high density. At 2 × 1014 g cm−3 (i.e. in
the vicinity of nuclear density), these two EOSs are matched
with a polytropic one with adiabatic index γ = 2.86. This last
assumption of Oechslin et al. is somewhat ad hoc, because the
EOS of the neutron star crust is very different from a poly-
trope, and its local adiabatic index is much smaller. Indeed,
the crust polytropic index within the inner crust (which con-
tains some 99.9% of the total crust mass) varies from γ � 0.5
near the neutron drip point to γ � 1.6 in the bottom layers
near the crust-core interface (Douchin & Haensel 2001). The
crustal EOS plays a crucial role in defining the mass-shedding
limit which marks the end point of quasi-equilibrium binary
configurations.

In the present article, we study the last orbits of irrota-
tional binary neutron star systems by using a set of three
dense matter EOSs which are representative of the contempo-
rary many-body theory of dense matter. Contrary to Oechslin
et al. (2004), we describe the neutron star crust by means of
a realistic EOS obtained in the many-body calculations. As in
the works mentioned above, we use the quasi-equilibrium and
IWM approximations.

The paper is arranged in the following way: in Sect. 2 the
differences between EOSs used in the computation are briefly
described. Section 3 is devoted to a description of the numer-
ical methods used to obtain the quasi-equilibrium orbital se-
quences. In Sect. 4 the results are presented, Sect. 5 contains
discussion and final remarks.

2. Description of the equations of state

2.1. The EOS of the crust

The outer layer of a neutron star contains neutron-rich nuclei,
which due to Coulomb repulsion form a crystal lattice if the
matter temperature is below the corresponding melting tem-
perature. This layer is called the neutron star crust, and extends
up to the density at the crust-core interface, ρcc ∼ 1014 g cm−3.
The precise value of ρcc is model dependent, and varies within
(0.6−1.4)× 1014 g cm−3. The EOS of the crust is rather well es-
tablished (for a review, see, e.g., Haensel 2003). In the present
paper the EOS of the crust is composed of three segments. For
densities smaller than 108 g cm−3 we used the EOS of Baym
et al. (1971). For 108 g cm−3 < ρ < 1011 g cm−3 we applied
the EOS of Haensel & Pichon (1994), which makes maximal

use of the experimental masses of neutron-rich nuclei. Finally,
for densities 1011 g cm−3 < ρ < ρcc we used the EOS of
Douchin & Haensel (2001). For neutron stars of M = 1.35 M�,
the crust contains less than 2% of the stellar mass. However, it
is the region most easily deformed under the action of the tidal
forces resulting from the gravitational field produced by the
companion star. Below the melting temperature, elastic shear
terms in the stress tensor are nonzero, but they are two orders
of magnitude smaller than the main diagonal pressure term
(Haensel 2001). Dissipative and thermal effects accompany-
ing matter flow inside neutron stars will be briefly discussed in
Sect. 5; they are expected to be small at the quasi-equilibrium
evolution stage. Therefore, to a very good approximation, the
crust layer behaves in the tidal force field as an ideal degenerate
fluid, described by a zero temperature EOS.

An important quantity which actually determines the re-
sponse of the crust layer to the compression or decompres-
sion of matter is the adiabatic index γ = (n/p)dp/dn, where p
is the local pressure and n the corresponding baryon number
density. In the outer crust, the pressure is determined by the
ultra-relativistic electron gas, so that γ = 4/3. However, the
outer crust contains only 10−5 of the NS mass. Some thousand
times more, i.e., about 0.03 M�, is contained in the inner crust,
composed of a lattice of heavy neutron-rich nuclei immersed in
a neutron gas and an electron gas. Its adiabatic index depends
strongly on the density, varying from γ � 0.5 near the neutron
drip point (extreme softening of the EOS), up to γ � 1.6 close
to ρcc (Douchin & Haensel 2001).

2.2. The EOS of the core

The neutron star core contains matter of a density significantly
larger than the normal nuclear density, equal to the satura-
tion density of infinite symmetric nuclear matter, ρ0 = 2.8 ×
1014 g cm−3, and corresponding to the baryon number den-
sity n0 = 0.16 fm−3. For ρ > ρ0 the EOS of the core is
poorly known, and this uncertainty grows rapidly with increas-
ing density. The theoretical EOSs, derived using different the-
ories of dense matter and different methods of solution of the
many-body problem, differ significantly at 1015 g cm−3, char-
acteristic of the central cores of neutron stars under study. In
the present paper, we will limit ourselves to neutron star cores
consisting of nucleons and hyperons, i.e., baryons whose prop-
erties are known from terrestrial experiments. The speculative
case of exotic phases of dense matter (kaon and pion condensa-
tion, quark deconfinement), whose existence is – as of this pub-
lication – not substantiated either by experiments or by astro-
nomical observations, will be considered in future publications.
The most extreme case of hypothetical strange stars built of
self-bound strange quark matter will also be studied separately.

Three EOSs of the core were considered. Two of them
may be considered as soft and stiff extremes of the EOSs of
matter composed of nucleons, electrons and muons. The first,
BPAL12, is of phenomenological type and can be considered
as a soft extreme of the nucleonic EOS of NS matter (Prakash
et al. 1997; Bombaci 1995). The second, APR, is based on
precise variational calculations and includes realistic two-body
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Fig. 1. The pressure p against the energy density ρ for the EOSs used
in the paper: APR (dashed line), GNH3 (dotted line), and BPAL12
(solid line). The empty circles correspond to the central density of a
non-rotating stellar model with a gravitational mass equal to 1.35 M�
(Table 1).

(Argonne A18) and three-body (Urbana UIX) nucleon
interactions (Akmal et al. 1998)1. We considered also one EOS
in which hyperons are present at ρ > ρH, where the threshold
for the hyperon appearance ρH � 2ρ0 (model 3 of Glendenning
1985); it will be referred to as the GNH3 EOS. This EOS was
obtained using the Relativistic Mean Field model of baryonic
matter. For ρ < ρH (nucleons only) this EOS is very stiff but
causal (vsound < c). The appearance of hyperons strongly soft-
ens the EOS as compared to the pure nucleon case. The hyper-
ons soften the EOS because they are more massive than nucle-
ons, and when they start to fill their Fermi sea they are slow and
replace the highest energy nucleons.

All three EOSs are displayed in Fig. 1. As we mentioned
they are very different because they assume very different
strong interaction models at supra-nuclear densities.

2.3. Mass-radius relation for static NSs

The differences between the three EOSs are reflected in the
M(R) curves of statically stable models shown in Fig. 2 (M be-
ing the gravitational mass and R the area radius).

The BPAL12 EOS is overall quite soft, and therefore pro-
duces NSs with R decreasing rapidly with increasing M. The
BPAL12 EOS yields the smallest R(M) for M > 1.2 M�. The
maximum allowable mass for this EOS is marginally consis-
tent with observations, Mmax = 1.46 M�. The APR EOS is
stiff, with its radius staying nearly constant at R � 11.5 km
for M = (0.6−1.6) M�, and yields high Mmax = 2.2 M�. The
BPAL12 and APR EOSs are soft and stiff extremes within our
set of the EOSs as far as the values of Mmax are concerned.
However, their M(R) intersect at M = 1.2 M�. Therefore, these
EOSs produce NSs with similar values of the compaction
parameter M/R for M � 1.2 M�.

The GNH3 EOS is different to the two previous ones, be-
cause its M(R) curve is composed of two different segments.

1 The APR EOS violates causality at high density regions which
appear in the NS core only close to the maximum mass of the
neutron star.
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Fig. 2. Gravitational mass of static isolated stars against area radius for
the APR (dashed line), GNH3 (dotted line) and BPAL12 (solid line)
EOSs.

Table 1. Properties of isolated static neutron stars of gravitational
mass M = 1.35 M� for the three EOSs used in our computations.
M/R ≡ GM/Rc2 is the compaction parameter, R is the areal radius, MB

is the baryon mass and ρc is the central energy density, respectively.

EOS M/R R [km] MB[M�] ρc [1014g/cm3]

GNH3 0.140 14.262 1.45351 6.26

APR 0.176 11.350 1.49110 9.80

BPAL12 0.191 10.447 1.48472 20.22

The lower-mass segment (M < 1.3 M�) consists of stars with
no or with only small hyperon cores. The radius stays nearly
constant at R � 14 km for M = (0.5−1.3) M�. This segment
is connected via a “knee” with a high-mass segment consist-
ing of neutron stars with increasingly larger soft hyperon cores.
Along this high-mass (hyperon-softened) segment, R decreases
rapidly with increasing M, reaching a very flat maximum at
M � 1.9 M�.

Different aspects of the EOSs show up if we consider the
1.35 M� static stars. Their parameters, calculated using three
EOSs, are given in Table 1. A NS configuration is a func-
tional of the EOS at the densities ρ smaller than the central
density ρc. We see that for the GNH3 EOS the central density
is barely higher than the hyperon threshold ρH, and therefore
the EOS inside the NS is very stiff, actually the stiffest of all
three. The highest stiffness of the GNH3 EOS in the interior of
a 1.35 M� NS can be clearly recognized by looking at Figs. 1
and 3. Looking at Fig. 1, we see that this EOS has the highest P
at any ρ < ρc. Additional information is contained in Fig. 3: this
EOS has particularly large γ for ρ ∼ ρ0, i.e., in the outer layers
of the NS core, which are therefore quite “inflated” in compar-
ison with those in the other two NS models. These features are
responsible for the particularly large R for the GNH3 EOS. The
GNH3 configuration has the largest R and therefore the small-
est compaction parameter M/R. The BPAL12 EOS is clearly
the softest, with R smaller by 27% than for the GNH3 EOS.
The APR EOS, which is moderately stiff in this mass range,
yields R which is only 8% larger than for the BPAL12 model.

The differences in stiffness reflect the characteristics of the
nuclear model underlying each of the EOSs of the NS core.
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Fig. 3. The adiabatic index γ against the energy density ρ for the EOSs
used in our computations: APR (dashed line), GNH3 (dotted line),
and BPAL12 (solid line). The empty circles correspond to the central
density of a non-rotating stellar model with a gravitational mass equal
to 1.35 M�.

Using the density-dependent adiabatic index γ it is particularly
easy to visualize these differences, see Fig. 3. The strong drop
in γ above ρH reflects the hyperon softening in the GNH3 EOS.
The values of γ increasing up to the maximum at ρ = ρc tell
us about the stiffening of the APR EOS at ρ ∼ 2ρ0, in contrast
to the behavior of the GNH3 EOS which softens close to this
density. Finally, the BPAL12 EOS remains close to a polytrope
with γ � 2.2, except for a small region around ρ0.

3. Numerical method

3.1. Numerical code for close binary systems

The present computations of close binary neutron star
systems rely on the assumption of a quasi-equilibrium
state (helical Killing vector approximation), with irrota-
tional flow of the fluid, and a conformally flat spatial 3-m
(Isenberg-Wilson-Mathews approximation). We construct the
quasi-equilibrium sequences of binary neutron stars described
by the realistic EOSs using a numerical code which solves
the five coupled, nonlinear, elliptic equations for the grav-
itational field, supplemented by an elliptic equation for
the velocity potential of irrotational flows. The code has
been used successfully for calculating the final phase of
the inspiral of binary neutron stars described by the poly-
tropic equation of state (Taniguchi et al. 2001; Taniguchi &
Gourgoulhon 2002a,b, 2003). This code is built upon the
C++ library L (http://www.lorene.obspm.fr) and
can be downloaded freely from the L CVS repository,
as Lorene/Codes/Bin_star/coal.C. The complete descrip-
tion of the resulting general relativistic equations, the whole
algorithm, as well numerous tests of the code can be found
in Gourgoulhon et al. (2001). Additional tests have been pre-
sented in Sect. 3 of Taniguchi & Gourgoulhon (2003).

The numerical technique relies on a multi-domain spectral
method with surface-fitted coordinates. We have used one do-
main for each star and 3 (resp. 4) domains for the space around
them for a large (resp. small) separation. In each domain, the

number of collocation points of the spectral method is chosen
to be Nr × Nθ × Nϕ = 25 × 17 × 16, where Nr , Nθ, and Nϕ de-
note the number of points in the radial, polar and azimuthal di-
rections respectively. The accuracy of the computed relativistic
models was estimated using a relativistic generalization of the
the Virial Theorem (Friedman et al. 2002; see also Sect. 3.A of
Taniguchi & Gourgoulhon 2003). The virial relative error was
a few times 10−5.

3.2. The velocity potential of irrotational flows

Let us briefly discuss a technical difference between the com-
putations of the realistic EOS irrotational binary NS and
the polytropic case considered by Bonazzola et al. (1999),
Marronetti et al. (1999), Uryu & Eriguchi (2000), Uryu
et al. (2000), Gourgoulhon et al. (2001) and Taniguchi &
Gourgoulhon (2002b, 2003). The difference stems from the fact
that the realistic EOS presented in Sect. 2 are given in tabulated
form, and a certain thermodynamic coefficient ζ, (required in
the computation of the velocity potential of the irrotational fluid
flow, cf. Sect. 2 of Gourgoulhon et al. 2001) is not given explic-
itly by the tabulated EOS.

As already discussed in Sect. 2, we adopt the approxima-
tion of the perfect fluid for the form of the stress-energy tensor,
and we represent the NS matter by a zero-temperature EOS. In
view of this, we can use the Gibbs-Duhem identity:

dp
e + p

=
1
h

dh (1)

where e = ρc2 is the proper energy density of the fluid, p is the
pressure, h = (e + p)/(mbn) is the specific enthalpy, with n de-
noting the fluid baryon number density and mb the mean baryon
mass.

Following Gourgoulhon et al. (2001), we write the equation
for the coefficient ζ as

ζ =
d(ln H)
d(ln n)

=
d(ln H)
d(ln p)

· d(ln p)
d(ln n)

=
d(ln H)
d(ln p)

· γ, (2)

where γ is the adiabatic index. The quantity H := ln h appears
in the first integral of fluid motion and denotes the log-enthalpy
of the fluid, and the value of d(lnH)/d(lnp) can easily be eval-
uated by means of Eq. (1) which, as a strict thermodynamic
relation, is exact.

In practice, we used two methods to get the adiabatic in-
dex γ = (n/p)dp/dn. In the first method we used an analytical
formula for the adiabatic index being an approximation of tabu-
lated values of γ. In the second method the adiabatic index was
obtained directly from a tabulated EOS by taking the derivative
of the second order polynomial which goes through three con-
secutive (p, n) EOS points. The value of the dp/dn multiplied
by the n/p ratio is evaluated at the middle point, and the result-
ing discrete values of γ are ready to be interpolated, similar to
the other quantities from the tabulated EOS.

The second method proved to be very robust, and acts as a
consistency check; it was tested with EOS for which the pre-
cise values of the adiabatic index were obtained from the mi-
croscopic considerations, namely for the SLy EOS (Douchin &
Haensel 2000).
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4. Numerical results

4.1. Quasi-equilibrium sequences of neutron stars
described by realistic EOS

In this section we present the numerical results for evolutionary
sequences of close neutron star binaries described by the three
realistic EOS introduced in Sect. 2. By evolutionary sequence,
we mean a sequence of quasi-equilibrium configurations of de-
creasing separation d and with constant baryon mass MB. Such
a sequence is expected to approximate the true evolution of bi-
nary neutron stars, which is entirely driven by the reaction to
gravitational radiation and hence occur at fixed baryon number
and fluid circulation (zero in the irrotational case considered
here). We calculated evolutionary sequences of binary systems
composed of two identical neutron stars (equal mass system),
with the baryon mass MB corresponding to the gravitational
mass M := M1 = M2 = 1.35 M� for a static isolated star (see
Table 1 for the values of MB). We have selected the gravita-
tional mass M = 1.35 M� for two reasons: (i) it agrees with the
“average NS mass” obtained from observations of radio pulsars
in binary system; and (ii) it allows us to compare our results
with calculations made by other authors for polytropic models
(Faber et al. 2002).

For the present discussion, let us recall the definition of the
ADM mass of the system, which measures the total energy con-
tent of a slice t = const of spacetime (hypersurface Σt):

MADM :=
1

16π

∮
∞

[
D jγi j −Di

(
f klγkl

)]
dS i, (3)

where γi j is the metric induced by the spacetime metric on Σt,
fi j is a flat metric on Σt (the condition of asymptotic flatness be-
ing γi j → fi j),Di is the covariant derivative associated with fi j,
and the integral is to be taken on a sphere at spatial infinity. In
the case considered here of a conformally flat spatial metric,
γi j = Ψ

4 fi j, the surface integral (3) can be converted into a
volume integral over the whole hypersurface Σt:

MADM :=
∫
Σt

Ψ5

(
E +

1
16π

Ki jK
i j

)
d3x, (4)

where E is the total energy density of matter with respect to the
observer whose 4-velocity is normal to Σt and Ki j denotes the
extrinsic curvature tensor of Σt.

At infinite separation, the ADM mass of the system,
Eqs. (3) and (4), tends toward the sum of the gravitational
masses of isolated static stars, and will be denoted by M∞:

lim
d→∞

MADM = M∞ := M1 + M2 = 2.7 M�. (5)

We then define the orbital binding energy by

Ebind := MADM − M∞. (6)

The variation of Ebind along an evolutionary sequence cor-
responds to the loss of energy via gravitational radiation.
Gravitational waves are emitted mostly at twice the orbital fre-
quency: fGW = 2 f .

4.2. Innermost stable circular orbit

Each evolutionary sequence terminates by a mass-shedding
point, which marks the end of existence of quasi-equilibrium
configurations. The shape of the stars close to this limit is pre-
sented in Fig. 4. The mass-shedding is revealed by the forma-
tion of a cusp at the stellar surface in the direction of the com-
panion (Roche lobe overflow). This cusp is marginally visible
in Fig. 4.

A turning point of Ebind along an evolutionary sequence
would indicate an orbital instability (Friedman et al. 2002).
This instability originates both from relativistic effects (the
well-known r = 6M last stable orbit of Schwarzschild metric)
and hydrodynamical effects (for instance, such an instability
exists for sufficiently stiff EOS in the Newtonian regime, see
e.g. Taniguchi et al. 2001 and references therein). It is secular
for synchronized systems and dynamical for irrotational ones,
such as those considered here. Thus the quasi-equilibrium in-
spiral of binary neutron stars can terminate by either the orbital
instability (turning point of Ebind) or the mass-shedding limit.
In the latter case, there might exist equilibrium configurations
beyond the mass-shedding limit, i.e. dumb-bell like configu-
rations (see e.g. Eriguchi & Hachisu 1985). However dynam-
ical calculations for the γ = 2 polytrope have shown that the
time to coalescence was shorter than one orbital period for con-
figurations at the mass-shedding limit (Shibata & Uryu 2001;
Marronetti et al. 2004). Therefore we may safely define the
end of quasi-equilibrium inspiral by the mass-shedding limit
in the case where no turning point of Ebind is found along the
sequences (which is actually the present case, as we shall
discuss below).

The variation of the orbital binding energy along evolution-
ary sequences is presented in Fig. 5, where the points corre-
spond to the equilibrium configurations of binary system cal-
culated using a numerical method (see Sect. 3) and the lines
present our best fit described in detail in Sect. 4.3. In the scale
of Fig. 5 there is no visible difference between our numerical
results and the fit, i.e. fitting curves pass through the points.
We plotted also the binding energy obtained in the framework
of Newtonian theory and the 3PN post-Newtonian approxima-
tion for point masses (Blanchet 2002). Figure 5 shows clearly
that no turning point of Ebind occurs along the evolutionary se-
quences. Hence there is no orbital instability prior to the mass-
shedding limit. We conclude that the innermost stable circular
orbit (ISCO) of the computed configurations are given by the
mass-shedding limit.

To compare different approaches to the relativistic descrip-
tion of binary systems we present in Fig. 6 the orbital binding
energy after subtraction of the Newtonian term ∝ f 3/2

GW. This fig-
ure shows the effects of general relativity and of finite sizes
(hydrodynamics). One can see that binary neutron star systems
are quite far from Newtonian and 1PN systems. On the con-
trary, 2PN and 3PN results by Blanchet (2002) and 3PN results
by Damour et al. (2000) are very close to our results for a wide
range of frequencies. Note that the difference between 2PN
and 3PN approximations are much larger in the Damour et al.
(2000) treatment (Effective One Body method) than in that of
Blanchet (2002) (standard post-Newtonian expansion).
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Fig. 4. Baryon number density isocontours in the coordinate plane y = 0 (containing the rotation axis) (left panels) and in the coordinate
plane z = 0 (orbital plane) (right panels), for configurations close to the mass-shedding limit. The upper (resp. middle, lower) panels correspond
to the GNH3 (resp. APR, BPAL12) EOS. The thick solid lines denote stellar surfaces.

Fig. 5. Orbital binding energy Ebind = MADM − M∞ of the binary
system versus frequency of gravitational waves (twice the orbital
frequency) along three irrotational quasi-equilibrium sequences. The
lines (dotted – GNH3, dashed – APR, solid – BPAL12) were plot-
ted using the fit described in the text, whereas the points represent
actual data. Thin solid line touching the bottom-right corner shows
the 3rd post-Newtonian approximation for point masses derived by
Blanchet (2002). The lower thin dotted curve corresponds to the
Newtonian limit for point masses.

4.3. Analytical fits to the numerical results

Following Faber et al. (2002), we have performed some poly-
nomial fits to each of the computed sequences. This is a very

Fig. 6. Orbital binding energy of the binary system minus the
(point mass) Newtonian term −kN f 2/3 versus frequency of grav-
itational waves (twice the orbital frequency) along three irro-
tational quasi-equilibrium sequences. Thin solid line shows the
3rd post-Newtonian approximation for point masses by Blanchet
(2002). Slightly below there is the 2PN line (thin, dashed) and the
1PN one (thin, long dash-dotted). For the comparison post-Newtonian
approximation by Damour et al. (2000) – 3PN (dashed-dotted thin
line) and 2PN (thin, long dashed) are also plotted.

important step in order to obtain the first derivative of the func-
tions required for the energy spectrum of gravitational waves
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Table 2. Parameters of polynomial fits (7) and (9).

EOS k2 [10−9 M� s2] a [M�] n

GNH3 6.23 2.745 × 10−3 8

APR 5.38 1.912 × 10−4 9

BPAL12 4.59 6.519 × 10−6 16

(see below). We used two different approaches to approximate
our numerical results. The first one, similar to that presented
by Faber et al. (2002), is based on quadratic approximation of
numerical results. We decided to make a fit only to the differ-
ence between exact results obtained for the ADM mass MADM

(cf. Eq. (3)) and the prediction of the Newtonian theory –
i.e. we made a fit to the function Ebind + kN f 2/3

GW, where the
second term corresponds to the Newtonian point-like mass be-
haviour with kN = (Gπ/4)2/3M5/3 = 4.06 × 10−4 M�Hz−2/3.
We found it sufficient to fit the numerical results by a second
order polynomial without any linear term:

Ebind = −kN f 2/3
GW + k2 f 2

GW, (7)

i.e. contrary to Faber et al. (2002) we assume k1 = 0. The
best-fit coefficients k2 are collected in Table 2. Our aim was to
obtain accurate formula for gravitational radiation in the region
where it is effectively emitted and therefore we have performed
the fitting procedure for frequencies higher than 500–600 Hz.
This approximation works quite well for high frequencies
(i.e. small distance between stars) and there is no need to in-
troduce the linear term, as done by Faber et al. (2002). The
advantage of our quadratic formula is its simplicity and good
accuracy in the region corresponding to the effective emission
of gravitational waves.

However it is possible to find a much better approximation
of the numerical results if one takes into account a high or-
der post-Newtonian approximation for the binding energy of
point-mass systems. The 3PN formula as obtained by Blanchet
(2002) from the standard2 post-Newtonian expansion reads

E3PN
bind

M∞
= −1

8
Ω∗2/3 +

37
384
Ω∗4/3 +

1069
3072

Ω∗2

+
5

3072

(
41π2 − 285473

864

)
Ω∗8/3, (8)

where Ω∗ is the orbital angular frequency expressed in
geometrized units:

Ω∗ := 2π
GM∞

c3
f = 2π

GM
c3

fGW.

The terms in Ω∗2/3, Ω∗4/3, Ω∗2 and Ω∗8/3 in Eq. (8) are respec-
tively the Newtonian, 1PN, 2PN and 3PN term.

In Fig. 7 we present the difference between our numer-
ical results and the 3PN approximation given by Eq. (8).
Formula (8) approximates very well the behavior of a binary
system of realistic neutron stars for a very large range of bi-
nary periods (notice the scale of the y-axis of Fig. 7!). From

2 I.e. non-resummed, in contrast to the so-called Effective One
Body approach of Damour et al. (2000).

Fig. 7. Difference Ebind − E3PN
bind between the binding energy of irrota-

tional binary neutron stars built upon a realistic equation of state and
the binding energy of binary point masses in the 3PN approximation
of Blanchet (2002). The dots correspond to numerical results and the
lines to polynomial fits to them (see text for details).

Fig. 7, we can define the frequencies fnpm as those frequencies
at which the deviation from point-mass behavior becomes im-
portant. The values of these frequencies for each of the three
considered EOSs are given in Table 3. Of course, they are not
precise numbers and should be treated as having a ∼±50 Hz
uncertainty. We can approximate the results presented in Fig. 7
by the power-law dependence on frequency fGW:

Ebind − E3PN
bind = a

(
fGW

1000 Hz

)n
· (9)

Because of the steep character of the function Ebind−E3PN
bind seen

in Fig. 7, the power n is quite large. The values are listed in
Table 2. We assume the integer number of the power n, al-
though this is in principle not obvious from a theoretical point
of view. Of course more careful treatment of this approximation
is possible (e.g. more terms in the expansion) but from Fig. 7
it is clear that there is no need to do so and the leading term of
high power is sufficient.

One can draw an important conclusion from the presented
results and their comparison with relativistic approximations
for point masses in a binary system. We can expect that taking
into account the next orders in a post-Newtonian approxima-
tion does not change the energy by an amount larger than the
difference between 2PN and 3PN models. As a consequence
the large deviation of our numerical results from the 3PN ap-
proximation is caused by the effect of a finite size of the star
(e.g. tidal forces). The very high power n in relation (9) indi-
cates that, even for small departures from a point mass approx-
imation, high-order tidal effects are very important, and domi-
nate the relation Ebind( fGW). Indeed the lowest order tidal term
is known to be n = 4 (Lai et al. 1994) and the values obtained
here are well above this.
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Table 3. Gravitational wave frequencies (in Hz) computed from the
calculated data for GNH3, APR and BPAL12 EOSs: the fnpm denotes
the frequency at which the non-point-mass effects start to be impor-
tant, f20, f25 and f40 are the so-called break-frequencies (see text),
whereas fend is the GW frequency on the final orbit.

EOS fnpm f20 f25 f40 fend

GNH3 500 567 657 792 806

APR 700 615 762 1025 1132

BPAL12 1050 615 785 1160 1270

4.4. Energy spectrum of gravitational waves
for different realistic EOS

We computed the energy spectrum of gravitational waves ob-
tained as the first derivatives of the fitted functions (Eq. (9)).
The relation between dEbind/d f and the GW frequency fGW is
presented in Fig. 8. In this figure we draw straight lines cor-
responding to the Newtonian case ∼ f 2/3

GW to find the break fre-
quencies at which the energy spectrum has dropped by 20%,
25%, 40%. These values are important from the point of view
of future detections: they show the difference between the am-
plitude of the real signal and the Newtonian template which
allows to calculate the real wave form amplitude from the de-
tector noise. We also compare our results to the 25% case from
Faber et al. (2002). There is no visible difference between our
models for different EOSs at the break frequency level of 10%
(the case considered by Faber et al. 2002) and the situation is
then very precisely described by the 3PN formula.

4.5. Comparison with polytropic EOS

Up to now, all calculations (except those of Oechslin et al.
2004) of the hydrodynamical inspiral and merger phases have
been done for the simplified equation of state of dense matter,
for the polytropic EOS, where the dependence between pres-
sure and baryon density is given by p = κnγ. It has been shown
that the results obtained for these polytropic EOSs depend
mainly on the compaction parameter M/R. It is therefore inter-
esting to check if the properties of inspiraling neutron stars de-
scribed by a realistic EOS can be predicted, in a good approx-
imation, by studying binaries with assumed polytropic EOSs.
In order to make such a comparison we construct sequences
of binary NSs described by polytropic EOS parametrized by
the compaction parameter M/R given in Table 1 for each of
the three realistic equations of state. For a given γ, we calcu-
late the value of the κ coefficient which yields the same R at
M = 1.35 M� as that predicted by a selected realistic EOS
used in the present paper. The values of γ, the pressure coeffi-
cient κ, and the baryon masses of polytropic static isolated NSs
of M = 1.35 M� are presented in Table 4.

In Fig. 9 we show the dependence of gravitational mass
versus radius for isolated non-rotating stars based on the
APR EOS, and two different polytropes having M/R = 0.176
and M = 1.35 M� at infinite separation. Finally in Fig. 10
we present the binding energy versus the frequency of gravi-
tational waves at the last orbits of the inspiral for the APR EOS

Fig. 8. Energy spectrum of GW waves emitted by the binary neutron
star system versus frequency of gravitational waves (twice the orbital
frequency) along three irrotational quasi-equilibrium sequences. The
straight lines correspond to the Newtonian dependence of energy mul-
tiplied by 1, 0.8, 0.75 and 0.6.

Table 4. Pressure coefficient κ, adiabatic index γ and baryon mass MB

for polytropic NSs having the same compactness parameter and mass
(M = 1.35 M�) than NSs described by realistic EOSs (Table 1) (ρ̂ :=
1.66 × 1014 g/cm3 and n̂ := 0.1 fm−3).

corresponding EOS γ κ [ρ̂c2n̂−γ] MB [M�]

GNH3 2. 0.02645 1.44802

2. 0.02037 1.47016
APR

2.5 0.01094 1.49561

BPAL12 2. 0.01908 1.47742

Fig. 9. Gravitational mass versus stellar radius for sequences of static
neutron stars described by the Akmal et al. (1998) EOS (solid line)
and polytropic EOS with γ = 2 (dotted line) and γ = 2.5 (dashed line).
Configurations with gravitational mass 1.35 M� (marked by a circle)
described by polytropic EOSs have the same compaction parameter,
M/R = 0.176, as a neutron star configuration based on the APR EOS.

and the two corresponding polytropes. The differences between
quasi-equilibrium sequences described by realistic and poly-
tropic sequences are small. For the three different EOSs (APR
and two polytropes) the frequency of gravitational waves at
the last calculated orbit ( fend) is ∼1140 Hz. Also the bind-
ing energy of the system at the mass-shedding point is close
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Fig. 10. Binding energy of a binary neutron star system as a function
of gravitational wave frequency for the APR EOS (thick solid line)
and two corresponding polytropic EOS with γ = 2.5 (dashed line)
and γ = 2 (dotted line). Static isolated NSs have M/R = 0.176 and
M = 1.35 M�. The thin solid line shows the 3PN approximation for
point masses by Blanchet (2002), Eq. (8).

to each other, between −0.0372 and −0.0366 M�. However
one can see the differences in the frequencies fnpm at which
non-point-mass effects start to be important. The fnpm has the
smallest value for the polytrope with γ = 2.5 and the highest for
γ = 2. Although the matter in the stellar interior is stiffer for the
APR EOS (γ � 3, see Fig. 3), which is also clear from Fig. 9,
the APR curve lies between the γ = 2.5 and γ = 2 polytropes
in Fig. 10. This is due to the relatively soft equation of state for
the crust for realistic NS models, which makes the response of
the crust to tidal forces different from that of a polytrope with
γ = 2.5 or γ = 2.

We obtained similar results by comparing two other se-
quences of realistic EOS – BPAL12 and GNH3 with corre-
sponding polytropic cases. The irrotational flow is weakly af-
fected by the changes in the EOS of the core, but it is expected
that the differences should be seen in the merger phase. The
outer layers of the star (those with sub-nuclear densities, i.e.,
the crust), which are properly treated in the present paper have
an influence on the properties of the binary system at the last
stages of inspiral. However the crucial parameter which deter-
mines the energy-frequency spectrum (energy per frequency)
of emitted gravitational energy is M/R.

5. Concluding remarks

We have presented a set of evolutionary sequences of binary
neutron stars based on three selected realistic EOSs. These
EOSs are based on modern many-body calculations. Three
baryonic EOSs of a neutron-star core have been joined with
a recent EOS of a neutron-star crust, and in this way we ob-
tained three different models of the neutron star interior, from
the surface to the stellar center. We restricted our analysis to
models of neutron star cores without exotic phases (meson con-
densates, quark matter). In this way, the differences between
the core EOSs reflect the uncertainties in the existing theories
of the interactions in nuclear matter.

In the present paper we considered only those constituents
of dense matter, that have been studied in the laboratory. We did
not consider phase transitions to hypothetical exotic phases of
dense matter, which were proposed by many authors, but which
still remain speculative. Results obtained for the NS-NS bi-
naries with exotic-phase neutron-star cores and realistic en-
velopes will be considered in future publications. Similarly,
the case of a binary involving strange quark stars built of
self-bound strange quark matter will also be presented in a sep-
arate paper.

We have computed quasi-equilibrium sequences of an ir-
rotational NS-NS binary by keeping the baryon mass constant
to a value that corresponds to individual gravitational masses
of 1.35 M� at infinite separation. For a long time of evolution
of the binary system its binding energy is very accurately given
by the 3PN post-Newtonian formula for a point-mass system.
However the departure from this 3PN model at low binary peri-
ods has a quite abrupt character, presumably due to high order
tidal effects. The sequences end at the onset of the mass trans-
fer between the stars (i.e. when a cusp forms at the surface of
the stars). This point defines the ISCO since no turning point of
the binding energy has been found along the sequences, which
would have revealed some orbital instability. The gravitational
wave frequency at the ISCO is 800 Hz, 1130 Hz and 1230 Hz,
for the GNH3, APR and BPAL12 EOSs respectively.

In a recent work based on the numerical integration of the
full set of time-dependent Einstein equations, Marronetti et al.
(2004) have located the dynamical ISCO by comparing the
time evolution of quasi-equilibrium initial data at various sepa-
rations (see also Fig. 14 of Shibata & Uryu 2001). This defines
the true ISCO, as opposed to the “quasi-equilibrium” ISCO
obtained here. For a polytropic EOS with γ = 2 and a com-
pactness parameter M/R = 0.14, they obtain the ISCO at an
orbital frequency which is 15% lower than the mass-shedding
frequency of the quasi-equilibrium sequence of Taniguchi &
Gourgoulhon (2002b). This makes us confident that the val-
ues of the gravitational wave frequencies given above are quite
close to those of the end of the true inspiral.

When comparing our results with those of the recent work
of Oechslin et al. (2004), one should stress the basic differ-
ence in the EOS of matter at sub-nuclear densities. Oechslin
et al. represented the EOS of the crust by a polytrope with
the adiabatic index γ = 2.86. In this way, they made their
EOS quasi-continuous at the crust-core interface, because their
nuclear core EOS is very stiff. However, such an EOS for the
crust is very unrealistic, because the real γ can be as low as 0.5
near the neutron drip point. As the crust EOS is crucial for the
last stable orbits of the NS binary, this implies differences be-
tween their and our results, even if for a M = 1.35 M� model,
the compactness M/R resulting from the GNH3 EOS and their
EOS are very close. In particular, Oechslin et al. (2004) have
found a turning point in the binding energy along their se-
quences, resulting in a quasi-equilibrium ISCO. This difference
is certainly due to the stiffness of the polytropic EOS used by
them in the outer layers of the star. For polytropic irrotational
binaries a turning point ISCO exists only if γ > 2.5 (Uryu et al.
2000; Taniguchi & Gourgoulhon 2003).
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In our calculations we treated the neutron-star matter as an
ideal fluid. In other words, we neglected the elastic shear (in the
crust – if not molten) and viscous (in the crust and in the core)
terms in the matter stress tensor. There, the terms are believed
to be small, but they lead to specific physical phenomena. In
particular, the matter flow in NS interior will break the beta
equilibrium between baryons and leptons, and this will imply
a neutrino burst at the last stage of inspiral (see Haensel 1992).
Moreover, dissipative processes will heat the matter. Both ef-
fects will be studied in future publications.

All numerical results presented here, including the full
binary configurations, are available for downloading from
the LORENE main server http://www.lorene.obspm.fr/
data/
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