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Abstract

Quite recently, some new mathematical approaches to black holes have appeared in the literature. They do not rely on the classical
concept of event horizon—which is very global, but on the local concept of hypersurfaces foliated by trapped surfaces. After a brief intro-
duction to these new horizons, we focus on a viscous fluid analogy that can be developed to describe their dynamics, in a fashion similar
to the membrane paradigm introduced for event horizons in the seventies, but with a significant change of sign of the bulk viscosity.
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1. Introduction

1.1. What is a black hole?

The standard mathematical definition of a black hole is
(Hawking and Ellis, 1973)

B :¼M� J�ðIþÞ; ð1Þ

where M is a 4-dimensional manifold, endowed with a
Lorentzian metric g such that ðM; gÞ is asymptotically
flat, Iþ is the future null infinity, and J�ðIþÞ is the cau-
sal past of Iþ (cf. Fig. 1). In common language, this
means that a black hole is the region of spacetime where
light rays cannot escape to infinity. The event horizon H
is then defined as the boundary of B. Provided that it is
smooth, it is well-known that H is a null hypersurface
(hence it is appears as a line inclined at 45� in Fig. 1).
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1.2. Drawbacks of the classical definition

As noticed by Jean-Pierre Lasota and Marek Demiański
long time ago (Demiański and Lasota, 1973), definition (1)
is not applicable is cosmology, for usually a cosmological
spacetime ðM; gÞ is not asymptotically flat.

Moreover, even when applicable, definition (1) is highly
non-local: the determination of J�ðIþÞ requires the
knowledge of the entire future null infinity. In addition this
definition has no direct relation with the notion of strong
gravitational field: as shown by Ashtekar and Krishnan
(2004) and Krishnan (in press) on an example based on
the Vaidya metric, an event horizon can form in a flat
region of spacetime, where by flat it is meant a vanishing
Riemann tensor, i.e. no gravitational field at all. This
means that no local physical experiment whatsoever can
locate an event horizon.

Another non-local feature of event horizons is their tel-

eological nature (Hawking and Hartle, 1972; Damour,
1979; Thorne et al., 1986). The classical black hole bound-
ary, i.e. the event horizon, responds in advance to what will
happen in the future. This is shown by Booth (2005) on the
explicit example of a black hole formed by the collapse of
two successive matter shells: after the first shell has
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Fig. 2. Lie dragging of a spacelike 2-surface S along a normal vector field
V. In this plot, S appears as a closed line, whereas it is actually 2-
dimensional.

Fig. 1. Carter–Penrose diagram of a black hole B (cross-hatched region)
formed by gravitational collapse of a star (colored region). In this
conformal diagram, light rays appear as straight lines inclined at �45�.

1 Some authors say quasilocal instead of local, because the definition
relies on the notion of a surface, and not merely a point.
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collapsed to form the event horizon, the latter remains sta-
tionary for a while and then starts to grow before the sec-
ond collapsing shell reaches it, as if it was anticipating its
arrival.

If one would like to deal with black holes as ‘‘ordinary”

physical objects, like for instance in quantum gravity or
numerical relativity, the non-local (both in space and time)
behavior of the event horizon mentioned above would be
problematic. This has motivated the search for local char-
acterizations of black holes.

2. New approaches to black holes

2.1. Local characterizations of black holes

The local definitions of black holes can be traced back to
the ‘‘perfect horizons” of Háj́iček (1973). However this
applied only to equilibrium black holes. More recently,
the local approach has been extended to black holes out
of equilibrium, with the introduction of

– trapping horizons by Hayward (1994),
– isolated horizons by Ashtekar et al. (1999),
– dynamical horizons by Ashtekar and Krishnan (2002),
– slowly evolving horizons by Booth and Fairhurst (2004).

All these horizons are 3-dimensional submanifolds, as the
event horizon. But contrary to the latter, they rely on local

concepts. More precisely they are all based on the notion of
trapped surfaces, which we examine now.

2.2. Trapped surface

Before defining a trapped surface, let us start by the gen-
eral concept of the expansion of a surface along a normal
vector field. Consider a spacelike 2-surface S, as in
Fig. 2. Take a vector field V defined on S and normal to
S at each point. For a given small parameter e 2 R, dis-
place the point p 2S by the vector eV to the point p0.
Repeat this for each point in S, keeping the value of e
fixed. This defines a new surface S0. This process is called
Lie dragging along the vector field V . At each point, the
expansion of S along V is defined from the relative change
in the area element dA around that point (cf. Fig. 2):

hðVÞ :¼ lim
e!0

1

e
dA0 � dA

dA
¼LV ln

ffiffiffi
q
p ¼ qlmrlV m; ð2Þ

where q denotes the metric induced on S by the spacetime
metric g, q the determinant of qlm, LV the Lie derivative
along the vector field V and r the spacetime covariant
derivative.

With this definition of the expansion in hand, we are
ready to define a trapped surface as follows. Consider a
closed (i.e. compact without boundary) and spacelike 2-
dimensional surface S embedded in the spacetime
ðM; gÞ. Being spacelike, S lies outside the light cone (cf.
Fig. 3), which means that there exist two future-directed
null directions orthogonal to S: ‘, the so-called outgoing

null normal, and k, the so-called ingoing null normal. Note
that ‘ and k are defined up to a rescaling: ‘0 ¼ k‘ and
k0 ¼ lk.

In flat space, the expansion of S along ‘ is always posi-
tive: hð‘Þ > 0, whereas that along k is negative: hðkÞ < 0.
Now the surface S is called trapped iff both expansions
are negative: hð‘Þ < 0 and hðkÞ < 0. The limiting case,
hð‘Þ ¼ 0 and hðkÞ < 0, is called a marginally trapped surface.
These definitions have been introduced by Penrose (1965).
They clearly constitute a local concept.1 Moreover, this
concept is related to very strong gravitational fields, since
for weak fields, one has clearly hð‘Þ > 0.

It is worth noticing that in the previously mentioned
work by Demiański and Lasota (1973), the ‘‘local event



Fig. 4. Spacelike hypersurface R containing an outer trapped region X
(i.e. a set of points through which there is at least one outer trapped
surface). The apparent horizon A is then the boundary of X.

Fig. 5. Hypersurface H foliated by a 1-parameter family of 2-surfaces
ðStÞt2R. h is the canonical evolution vector associated with the parameter t.

Fig. 3. Null directions ‘ and k normal to a closed spacelike 2-surface S.
As in Fig. 2, S is drawn as a 1-dimensional contour, instead of a
2-dimensional surface. TpðSÞ? is the 2-plane normal to S at the point p.
Its intersection with the light cone emanating from p defines the null
directions ‘ and k. The unit vectors n and s are respectively a timelike
normal and a spacelike normal to S.

2 The non-expanding horizons were called perfect horizons by Háj́iček
(1973).
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horizon” defined by the authors is nothing but a marginally
trapped surface.

2.3. Link with apparent horizons

A closed spacelike 2-surface S is said to be outer trapped

(resp. marginally outer trapped) if, and only if, (Hawking
and Ellis, 1973)

– the notions of interior and exterior of S can be defined
(for instance spacetime asymptotically flat);

– the outgoing null normal ‘ satisfies hð‘Þ < 0 (resp.
hð‘Þ ¼ 0).

Notice that no condition is imposed on the expansion
hðkÞ along the ingoing null normal.

Let us then consider a spacelike hypersurface R extend-
ing to spatial infinity (Cauchy surface) (cf. Fig. 4). The
outer trapped region of R is defined as the set X of points
p 2 R through which there is a outer trapped surface S
lying in R. An apparent horizon in R is then a connected
component A of the boundary of X (Hawking and Ellis,
1973). Then a classical result by Hawking and Ellis
(1973) states that the apparent horizon is a marginally
outer trapped surface (see also the recent study by Anders-
son and Metzger (2008)).

2.4. Connection with singularities and black holes

A famous theorem by Penrose (1965) makes the link
with the trapped surfaces introduced above and spacetime
singularities: provided that the weak energy condition
holds, if there exists a trapped surface S, then there exists
a singularity in ðM; gÞ (in the form of a future inextendible
null geodesic). Another theorem by Hawking and Ellis
(1973) states that, provided that the cosmic censorship
conjecture holds, if the spacetime contains a trapped sur-
face S, then it necessarily contains a black hole B and
S � B.

2.5. Local definitions of ‘‘black holes’’

Having recalled the previous classical results about
trapped surfaces and apparent horizons, we now state the
local definitions of black hole horizons, alternative to the event
horizon, that have appeared quite recently in the literature.
A hypersurface H of ðM; gÞ is said to be

– a future outer trapping horizon (FOTH) iff (i) H foliated
by marginally trapped 2-surfaces: H ¼

S
t2RSt with

hðkÞ < 0 and hð‘Þ ¼ 0 (cf. Fig. 5), and (ii) the outermost
condition Lkh

ð‘Þ < 0 is satisfied (Hayward, 1994);
– a dynamical horizon (DH) iff (i) H is foliated by margin-

ally trapped 2-surfaces and (ii) H is spacelike (Ashtekar
and Krishnan, 2002);

– a non-expanding horizon2 iff (i) H is a null hypersurface
(with null normal ‘ say) and (ii) hð‘Þ ¼ 0 (Háj́iček, 1973);

– an isolated horizon iff (i) H is a non-expanding horizon
(it has then a well defined geometry, with a unique con-
nection r̂, despite the induced metric is degenerate) and
(ii) H’s geometry is not evolving along the null genera-
tors: ½L‘; $̂� ¼ 0 (Ashtekar et al., 1999).



Fig. 6. Evolution vector h, null normals ‘ and k and normal vector m

along a foliated hypersurface H. The figure is drawn in the plane normal
to St, which is reduced to a point, H being reduced to a line.

3 For a non-degenerate hypersurface, K is related to the second
fundamental form K (also called extrinsic curvature tensor) via
Ka

bc ¼ �naKbc, where n is the unit normal to the hypersurface.
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Note that in generic dynamical situations, the notions of
FOTH and DH are equivalent (Booth, 2005). In stationary
situations, a FOTH becomes a null hypersurface, whereas a
DH (which by definition is spacelike) cannot exist; it
should be replaced by the notion of isolated horizon (Ash-
tekar et al., 1999; Ashtekar and Krishnan, 2004; Booth,
2005; Gourgoulhon and Jaramillo, 2006a). If H is an event
horizon, the 2-surfaces St are not marginally trapped,
except in stationary configurations (Kerr black hole). On
the contrary they are expanding, by the famous Hawking
(1972) area increase law: hð‘Þ > 0.

These ‘‘new” horizons have their own dynamics, ruled by
Einstein equations. In particular, one can establish for them
existence and (partial) uniqueness theorems (Andersson
et al., 2005; Ashtekar and Galloway, 2005), first and second
laws analogous to the classical laws of black hole mechanics
(Ashtekar and Krishnan, 2003; Hayward, 2004), a viscous
fluid bubble analogy (‘‘membrane paradigm” as for the
event horizon), leading to a Navier–Stokes-like equation
(Gourgoulhon, 2005; Gourgoulhon and Jaramillo, 2006b).
Recent review articles on the subject are Ashtekar and
Krishnan (2004), Booth (2005), Gourgoulhon and Jaramillo
(2006a) and Krishnan (in press). Notice that the FOTH and
DH proved to be useful in numerical relativity (Schnetter
et al., 2006; Jaramillo et al., 2007, 2008, in press not only
in the ‘‘follow-up” of the horizon, but also in the prescrip-
tion of excised black hole initial data in quasi-equilibrium
(Jaramillo et al., 2004; Dain et al., 2005; Cook and Pfeiffer,
2004; Ansorg, 2005; Caudill et al., 2006).

3. Geometry of hypersurface foliations by spacelike

2-surfaces

Since the trapping and dynamical horizons are based on
a foliation ðStÞt2R by closed spacelike 2-surfaces of a
hypersurface H, let us first discuss the geometrical proper-
ties of such foliations.

3.1. Relevant vectors

We shall call evolution vector the unique vector field h
that is tangent to H, orthogonal to St and such that
Lht ¼ 1, where Lh denotes the Lie derivative along h:
Lht ¼ hlolt (cf. Fig. 5). The latter property implies that
the 2-surfaces St are Lie-dragged to each other by h. Let
C be half the scalar square of h with respect to the metric g:

h � h ¼ 2C ð3Þ
(we systematically denote the scalar product corresponding
to the spacetime metric g with a dot). It is easy to see that
the sign of C gives the signature of the hypersurface H: C
is positive, zero and negative for respectively spacelike, null
and timelike hypersurfaces. There exists a unique pair ð‘; kÞ
of null vectors normal to St and a unique vector m normal
to H such that (cf. Fig. 6)

h ¼ ‘� Ck; m ¼ ‘þ Ck and ‘ � k ¼ �1: ð4Þ
For any vector field v normal to St, such as h, m, ‘ or k, we
define the shear tensor rðvÞ of the surface St when Lie-
dragged along v by

Lvq ¼ hðvÞqþ 2rðvÞ and trrðvÞ ¼ 0; ð5Þ
where, as before, q is the induced metric on St (q is positive
definite since St is assumed to be spacelike) and Lvq is its
Lie derivative resulting from the dragging of the surface St

along the normal vector v. The vanishing of the trace of rðvÞ

with respect to the metric q is a consequence of definition
(2) of hðvÞ.

Let us denote by j the component along ‘ of the ‘‘accel-
eration” of h in the decomposition (Gourgoulhon and Jara-
millo, 2006b)

$hh ¼ j‘þ ðCj�LhCÞk�DC: ð6Þ
If H is an event horizon, then it is a null hypersurface, so
that h ¼ ‘, C ¼ 0 and the above relation reduces to

$‘‘ ¼ j‘; ð7Þ
showing that, in this case, j is nothing but the surface grav-
ity of the black hole.

3.2. Extrinsic geometry of the 2-surfaces

On each 2-surface St, let us denote by D the connection
compatible with the induced metric q (this connection is
unique since q is not degenerate). D is related to the space-
time connection $ via the the second fundamental tensor of
St, K (Carter, 1992; Senovilla, 2005):

8ðu; vÞ 2TðStÞ2; $uv ¼ DuvþKðu; vÞ: ð8Þ
K is a type (1,2) tensor, which is expressible in term of the
covariant derivative of q, according to

Ka
bc ¼ rlqa

mql
bqm

c: ð9Þ

Contrary to the case of a hypersurface,3 the extrinsic geom-
etry of the 2-surface St is not entirely specified by K. The
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latter encodes only the part of the variation of St’s nor-
mals which is parallel to St. The remaining part, i.e. the
variation of the two normals with respect to each other,
is encoded by the normal fundamental forms (also called
external rotation coefficients or connection on the normal

bundle, or if H is null, Háj́iček 1-form), defined by (see
e.g. Hayward, 1994)

Xð‘Þ :¼ �k � $~q‘ ð10Þ
XðkÞ :¼ �‘ � $~qk; ð11Þ
where ~q denotes the orthogonal projector on the surface
St. In terms of components, Eq. (10) is written

Xð‘Þa :¼ �klrm‘
lqm

a; ð12Þ
with a similar relation for Xð‘Þa . Thanks to the relation
‘ � k ¼ �1 [Eq. (4)], we have XðkÞ ¼ �Xð‘Þ. Note that con-
trary to the second fundamental tensor K, the normal fun-
damental forms are not unique: any rescaling ‘0 ¼ k‘ of the
null normal results in

Xð‘
0Þ ¼ Xð‘Þ þD ln k: ð13Þ

4. A Navier–Stokes-like equation

4.1. Concept of black hole viscosity

When studying the response of the event horizon to
external perturbations in the early seventies, Hawking
and Hartle (1972) and Hartle (1973) introduced the con-
cept of black hole viscosity. This fluid analogy took its full
significance when Damour (1979, 1982) derived from Ein-
stein equation a 2-dimensional Navier–Stokes-like equa-
tion governing the evolution of the event horizon, and
letting appear some shear viscosity and well as some bulk

viscosity. The 2-dimensional fluid (membrane) point of
view has been further developed in the famous Membrane
Paradigm book by Thorne et al. (1986).

A natural question which then arises is: shall we restrict
the analysis to the event horizon? In other words, can we
extend the concept of viscosity to the local characteriza-
tions of black hole recently introduced, i.e. FOTH and
DH?

A priori this does not seem obvious because, from a pure
geometrical point of view, the event horizon and the ‘‘local”
horizons are of different type: the event horizon is always a
null hypersurface (hence is endowed with a degenerate met-
ric), whereas a DH is always a spacelike surface (hence with
a positive definite metric) and a FOTH can be either null or
spacelike. We shall see that nevertheless the fluid analogy
can also be extended to these horizons, with some signifi-
cant change in the sign of the bulk viscosity.

4.2. Original Damour–Navier–Stokes equation

Damour considered the case where H is a black hole
event horizon. In particular it is a null hypersurface and
the null vector ‘ is normal to it. From the Einstein equa-
tion, he has derived the relation (Damour, 1979, 1982)
(see also Damour and Lilley, 2008)

SL‘pþ hð‘Þp ¼ �DP þ 2lD �~rð‘Þ þ fDhð‘Þ þ f ; ð14Þ
where

– p :¼ �1=ð8pÞ Xð‘Þ is analogous to some momentum sur-
face density,

– P :¼ j=ð8pÞ is analogous to the pressure [j being defined
by Eq. (7)],

– l :¼ 1=ð16pÞ is analogous to the shear viscosity,
– f :¼ �1=ð16pÞ is analogous to the bulk viscosity,
– f :¼ �Tð‘;~qÞ is the external force surface density, T

being the stress-energy tensor of any matter or electro-
magnetic field present around the horizon.

Eq. (14) is structurally identical to a Navier–Stokes equa-
tion for a 2-dimensional fluid. The reader is referred to
Chap. VI of Thorne et al. (1986) for an extended discussion
of this analogy with a viscous fluid (see also Section 2.3 of
Damour and Lilley, 2008).

A striking feature of the above Navier–Stokes Eq. (14) is
that the bulk viscosity is negative:

f ¼ fEH ¼ �
1

16p
< 0; ð15Þ

where the subscript EH stands for ‘‘event horizon”. For an
ordinary fluid, this negative value would yield to a dilation
or contraction instability. This is in agreement with the
well-known tendency of a null hypersurface to continually
contract or expand. However the event horizon is stabilized
by the teleological condition that its expansion must vanish
in the far future, when an equilibrium state has been
reached (Damour, 1979).

4.3. Generalization to the non-null case

In order to generalize Eq. (14) to the case where H is
not necessarily a null hypersurface, it is worth to notice
that in Eq. (14), the vector ‘ plays two role: it is the natural
evolution vector along H and it is also the normal to H. In
the non null case, these two role are played respectively by
the vectors h and m introduced in Section 3.1. Of course, at
the null limit ðC ¼ 0Þ, h ¼ m ¼ ‘ [cf. Eq. (4)].

Having realized this, the starting point of the calculation
is the contracted Ricci identity applied to the vector m and
projected onto St:

ðrlrmml �rmrlmlÞqm
a ¼ Rlmmlqm

a; ð16Þ

where Rlm is the spacetime Ricci tensor, to be replaced ulti-
mately by its expression in terms of the matter stress-energy
tensor T lm according to Einstein equation. After some
manipulations, one arrives at (Gourgoulhon, 2005)

SLhX
ð‘Þ þ hðhÞXð‘Þ ¼ Dj�D �~rðmÞ þ 1

2
DhðmÞ

� hðkÞDC þ 8pTðm;~qÞ: ð17Þ
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In the null limit, C ¼ 0, h ¼ m ¼ ‘, and the above equation
reduces to the original Damour–Navier–Stokes Eq. (14).
On the other side, if H is a FOTH or a DH, then
hðmÞ ¼ �hðhÞ (since in this case hð‘Þ ¼ 0 and we can deduce
from Eq. (4) the relation hðmÞ ¼ �hðhÞ þ 2hð‘Þ) and Eq.
(17) can be written

SL‘pþ hðhÞp ¼ �DP þ 1

8p
D �~rðmÞ þ fDhðhÞ þ f ; ð18Þ

where f :¼ �Tðm;~qÞ þ hðkÞ=ð8pÞDC and, as in Eq. (14),
p :¼ �1=ð8pÞ Xð‘Þ, P :¼ j=ð8pÞ, but contrary to Eq. (14),

f ¼ fFOTH :¼ 1

16p
> 0: ð19Þ

This positive value of the bulk viscosity shows that FOTHs
and DHs behave as ‘‘ordinary” physical objects.

4.4. Angular momentum flux law

In general relativity, the angular momentum is usually
well defined only if there exists a Killing vector field u

which generates a symmetry around some axis. To gener-
alize the definition of angular momentum to the cases
where no symmetry is present, let us follow Booth and
Fairhurst (2005) and introduce a vector field u on H
which

– is tangent to St

– has closed orbits
– has vanishing divergence with respect to the induced

metric on St:

D � u ¼ 0: ð20Þ
Notice that (20) is a condition weaker than being a Killing
vector of ðSt; qÞ, which would write Daub þDbua ¼ 0. For
dynamical horizons, hðhÞ 6¼ 0 and there is a unique choice of
u as the generator (conveniently normalized) of the curves
of constant hðhÞ (Hayward, 2006).

The generalized angular momentum associated with u is
then defined by

JðuÞ :¼ � 1

8p

I
St

hXð‘Þ;ui�S; ð21Þ

where hXð‘Þ;ui stands for the normal fundamental form
Xð‘Þ applied to the vector u and �S is the volume element
on St associated with the metric q. Note that the definition
of JðuÞ does not depend upon the choice of null vector ‘,
thanks to the divergence-free property of u and to the
transformation law (13) of Xð‘Þ under a change of ‘. For-
mula (21) coincides with Ashtekar and Krishnan’s (2003)
definition. It also coincides with Brown–York angular
momentum (Brown and York, 1993) if H is timelike and
u a Killing vector.

Under the supplementary hypothesis that u is trans-
ported along the evolution vector h : Lhu ¼ 0, Eq. (17)
leads to (Gourgoulhon, 2005)
d

dt
JðuÞ ¼ �

I
St

Tðm;uÞ�S

� 1

16p

I
St

½~~rðmÞ : Luq� 2hðkÞu �DC��S; ð22Þ

where a double arrow stands for the double ‘‘index raising”

via the metric q and the colon denotes a double contrac-
tion. There are two interesting limiting cases for this equa-
tion. First of all, if H is a null hypersurface (C ¼ 0 and
m ¼ ‘), it reduces to

d

dt
JðuÞ ¼ �

I
St

Tð‘;uÞ�S �
1

16p

I
St

~~rð‘Þ : Luq�S; ð23Þ

i.e. we recover Eq. (6.134) of the Membrane Paradigm book
(Thorne et al., 1986). Second, if H is a FOTH, one may
show that the last term in Eq. (22) vanishes (Gourgoulhon,
2005), so that it reduces to

d

dt
JðuÞ ¼ �

I
St

Tðm;uÞ�S �
1

16p

I
St

~~rðmÞ : Luq�S: ð24Þ

Thus for a FOTH, the Navier–Stokes-like equation (18)
leads to an evolution equation for the angular momentum
which is as simple as Eq. (23) for an event horizon. In
particular the r.h.s. has only two terms, which are interpret-
able as respectively (i) the flux of angular momentum due to
some matter or electromagnetic field near the horizon and
(ii) the flux of angular momentum due to ‘‘gravitational radi-
ation”. The latter interpretation is pretty vague and relies on
the fact that Luq ¼ 0 in axisymmetry, where gravitational
radiation does not carry any angular momentum.

5. Area evolution and energy equation

5.1. Evolution of the expansion

Let us search for an evolution equation for the expan-
sion hðhÞ, which governs the evolution of the area of the sur-
faces St via Eq. (2). The starting point turns out to be the
Ricci identity applied to the normal vector m, as in Section
4.3, but instead of projecting it onto St [Eq. (16)], we shall
project it along the normal direction to St lying in H,
namely h:

ðrlrmml �rmrlmlÞhm ¼ Rlmmlhm: ð25Þ
By means of the Einstein equation, and after some
computations, we arrive at (Gourgoulhon and Jaramillo,
2006b):

Lhh
ðmÞ ¼ jhðhÞ � 1

2
hðhÞhðmÞ � rðhÞ : rðmÞ þ hðkÞLhC

þD � ð2C~Xð‘Þ � ~DCÞ � 8pTðm; hÞ; ð26Þ

where an upper arrow indicates ‘‘index raising” with the
metric q and the colon stands for the double contraction,
i.e. rðhÞ : rðmÞ :¼ rðhÞab rðmÞab. If we specialize Eq. (26) to the
cases of (i) an event horizon and (ii) a FOTH or a DH,
we obtain respectively
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L‘h
ð‘Þ þ ðhð‘ÞÞ2 � jhð‘Þ ¼ 1

2
ðhð‘ÞÞ2 � rð‘Þ : rð‘Þ � 8pTð‘; ‘Þ;

ð27Þ

Lhh
ðhÞ þ ðhðhÞÞ2 þ jhðhÞ ¼ 1

2
ðhðhÞÞ2þ rðhÞ : rðmÞ � hðkÞLhC

þD � ð~DC� 2C~Xð‘ÞÞ þ 8pTðm;hÞ:
ð28Þ

For the event horizon, we have used the null character of H,
which implies C ¼ 0 and h ¼ m ¼ ‘, yielding Eq. (27). It is
nothing but the null Raychaudhuri equation for a surface-
orthogonal congruence (Hawking and Hartle, 1972). For
the FOTH/DH case [Eq. (28)], we have used the property
hðmÞ ¼ �hðhÞ already encountered in Section 4.3. Notice the
change of some signs between Eqs. (27) and (28).

5.2. Energy dissipation and bulk viscosity

In the fluid membrane approach to black holes, Price
and Thorne (1986) and Thorne et al. (1986) defined the sur-

face energy density of an event horizon as e :¼ �hð‘Þ=8p and
interpreted Eq. (27) as an energy balance law, with heat
production resulting from viscous stresses. By analogy,
let us define the surface energy density of a FOTH/DH as
e :¼ �hðmÞ=8p, where the role of the normal to H is now
taken by m instead of ‘. Since hðmÞ ¼ �hðhÞ for a FOTH/
DH, we have

e ¼ hðhÞ

8p
ð29Þ

and we may rewrite Eq. (28) as

Lheþ hðhÞe ¼ � j
8p

hðhÞ þ 1

8p
rðhÞ : rðmÞ þ ðh

ðhÞÞ2

16p
�D �Q

þ Tðm; hÞ � hðkÞ

8p
LhC; ð30Þ

with Q :¼ 1
4p ½C~Xð‘Þ � 1=2~DC� ¼ � C

4p~-, where - is the
anholonomicity 1-form (or twist 1-form) of the 2-surface
St (Hayward, 1994) (see also Section IV.A of Gourgoul-
hon, 2005) and ~- denotes its vector dual.

It is striking that Eqs. (18) and (30) are fully analogous
to the equations that govern a two-dimensional non-rela-
tivistic fluid of internal energy density e, momentum den-
sity p, pressure j=8p, shear stress tensor rðmÞ=8p, bulk
viscosity f ¼ 1=16p, shear strain tensor rðhÞ, expansion
hðhÞ, subject to the external force density �Tðm;~qÞþ
hðkÞ=8pDC, external energy production rate Tðm; hÞ�
hðkÞ=8pLhC and heat flux Q (see e.g. Rieutord, 1997). In
particular the value of the bulk viscosity read on Eq. (30)
(the coefficient of ðhðhÞÞ2) is the same as that obtained from
the Navier–Stokes equation (18) and given by Eq. (19).

Besides, let us notice that the shear viscosity l does not
appear in Eqs. (18) and (30), because the standard Newto-
nian-fluid relation between the shear stress tensor rðmÞ=8p
and the shear strain tensor rðhÞ, namely rðmÞ=8p ¼ 2lrðhÞ,
does not hold. Here we have rðmÞ=8p ¼ ½rðhÞ þ 2CrðkÞ�=8p,
so that the Newtonian-fluid assumption is fulfilled only if
C ¼ 0 (isolated horizon limit). On the contrary, it appears
from Eqs. (18) and (30) that the trace part of the viscous
stress tensor Svisc does obey the Newtonian-fluid law, being
proportional to the trace part of the strain tensor (i.e. the
expansion hðhÞ): trSvisc ¼ 3fhðhÞ.

We may point out two differences with the event horizon
case (Damour, 1979, 1982; Price and Thorne, 1986; Thorne
et al., 1986). First the heat flux Q is not vanishing for a
FOTH/DH, whereas it was zero for an EH. Notice that
Q is a vector tangent to St so that the integration of Eq.
(30) over the closed surface St to get a global internal
energy balance law would not contain any net heat flux.
The second major difference is that, as already stressed in
Section 4.3, the bulk viscosity f is positive, being equal to
1=16p [Eq. (19)], whereas it was found to be negative, being
equal to �1=16p [Eq. (15)], for an event horizon. As com-
mented in Section 4.2, this negative value is related to the
teleological character of event horizons. On the contrary
the positive value of the bulk viscosity for FOTHs and
DHs that these objects behave as ‘‘ordinary” physical
objects and is in perfect agreement with their local nature.
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Damour, T., 1982. Surface effects in black hole physics. In: Ruffini, R.

(Ed.), Proceedings of the Second Marcel Grossmann Meeting on

General Relativity. North Holland, p. 587.

Damour, T. & Lilley, M., 2008. String theory, gravity and experiment. In:

Lectures at Les Houches Summer School in Theoretical Physics, 2–27

July 2007; preprint. Available from: <arXiv:0802.4169>.
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