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We present a set of inner boundary conditions for the numerical construction of dynamical black hole
spacetimes, when employing a 3� 1 constrained evolution scheme and an excision technique. These
inner boundary conditions are heuristically motivated by the dynamical trapping horizon framework and
are enforced in an elliptic subsystem of the full Einstein equation. In the stationary limit they reduce to
existing isolated horizon boundary conditions. A characteristic analysis completes the discussion of inner
boundary conditions for the radiative modes.
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General problem. The aim of this report is to discuss a
set of inner boundary conditions (BC) for dynamical evo-
lutions of black hole spacetimes using an excision tech-
nique. These BCs are derived in the context of the
dynamical trapping horizon framework [1–4]. In parallel
with the recent black hole numerical studies based on free
evolution schemes, which have led to the successful simu-
lations of binary black hole coalescence through the
merger phase (see Ref. [5] for a review article), a 3� 1
scheme for a fully-constrained evolution of Einstein equa-
tion has been presented in Ref. [6]. This approach max-
imizes the number of elliptic equations to be solved during
the evolution, resulting in a coupled elliptic-hyperbolic
partial differential equation (PDE) system [7]. Spectral
methods [8] are then employed both to solve the elliptic
subsystem and to handle the spatial part of the relevant
hyperbolic operators. We deal with the black hole singu-
larity by means of the excision technique. This raises the
question about the appropriate choice of inner BCs on the
excised sphere, both for the elliptic and the hyperbolic
parts of the system. Regarding the hyperbolic equations,
this inner boundary issue is intimately related to the metric
type of the world-tube hypersurface generated by the time
evolution of the excision sphere. As observed in Ref. [9],
certain choices for the excision surface render this excision
hypersurface partially timelike, leading to ill-posedness if
inconsistent BCs are supplied for the radiative modes. A
solution to this problem is suggested by the quasilocal
approach to the evolution of black hole horizons, embodied
in the dynamical trapping horizon framework (see review
articles [3,4] and also Ref. [10]). This formalism motivates
a natural geometric choice for the excision surface. The
basic underlying idea goes back to Eardley’s work [11] and
consists in modeling the black hole horizons by S2 � R

world-tubes sliced by apparent horizons, that satisfy cer-
tain additional conditions guaranteeing the physical
growth of the horizon area (see below). On the one hand,
apparent horizons at each given 3-slice of the time evolu-
tion provide—when they exist—nonambiguous geomet-
ric choices for the excision sphere that are guaranteed to
lay inside the event horizon, and therefore are causally
disconnected from the rest of the spacetime. On the other
hand, dynamical trapping horizons are spacelike hyper-
surfaces suggesting that no conditions must be supplied
at the inner boundaries for the modes propagating in the
bulk. In sum, our proposal recasts Eardley’s program [11]
in the dynamical trapping horizon setting—see Ref. [12]
for an interesting alternative geometric solution to the inner
excision problem, in terms of another type of spacelike
world-tube characterized as the locally area-preserving
evolution of a given initial trapped surface. In the following
we describe the fully-constrained scheme, then we present
inner BCs for the elliptic part that guarantee that the
excised sphere generates a (dynamical) trapping horizon,
and finally we show that the combination of a Dirac-like
gauge [6] and dynamical trapping horizon inner BCs for
the elliptic part of the PDE system actually imply that no
BCs must be prescribed for the hyperbolic fields at the
inner excised sphere.

Fully-constrained evolution scheme. In the setting of the
standard 3� 1 decomposition of a spacetime �M; g� by
spatial slices ��t�, Ref. [6] proposes a particular initial-
boundary problem for the spacetime evolution from an
initial Cauchy slice. Let us denote by n the unit timelike
normal vector to �t, the spatial 3-metric by �, i.e. � �
g� n � n, and define the extrinsic curvature of �t as K �
� 1

2Ln�. The evolution vector t � @t is decomposed in
terms of the lapse function N and the shift vector �, as t �
Nn� �. In addition, we introduce a fiducial flat metric f ,
satisfying Ltf � @tfij � 0. Now we proceed by perform-
ing a conformal decomposition of the 3� 1 fields: � �
�4 ~�, K � �4 ~A� 1

3K�, where K � �ijKij, the represen-
tative ~� of the conformal class of the 3-metric is chosen to
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be unimodular, i.e. satisfies det�~�� � det�f�, and the trace-
less part ~A of K is written as ~Aij � 1

2N �
~Di�j � ~Dj�i �

2
3

~Dk�
k ~�ij � @t ~�

ij�, ~D being the Levi-Civita connection
associated with ~�. In a second step, a coordinate choice
must be adopted. Following the prescriptions in [6],
namely maximal slicing and Dirac gauge, we set

 K � 0; Dk ~�ki � 0; (1)

where D is the Levi-Civita connection associated with the
flat metric f (see Ref. [13] for a discussion and relation to
other coordinate choices). Conditions (1) fix the coordi-
nates up to boundary terms. The Dirac gauge condition will
play a key role in the following, whereas maximal slicing
can be relaxed to an arbitrary K vanishing asymptotically
near spacelike infinity. Inserting the conformal decompo-
sition and gauges (1) into the Einstein equation results in a
coupled elliptic-hyperbolic system [6]. The elliptic part
can be written as
 

~Dk
~Dk��

3 ~R
8

� � S�	�; N;�; ~�
;

~Dk
~Dk�i �

1

3
~Di ~Dk�k �

3 ~Rik�
k � Si�	�; N;�; ~�
;

~Dk
~DkN � 2 ~Dk ln� ~DkN � SN	N;�;�; ~�
;

(2)

where the first equation on � follows from the
Hamiltonian constraint, and the equation for the shift �
results from the simultaneous imposition of the preserva-
tion of the Dirac gauge in time, i.e. @t�Dk ~�ki� � 0, to-
gether with the momentum constraint. The Dirac gauge
ensures the elliptic character of this equation. Finally the
third equation follows from @tK � 0. S�, S�, and SN
represent nonlinear sources given in Ref. [6]. Note the
similarity with the extended conformal thin sandwich el-
liptic system [14] for the construction of initial data. In the
present context, Eqs. (2) are meant to be solved along the
whole evolution, not only on an initial slice. Regarding the
evolution part, we solve for the deviation h of the confor-
mal metric from the flat fiducial one f , i.e. h � ~�� f . We
choose a second-order form for the evolution equations,
that can be formally written as

 

@2hij

@t2
�
N2

�4
~�klDkDlhij � 2L�

@hij

@t
�L�L�hij � Sijh ;

(3)

where the nonlinear sources Sijh 	N;�;�; ~�
 do not contain
second derivatives of h. Equations (2) and (3) are solved in
Ref. [6] inside a spacetime region bounded by an outer
timelike tube at large spatial distances. We focus here only
on the inner BC problem. On a first stage, dynamical
trapping horizon considerations will provide inner BCs
for the conformal factor �, the shift �, and the lapse N.
In a second step we will analyze the hyperbolicity of the
subsystem (3) and, most importantly in the present context,
we will evaluate its characteristic fields and speeds to
assess if inner BCs must be provided at all for h.

As mentioned above, we do not discuss here the impor-
tant outer BC problem. In this sense, a very interesting
alternative has been recently presented by Moncrief et al.
[15]. They propose a (conformal) 3� 1 constrained
scheme, which differs crucially from [6] in one point: the
chosen slicing, involving constant mean curvature slices,
extends up to future null infinity I�, a natural boundary for
physical outgoing radiation conditions. This strategy per-
mits them to bypass the boundary problem at the outer
timelike border. The feature of [15] we highlight in the
context of the present work is the shared adoption of an
inner excision approach to the black hole singularity prob-
lem. An alternative geometric choice for the inner surface
is proposed in [15], namely, the use of minimal surfaces.
However, our proposal of rather employing apparent hori-
zons instead straightforwardly translates also into their
scheme.

Inner BCs for the elliptic part: dynamical trapping
horizons. Quasilocal approaches to black hole horizons
aim at modeling the boundary of a black hole region as
world-tubes of apparent horizons �St�. At each point of a
given spacelike closed surface St we can define (up to total
rescaling) two null vectors ‘ and k, satisfying k � ‘ � �1
and spanning the plane normal to St. Denoting by q the
metric on St induced by the ambient metric g and by �S the
associated area element, we can define the expansion ��v�

and shear ��v� along any vector v normal to St by Lv�S �
��v��S and 2��v� � Lvq� ��v�q. The surface St is trapped
[16] if light rays emitted from it locally converge: ��k� � 0
and ��‘� � 0. In the limiting case in which one of the
expansions vanishes, St is called a marginally trapped
surface (MTS). Since we will deal with asymptotically
flat 3-slices, we can unambiguously define an outgoing
null normal, say ‘, as the one pointing towards spacelike
infinity. Then, condition ��‘� � 0 defines a marginally
outer trapped surface (MOTS) [17]. In contrast with
MTSs, MOTSs impose nothing on ��k�. Apparent horizons
are outermost MOTSs. In this context, quasilocal dynami-
cal trapping horizons H are S2 � R hypersurfaces sliced
by MOTSs �St� and satisfying ��k� < 0. Actually, slices
�St� are indeed MTSs but, motivated by inner BCs below,
we wish to stress the underlying MOTS structure.
Following Hayward [1], H is a future outer trapping
horizon (FOTH) if, in addition, Lk��‘� < 0 holds. This
represents a locally outermost and stability condition, es-
sentially stating that the interior of H is a trapped region.
FOTHs can be either null or spacelike hypersurfaces, the
former representing stationary situations and the latter
dynamical ones. Alternatively, dynamical horizons (DH)
introduced by Ashtekar and Krishnan [2] substitute the
condition on Lk��‘� by the requirement of H to be space-
like, stationarity being represented by (null) isolated hori-
zons (IH). Both in FOTHs and DHs, the condition ��k� < 0
guarantees that the horizon area is never decreasing. In the
dynamical context, FOTHs and DHs have been shown to
be equivalent [10,18]. In our 3� 1 description, slices �St�
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of H will always lay within a spatial surface �t of the
chosen 3� 1 slicing. Denoting by s the unit spacelike
normal vector to St laying in �t and pointing towards
spacelike infinity, we can perform a 2� 1 decomposition
on the horizon. In particular, the metric q induced on St can
be written as q � �� s � s and the shift can be decom-
posed in its normal and tangential part as: � � �?s� V,
with �? � � � s and V � s � 0.

A most important result in this context is the foliation
uniqueness theorem by Ashtekar and Galloway [19] stating
that, for a given DH H , there exists a unique foliation �St�
by MTSs. Using this, we can define a canonical vector h as
the vector tangent to H , normal to each St and that Lie-
drags each MTS St of H into another one St��t. It
constitutes a natural evolution vector on H and can be
decomposed as h � Nn� bs, where the normalization N
follows from requiring St 2 �t and is fixed up to a factor
only depending on t. Defining a parameter C as (half) the
square norm of h with respect to g, i.e. C :� h � h=2 �
b2 � N2, it follows from the above-commented metric type
of FOTHs that C  0; the strict inequality b� N > 0
holds in the DH situation and b� N � 0 in the equilib-
rium (null) IH case; accordingly, we normalize the null
vector ‘ as the limit of h in the stationary case: ‘ � N�n�
s� [20,21].

Our criteria for setting BCs for Eqs. (2) are: first, to
enforce the excision world-tube H to be sliced by MOTS,
and second, to recover IH BCs [20–24] at the equilibrium
limit C � 0. Motivated by this second point, but ultimately
justified by the inner boundary analysis of Eqs. (3), we
choose a coordinate system adapted to H by demanding t
to be tangent to H . This implies �? � b, and we have

 h � t� V; �? � N  0: (4)

(a) Geometric conditions for H .—The first two BCs
are provided by (1) the geometric definition of St as a
MOTS: ��‘� � 0, and (2) the Lie-dragging of MOTS into
MOTS by h inside H (trapping horizon condition):
Lh��‘� � 0. The first one yields

 4~s � ~D ln�� ~D � ~s���2K�~s; ~s� ��2K � 0; (5)

where tildes refer to the conformal metric ~�; in particular,
~s � �2s. The second geometric condition follows from the
projection onto St of one component of the Einstein equa-
tion and results in the elliptic equation [11]

 	�2��2L � 2D�A
��?�N��B��?�N�; (6)

where Li � Kklskqli, A � 1
2

2R� 2 ~D � L� L �L�

8�T�‘̂; k̂�, B � 1
2�
�‘̂�
ij �

�‘̂�ij � 4�T�‘̂; ‘̂�, T is the stress-
energy tensor, ‘̂ � n� s, k̂ � �n� s�=2, and 2D, 2�,
and 2R are, respectively, the covariant derivative,
Laplacian, and Ricci scalar of �St; q�. The non-negative
character of the right-hand side (RHS) term in (6), together
with the left-hand side (LHS) elliptic operator under the
FOTH condition (closely related to the stability condition

in [18]), guarantees the positivity of ��? � N� in (4).
Moreover, the null-like condition �? � N [20,21] is re-
covered in the stationary IH limit, for which ��‘̂� � 0 �
T�‘̂; ‘̂�. Condition (6) provides a relation between combi-
nations ��? � N� and ��? � N�: given one, the other is
fully determined.

(b) Gauge conditions for the tangential part of the
shift.—Let us express the shear tensor along h, ��h�, using
the coordinate system (4) adapted to H :
 

2��h�ij �
�@qij
@t
�
@
@t

ln
���
q
p
qij

�

� �2DiVj �
2DjVi �

2DkV
kqij�: (7)

Imposing as a coordinate choice the vanishing of the first
parenthesis in the RHS results in

 

2DiVj �
2DjVi �

2DkV
kqij � 2��h�ij ; (8)

an elliptic equation whose source is determined by the
evolution equation of the shear ��h� (tidal equation):
 

Lh�
�h�
ij ��q

k
iq
l
j‘m‘

nWm
knl�C

2qkiq
l
jkmk

nWm
knl

�8�C
�
q�iq

�
jT���

1

2
�q��T���qij

�
���� ; (9)

where W is the Weyl tensor. Condition (8) fixes the tan-
gential part of the shift V up to a linear combination of the
six conformal symmetries in the kernel of the elliptic
operator in the LHS. We determine this conformal sym-
metry in the evolution by continuity with the conformal
Killing symmetry prescribed on the initial data. In the
stationary limit, where h tends to ‘ and ��‘� � 0, the
vanishing of the RHS in Eq. (8) leads to the conformal
Killing condition on V and, given the rescaling properties
of the conformal Killing operator, the IH condition for V in
Refs. [20,21,23] is recovered.

(c) Slicing condition.—Combined results in
Refs. [18,19] show that, for different choices of 3-foliation
��t�, a given MTS St on a given initial 3-slice evolves
generically into distinct DHs. However, all these DHs are
ultimately expected to approach the event horizon, and
therefore there is no preferred candidate on the sole basis
of the dynamical trapping horizon framework. The choice
of inner BC for N must be adopted on the basis of the well-
posedness of the elliptic-hyperbolic system and the specific
numerical needs. In practice, this issue must be numeri-
cally addressed. Having said this, Eq. (6) suggests an
alternative in this context: prescribing an inner BC for
��? � N� determines ��? � N� algebraically. Such is
the case of the proposal in [25], where the choice of that
DH locally maximizing the area rate of change of the slice
St leads to �? � N � �const � ��k̂�, with const> 0. Note
that if, alternatively, inner conditions are provided for
��? � N� [resp. N], then Eq. (6) must be solved as an
elliptic equation on St for ��? � N� [resp. �?].

Inner BCs for the hyperbolic part. Assessing the free-
dom in prescribing inner BCs for Eqs. (3) is a key step in
the implementation of the fully-constrained evolution
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scheme. A first analysis of the general issues concerning
hyperbolicity in Eqs. (3), has been carried out in Ref. [7] by
writing down the evolution equations as a first-order sys-
tem in conservative form, i.e. @tU�Ai�U�@iU �
F	U; . . .
, where the evolving variable vector U is given
by U � �h; @th;Dh� and matrices Ai are straightfor-
wardly determined from Eqs. (3). First, it is shown that
imposing the Dirac gauge in (1) indeed guarantees the real
character of the eigenvalues corresponding to matrices Ai,
and therefore the hyperbolicity of the evolution system. Of
particular relevance for the present inner BC discussion is
the explicit determination of the (nonvanishing) character-
istic speeds associated with the vector s normal to the
excision surface St, resulting in [7]

 	�s�� � ��
? � N �each one of multiplicity 6�: (10)

Taking into account the inequality in (4), which is a con-
sequence of the choice of a coordinate system adapted to
the DH H by enforcing condition (6), we conclude the
absence of ingoing radiative modes into the integration
domain �t at the excision surface. Therefore no inner BC
whatsoever must be prescribed for the hyperbolic part, as a
consequence of our choice of BCs for the elliptic part. This
confirms our initial motivation for using spacelike excision
world-tubes in the evolution and shows the key interplay
between elliptic and hyperbolic modes in the coupled fully
constrained evolution system.

Discussion. In the context of constrained schemes for
excised black hole evolutions such as Refs. [6,15], inner
BCs (5) and (6), together with the essentially free choice of
3-slicing, characterize the inner excision hypersurface H
as a world-tube sliced by a family �St� of MOTS. If, in

addition, the condition (8) is enforced, then IH inner BCs
[20–24] are recovered in the stationary limit and one of our
basic requirements is fulfilled. Even though the excision
world-tube H is indeed expected to be a DH in realistic
contexts, such a character is not actually enforced since the
MTS condition ��k� < 0 is not explicitly imposed. This is
not a shortcoming of the approach. In fact, an (arbitrary)
negative value for ��k� could be explicitly enforced as a
Robin condition on �? ��2 (cf. Eq. (16) in Ref. [24]):
together with Eqs. (5) and (6) this would fix N, therefore
providing an alternative manner of fixing the slicing.
However it is known that the future evolution of a DH
can cease ‘‘momentarily’’ to satisfy MTS and FOTH con-
ditions, e.g. in the merging of two black holes once the
common horizon has shown up. In this situation, insisting
on the prescription of a negative ��k� probably leads to the
ill-posedness of the whole coupled elliptic-hyperbolic sys-
tem. For this reason, we rather adopt the methodological
choice of only prescribing MOTS as inner BCs. Regarding
a possible FOTH condition failure, and according with the
characteristic analysis in [7], monitoring the sign of ��? �
N� determines if inner BCs must or must not be provided
for the radiative modes. This work represents an intermedi-
ate step in the ongoing program [6] addressing fully con-
strained excised black hole numerical evolutions.
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