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Last orbits of binary strange quark stars
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7, F-92195 Meudon Cedex, France

2Nicolaus Copernicus Astronomical Center, Bartycka 18, 00-716 Warszawa, Poland
3Departament de Fisica Aplicada, Universitat d’Alacant, Apartat de correus 99, 03080 Alacant, Spain

4Institute of Astronomy, University of Zielona Góra, Lubuska 2, 65-265, Zielona Góra, Poland
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We present the first relativistic calculations of the final phase of inspiral of a binary system consisting of
two stars built predominantly of strange quark matter (strange quark stars). We study the precoalescing
stage within the Isenberg-Wilson-Mathews approximation of general relativity using a multidomain
spectral method. A hydrodynamical treatment is performed under the assumption that the flow is either
rigidly rotating or irrotational, taking into account the finite density at the stellar surface—a distinctive
feature with respect to the neutron star case. The gravitational-radiation driven evolution of the binary
system is approximated by a sequence of quasiequilibrium configurations at fixed baryon number and
decreasing separation. We find that the innermost stable circular orbit (ISCO) is given by an orbital
instability both for synchronized and irrotational systems. This contrasts with neutron stars for which the
ISCO is given by the mass-shedding limit in the irrotational case. The gravitational wave frequency at the
ISCO, which marks the end of the inspiral phase, is found to be �1400 Hz for two irrotational 1:35 M�

strange stars and for the MIT bag model of strange matter with massless quarks and a bag constant B �
60 MeV fm�3. Detailed comparisons with binary neutrons star models, as well as with third order post-
Newtonian point-mass binaries are given.
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I. INTRODUCTION

One of the most important predictions of general rela-
tivity is gravitational radiation. Coalescing neutron star
binaries are considered among the strongest and most
likely sources of gravitational waves to be seen by
VIRGO/LIGO interferometers [1,2]. Because of the emis-
sion of gravitational radiation, binary neutron stars de-
crease their orbital separation and finally merge.
Gravitational waves emitted during the last few orbits of
inspiral could yield important informations about the equa-
tion of state (EOS) of dense matter [3–6]. With accurate
templates of gravitational waves from coalescing binary
compact stars, it may be possible to extract information
about physics of neutron stars from signals observed by the
interferometers and to solve one of the central but also
most complex problem of physics—the problem of the
absolute ground state of matter at high densities. It is still
an open question whether the core of a neutron star consists
mainly of superfluid neutrons or exotic matter like strange
quark matter, pions, or kaons condensates (see, e.g.,
Ref. [7] for a recent review). The possibility of the exis-
tence of quark matter dates back to the early seventies.
Bodmer [8] remarked that matter consisting of deconfined
up, down, and strange quarks could be the absolute ground
state of matter at zero pressure and temperature. If this is
true then objects made of such matter, the so-called strange
address: Francois.Limousin@obspm.fr
address: Dorota.Gondek@obspm.fr
address: Eric.Gourgoulhon@obspm.fr

05=71(6)=064012(11)$23.00 064012
stars, could exist [9–11]. Strange quark stars are currently
considered as a possible alternative to neutron stars as
compact objects (see e.g. [12–14] and references therein).

The evolution of a binary system of compact objects is
entirely driven by gravitational radiation and can be
roughly divided into three phases : pointlike inspiral, hy-
drodynamical inspiral, and merger. The first phase corre-
sponds to large orbital separation (much larger than the
neutron star radius) and can be treated analytically using
the post-Newtonian (PN) approximation to general relativ-
ity (see Ref. [15] for a review). In the second phase the
orbital separation becomes only a few times larger than the
radius of the star, so the effects of tidal deformation, finite
size, and hydrodynamics play an important role. In this
phase, since the shrinking time of the orbital radius due to
the emission of gravitational waves is still larger than the
orbital period, it is possible to approximate the state as
quasiequilibrium [16,17]. The final phase of the evolution
is the merger of the two objects, which occur dynamically
[18–21]. Note that quasiequilibrium computations from
the second phase provide valuable initial data for the
merger [5,18,20,22].

Almost all studies of the final phase of the inspiral of
close binary neutron star systems employ a simplified EOS
of dense matter, namely, a polytropic EOS [3,4,17,22–28].
There are only two exceptions: (i) Oechslin et al. have used
a pure nuclear matter EOS, based on a relativistic mean
field model and a ‘‘hybrid’’ EOS with a phase transition to
quark matter at high density [5]; (ii) Bejger et al. have
computed quasiequilibrium sequences based on three nu-
clear matter EOS [6]. In this article we present results on
-1  2005 The American Physical Society
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the hydrodynamical phase of inspiraling binary strange
quark stars described by MIT bag model. The calculations
are performed in the framework of Isenberg-Wilson-
Mathews approximation to general relativity (see
Ref. [29] for a review). We consider binary systems con-
sisting of two identical stars. We choose the gravitational
mass of each star to be 1:35 M� in infinite separation in
order to be consistent with recent population synthesis
calculations [30] and with the current set of well-measured
neutron star masses in relativistic binary radio pulsars
[31,32]. We compare the evolution of a strange star binary
system with a neutron star binary in order to find any
characteristic features in the gravitational waveform that
will help to distinguish between strange stars and neutron
stars. We consider two limiting cases of velocity flow in
stellar interior: the irrotational and the synchronized case
in order to exhibit the differences between these two ex-
treme states. The irrotational case is more realistic since
the viscosity of neutron star matter (or strange star matter)
is far too low to ensure synchronization during the late
stage of the inspiral [33,34]. Because of the finite density at
the surface of bare strange stars, we had to introduce a
treatment of the boundary condition for the velocity po-
tential (in the irrotational case) different from that of
neutron stars, where the density vanishes at the stellar
surface.

The paper is organized in the following way: Sec. II is a
brief summary of the assumptions upon which this work is
based; Sec. III is devoted to the description of the EOS
used to describe strange stars and neutron stars. In Sec. IV
we briefly describe the basic equations for quasiequili-
brium and derive the boundary condition required for
solving the fluid equation of irrotational flow with finite
surface density, which is relevant for strange stars. In
Sec. V we present the numerical results for co-rotating
and irrotational strange stars binaries and compare their
quasistationary evolution with that of neutron stars, as well
as with that of post-Newtonian point-masses. Section VI
contains the final discussion. Throughout the paper, we use
geometrized units, for which G � c � 1, where G and c
denote the gravitational constant and speed of light,
respectively.

II. ASSUMPTIONS

The first assumption regards the matter stress-energy
tensor T, which we assume to have the perfect fluid form:

T � �e� p�u � u� pg; (1)

where e, p, u and g are, respectively, the fluid proper
energy density, the fluid pressure, the fluid 4-velocity,
and the spacetime metric. This is a very good approxima-
tion for neutron star matter or strange star matter.

The last orbits of inspiraling binary compact stars can be
studied in the quasiequilibrium approximation. Under
this assumption the evolution of a system is approximated
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by a sequence of exactly circular orbits. This assumption
results from the fact that the time evolution of an orbit is
still much larger than the orbital period and that the gravi-
tational radiation circularizes an orbit of a binary system.
This implies a continuous spacetime symmetry, called
helical symmetry [35,36] represented by the Killing vector:

‘ �
@
@t

� �
@
@’

; (2)

where � is the orbital angular velocity and @=@t and @=@’
are the natural frame vectors associated with the time
coordinate t and the azimuthal coordinate ’ of an asymp-
totic inertial observer.

One can then introduce the shift vector B of co-orbiting
coordinates by means of the orthogonal decomposition of ‘
with respect to the �t foliation of the standard 3 � 1
formalism:

‘ � Nn�B; (3)

where n is the unit future directed vector normal to �t,N is
called the lapse function, and n 	 B � 0.

We also assume that the spatial part of the metric (i.e.,
the metric induced by g on each hypersurface �t) is con-
formally flat, which corresponds to the Isenberg-Wilson-
Mathews (IWM) approximation to general relativity [37–
39] (see Ref. [36] for a discussion). Thanks to this approxi-
mation we have to solve only five of the ten Einstein
equations. In the IWM approximation, the spacetime met-
ric takes the form:

ds2 � ��N2 � BiBi�dt2 � 2Bidtdxi � A2fijdxidxj; (4)

where A is some conformal factor, fij the flat spatial
metric, and Latin indices run in f1; 2; 3g (spatial indices).
The comparison between the IWM results presented here
and the nonconformally flat ones will be performed in a
future article [40].

The fourth assumption concerns the fluid motion inside
each star. We consider two limiting cases: synchronized
(also called co-rotating) motion and irrotational flow
(assuming that the fluid has zero vorticity in the inertial
frame). The latter state is more realistic.

We consider only equal-mass binaries consisting of
identical stars with gravitational masses M1 � M2 �
1:35 M� measured in infinite separation. The main reason
for choosing these particular masses is that five out of six
observed binary radio pulsars have mass ratio close to unity
and gravitational masses of each star �1:3 � 1:4 M�

[31,32]. In addition, population synthesis calculations
[30] have shown that a significant fraction of the observed
binary neutron stars in gravitational waves will contain
stars with equal masses �1:4 M� and systems consisting
of a low and a high mass neutron star.
-2
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FIG. 1 (color online). Gravitational mass M versus areal radius
R for sequences of static strange quark stars described by the
simplest MIT bag model (solid line) and neutron stars described
by polytropic EOS with � � 2:5 and � � 0:0093m0n

�1:5
nuc

(dashed line). The two sequences are crossing at the point M �
1:35 M� and R � 10:677 km (marked by a circle).
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III. THE EQUATION OF STATE AND
STELLAR MODELS

It has been shown [3,4] that the evolution of equal-mass
binary neutron stars depend mainly on the compactness
parameter M=R, where M and R are the gravitational mass
measured by an observer at infinity for a single isolated
neutron star and the stellar radius, respectively. It is there-
fore interesting to check if the properties of inspiraling
strange stars can be predicted by studying binaries consist-
ing of polytropic neutron stars having the same mass and
the same compactness parameter. Therefore we perform
calculations for two different equations of state of dense
matter: a strange quark matter EOS and a polytropic EOS.

Typically, strange stars are modeled [10,11] with an
equation of state based on the MIT bag model of quark
matter, in which quark confinement is described by an
energy term proportional to the volume [41]. The equation
of state is given by the simple formula

p � a��� �0�; (5)

n�p� � n0 	

�
1 �

1 � a
a

p
�0

�
1=�1�a�

; (6)

where n is the baryon density and a; �0; n0 are some
constants depending on the three parameters of the model
(the bag constant B, the mass of the strange quarks ms, and
the strength of the QCD coupling constant �). In general
this equation corresponds to a self-bound matter with mass
density �0 and baryon density n0 at zero pressure and with
a fixed sound velocity (

���
a

p
) at all pressures. It was shown

that different strange quark models can be approximated
very well by Eqs. (5) and (6) [42,43].

In the numerical calculations reported in the present
paper we describe strange quark matter using the simplest
MIT bag model (with massless and noninteracting quarks),
for which the formula (5) is exact. We choose the value of
the bag constant to be B � 60 MeV fm�3. For this model
we have a � 1=3, �0 � 4:2785  1014 g cm�3, and n0 �
0:28 665 fm�3. In general for the MIT bag model the
density of strange matter at zero pressure is in the range
�3  1014 � 6:5  1014 g cm�3 and a between 0.289 and
1=3 (for 0 � � � 0:6 and 0 � ms � 250 MeV [49]). The
higher value of a and of �0 the higher compactness pa-
rameter for a star with fixed gravitational mass.

Up to now, the majority of calculations of the hydro-
dynamical inspiral phase [3,4,17,22–28] and all calcula-
tions of the merger phase [18–21] have been performed for
binary systems containing neutron stars described by a
polytropic EOS:

p � �n�; (7)

where � and � coefficients are some constant numbers: �
represents the overall compressibility of matter while �
measures the stiffness of the EOS. The total energy density
is related to the baryon density by
064012
e�n� �
�

�� 1
n� ��0n; (8)
where �0 is the chemical potential at zero pressure.
In order to compare results for strange stars with those

for neutron stars, we determine the values of � and �which
yield to the same radius for the gravitational mass M �
1:35 M� as that obtained for a static strange star. It was
shown [6] that the properties of inspiraling neutron stars
described by realistic EOS can be, in a good approxima-
tion, predicted by studying binaries with assumed poly-
tropic EOSs with � � 2 or 2.5. For a 1:35 M� strange star
we have a high value of compactness parameter M=R �
0:1867 so we have chosen � � 2:5, for which we found
� � 0:0093m0n

�1:5
nuc , with m0: � 1:66  10�27 kg and

nnuc � 0:1 fm�3.
In Fig. 1 we present the mass-radius relation for a

sequence of static stars described by the simplest MIT
bag model (solid line) and the polytropic EOS (dashed
line) parametrized by central density. For small mass
strange stars M� R3 since density is almost constant in-
side a star ��0. In the top panel of Fig. 2 we show the mass
density distribution inside the strange star (solid line) and
the neutron star described by polytropic EOS (dashed line)
having gravitational mass 1:35 M� and areal radius
10:667 km (the configurations corresponding to the cross-
ing point on Fig. 1). The huge density jump at the surface
of the strange star corresponds to �0 � 4B. The value of
density at the surface describes strongly or weakly bound
strange matter, which in every case must be absolutely
stable with respect to 56Fe.

An important quantity relevant for evolution of binary
compact stars is the adiabatic index
-3
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FIG. 2 (color online). Mass density (top panel) and the adia-
batic index � (bottom panel) versus the areal radial coordinate r
for a static strange quark star (solid line) and a polytropic
neutron star (dashed line), having both a gravitational mass of
1:35 M� and an areal radius R � 10:677 km (resulting in the
compactness parameter M=R � 0:1867). The vertical dotted line
corresponds to the stellar surface.
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� � d lnp=d lnn: (9)

We assume that matter is catalyzed so the adiabatic index
can be calculated directly from EOS (see Refs. [44,45] for
discussion on different kind of adiabatic indices and cor-
responding timescales). Note that for the polytropic EOS
given by Eq. (7) the index � coincides with the adiabatic
index of a relativistic isentropic fluid. Dependence of the
adiabatic index � on stellar radii for both EOS is shown in
the bottom pannel of Fig. 2. The adiabatic index of strange
matter is qualitatively different from the adiabatic index for
polytropic EOS or for realistic EOS. The values of � in the
outer layers of strange stars are very large and for �! �0

we have � � a� �=��� �0� ! 1. The EOS of neutron
stars for densities lower than �1014 g cm�3 (the crust) is
well established [7]. In the outer crust of an ordinary
neutron star the pressure is dominated by the ultrarelativ-
istic electron gas, so we have � � 4=3. The values of the
064012
local adiabatic index in the inner crust of a neutron star
depends strongly on density and varies from � ’ 0:5 near
the neutron drip point to � ’ 1:6 in the bottom layers near
the crust-core interface.

In our calculations we use equation of state in the form:

n � n�H�; e � e�H�; p � p�H�; (10)

where H is pseudoenthalpy (the log-enthalpy) defined by:

H�n�: � ln
�
e� p
nE0

�
; (11)

where the energy per unit baryon number is E0 � m0 for a
polytropic EOS, m0 is the rest mass of relativistic particles
and E0 � �0=n0 � 837:26 MeV for strange quark model
described above. For our model of strange quark matter we
have:

� � �0�3e4H � 1�=4; p � �0�e
4H � 1�=4;

n � n0e
3H:

(12)
IV. EQUATIONS TO BE SOLVED

We refer the reader to Ref. [46] for the derivation of the
equations describing quasiequilibrium binary stars within
the IWM approximation to general relativity. After recall-
ing these equations, we mainly concentrate on the equation
for the velocity potential of irrotational flows. Actually this
equation has a different structure for strange stars than for
neutron stars. This results from the nonvanishing of the
density at the stellar surfaces of strange stars (cf. the top
panel in Fig. 2).

A. The gravitational field equations

The gravitational field equations have been obtained
within the 3 � 1 decomposition of the Einstein’s equations
[47,48], taking into account the helical symmetry of space-
time. The trace of the spatial part of the Einstein equations
combined with the Hamiltonian constraint results in two
equations:

�! � 4"A2�E� S� � A2KijK
ij �ri!r

i%; (13)

�% � 4"A2S�
3

4
A2KijKij �

1

2
�ri!r

i!�ri%r
i%�;

(14)

where ri stands for the covariant derivative associated
with the flat 3-metric fij and �: � riri for the associated
Laplacian operator. The quantities ! and % are defined by
!: � lnN and %: � ln�AN�, and Kij denotes the extrinsic
curvature tensor of the t � const hypersurfaces. E and S
are, respectively, the matter energy density and the trace of
the stress tensor, both as measured by the observer whose
4-velocity is n� (Eulerian observer):
-4
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E: � T�!n�n!; (15)

S: � A2fijTij: (16)

In addition, we have also to solve the momentum con-
straint, which writes

�Ni �
1

3
ri�rjN

j� � �16"NA2�E� p�Ui

� 2NA2Kijrj�3%� 4!�; (17)

where Ni: � Bi � ��@=@’�i denotes the shift vector of
nonrotating coordinates, and Ui is the fluid 3-velocity.

B. The fluid equations

Apart from the gravitational field equations, we have to
solve the fluid equations. The equations governing the
quasiequilibrium state are the relativistic Euler equation
and the equation of baryon number conservation. Both
cases of irrotational and synchronized motions admit a first
integral of the relativistic Euler equation:

H � !� ln!0 � ln! � const; (18)

where !0 is the Lorentz factor between the co-orbiting
observer and the Eulerian observer and ! is the Lorentz
factor between the fluid and the co-orbiting observers (! �
1 for synchronized binaries).

For a synchronized motion, the equation of baryon
number conservation is trivially satisfied, whereas for an
irrotational flow, it is written as

)H�" �riHri" � A2h!nUi
0riH

� )H�ri"ri�H � %�

� A2hUi
0ri!n�; (19)

where " is the velocity potential, h: � exp�H�, ) the
thermodynamical coefficient:

) : �
d lnH
d lnn

; (20)

and !n denotes the Lorentz factor between the fluid and the
Eulerian observer and Ui

0 is the orbital 3-velocity with
respect to the Eulerian observers:

Ui
0 � �

Bi

N
: (21)

The fluid 3-velocity Ui with respect to the Eulerian
observer is equal to Ui

0 for synchronized binary systems,
whereas

Ui �
1

A2!nh
ri" (22)

for irrotational ones.
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C. Boundary condition for the velocity potential

The method of solving the elliptic Eq. (19) for the
velocity potential is different for neutron stars and strange
stars. In the case of neutron stars, the coefficient )H in
front of the Laplacian vanishes at the surface of the star so
Eq. (19) is not merely a Poisson type equation for ". It
therefore deserves a special treatment (see Appendix B in
[26] for a discussion). In the case of strange stars, the
coefficient )H � 1=3 in whole star so we have to deal
with a usual Poisson equation and consequently we have to
impose a boundary condition for the velocity potential at
the stellar surface.

We can define the surface of the star by njsurf � n0 �
constant. The surface of the fluid ball is obviously Lie-
dragged along the fluid 4-velocity vector u, so that this last
condition gives

�Lun�jsurf � 0; (23)

where Lu is the Lie derivative along the vector field u. Let
us decompose u in a part along the helical Killing vector ‘
and a part S parrallel to the hypersurface �t:

u � +�‘� S�: (24)

The condition (23) is then equivalent to

+�L‘n�LSn�jsurf � 0: (25)

Now, if the fluid flows obeys to the helical symmetry
L‘n � 0; inserting this relation into Eq. (25) leads to
�LSn�jsurf � 0 or equivalently (since S is a spatial vector):

�Sirin�jsurf � 0: (26)

Now, let us express S in terms of the spatial vectors U and
B. First, Eq. (24) implies n 	 u � +n 	 ‘. Secondly, the
fluid motion u can be described by the orthogonal decom-
position u � !n�n� U� which yields n 	 u � �!n.
Finally, from Eq. (3), we have n 	 ‘ � �N so that the
factor + can be expressed as + � !n=N and Eq. (24)
becomes

u �
!n
N

�‘� S�: (27)

Now, combining Eq. (27) and Eq. (3), we have

u � !n

�
n�

1

N
�S� B�

�
: (28)

Comparing with the orthogonal decomposition u �
!n�n� U�, we deduce that S � NU�B. Inserting this
relation into Eq. (26) leads to the boundary condition

�NUirin� Birin�jsurf � 0: (29)

Now, using Eq. (22), we obtain a Neumann-like boundary
condition for ":
-5
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�rinri"�

��������surf
� �

�
!nhA2

N
Birin

���������surf
: (30)

Considering the elliptic Eq. (19) for " we see that the
boundary condition we have obtained is consistent with the
case n � 0 (or equivalently )H � 0) at the stellar surface
since, from Eq. (20), riH � )H

n rin.
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FIG. 3 (color online). Binding energy as a function of
gravitational-wave frequency along evolutionary sequences of
corotating binaries. The solid line denotes strange quark stars,
the dashed one neutron stars with polytropic EOS, and the dotted
one point-mass binaries in the 3PN approximation [54]. The
diamonds locate the minimum of the curves, corresponding to
the innermost stable circular orbit; configurations to the right of
the diamond are secularly unstable.
V. NUMERICAL RESULTS

A. The method

The resolution of the above nonlinear elliptic equations
is performed thanks to a numerical code based on multi-
domain spectral methods and constructed upon the
LORENE C �� library [50]. The detailed description of
the whole algorithm, as well as numerous tests of the code
can be found in [46]. Additional tests have been presented
in Sec. III of [4]. The code has already been used success-
fully for calculating the final phase of inspiral of binary
neutron stars described by polytropic EOS [4,17,27,51,52]
and realistic EOS [6]. It is worth to stress that the adapta-
tion of the domains (numerical grids) to the stellar surface
(surface-fitted coordinates) used in this code is particularly
useful here, due to the strong discontinuity of the density
field at the surface of strange stars (cf. the top panel in
Fig. 2). Adapting the grids to the stellar surface allows to
avoid the severe Gibbs phenomenon that such a disconti-
nuity would necessary generate when performing polyno-
mial expansions of the fields [53].

The hydrodynamical part of the code has been amended
for the present purpose, namely, to solve Eq. (19) for the
velocity potential " subject to the boundary condition
(30). Let us recall that in the original version of the code,
the treatment of Eq. (19) was different due to the vanishing
of the density field at the stellar surface (see Appendix B of
Ref. [46]).

We have used one numerical domain for each star and
three (respectively four) domains for the space around
them for a small (respectively large) separation. In each
domain, the number of collocation points of the spectral
method is chosen to be Nr  N,  N’ � 25  17  16,
where Nr, N,, and N’ denote the number of collocation
points ( � number of polynomials used in the spectral
method) in the radial, polar, and azimuthal directions,
respectively. The accuracy of the computed relativistic
models has been estimated using a relativistic generaliza-
tion of the virial theorem [36] (see also Sec. III A of
Ref. [4]). The virial relative error is a few times 10�5 for
the closest configurations.

B. Evolutionary sequences

For each EOS we construct an evolutionary sequence,
i.e., a sequence of quasiequilibrium configurations with
fixed baryon mass and decreasing separation. Such a se-
064012
quence is expected to approximate pretty well the true
evolution of binary neutron stars, which is entirely driven
by the reaction to gravitational radiation and hence occur at
fixed baryon number and fluid circulation.

For a given rotational state we calculate evolutionary
sequences of binary system composed of two identical
neutron stars or two identical strange stars. The evolution
of inspiraling corotating (irrotational) binaries is shown in
Fig. 3 (Fig. 4). Figure 3 and upper panel of Fig. 4 show the
binding energy Ebind versus frequency of gravitational
waves fGW and lower panel of Fig. 4 shows the total
angular momentum of the systems as a function of fGW.
The binding energy is defined as the difference between the
actual ADM mass (see e.g. Ref. [52]) of the system,MADM,
and the ADM mass at infinite separation (2:7 M� in our
case). The frequency of gravitational waves is twice the
orbital frequency, since it corresponds to the frequency of
the dominant part l � 2, m � �2. Solid and dashed lines
denote quasiequilibrium sequences of strange quark stars
binaries and neutron stars binaries, respectively. Dotted
lines in Figs. 3 and 4 correspond to the 3rd PN approxi-
mation for point masses derived by [54]. Finally, in sub-
section V D, we compare our results with third order post-
Newtonian results for point-mass particles obtained in the
effective one body approach by Damour et al. 2000 [55],
Damour et al. 2002 [56], and in the standard nonresummed
post-Newtonian framework by Blanchet 2002 [54].

A turning-point of Ebind along an evolutionary sequence
indicates an orbital instability [36]. This instability origi-
nates both from relativistic effects (the well-known r �
6M last stable orbit of Schwarzschild metric) and hydro-
-6
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FIG. 4 (color online). Binding energy (top panel) and angular
momentum (bottom panel) as a function of gravitational-wave
frequency along evolutionary sequences of irrotational binaries.
The solid line denotes strange quark stars, the dashed line
polytropic neutron stars, and the dotted line point-mass binaries
in the 3PN approximation [54]. The diamonds correspond to
dynamical orbital instability (the ISCO).
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dynamical effects (for instance, such an instability exists
for sufficiently stiff EOS in the Newtonian regime, see e.g.
[51] and references therein). It is secular for synchronized
systems and dynamical for irrotational ones.

In the case where no turning point of Ebind occurs along
the sequence, the mass-shedding limit (Roche lobe over-
flow) marks the end of the inspiral phase of the binary
system, since recent dynamical calculations for � � 2
polytrope have shown that the time to coalescence was
shorter than one orbital period for configurations at the
mass-shedding limit [19,28]. Thus the physical inspiral of
binary compact stars terminates by either the orbital insta-
bility (turning-point ofEbind) or the mass-shedding limit. In
both cases, this defines the innermost stable circular orbit
(ISCO). The orbital frequency at the ISCO is a potentially
observable parameter by the gravitational-wave detectors
and thus a very interesting quantity.
064012
C. Corotating binaries

Quasiequilibrium sequences of equal-mass corotating
binary neutron stars and strange stars are presented in
Fig. 3. For both sequences we find a minimum of the
binding energy. In the present rotation state, this locates a
secular instability [36]. The important difference between
neutron stars and strange stars is the frequency at which
this instability appears. Indeed, there is a difference of
more than 100 Hz: 1020 Hz for strange stars and
1140 Hz for neutron stars. The binding energy is the total
energy of gravitational waves emitted by the system: a
corotating binary strange star system emits less energy in
gravitational waves and loses less angular momentum
before the ISCO than a binary neutron star one with the
same mass and compaction parameter in infinite
separation.

Comparison of our numerical results with 3rd order PN
calculations reveals a good agreement for small frequen-
cies (large separations) (see Fig. 3.) The deviation from PN
curves at higher frequencies (smaller separation) is due to
hydrodynamical effects, which are not taken into account
in the PN approach.

D. Irrotational binaries

In Fig. 4 we present the evolution of the binding energy
and angular momentum for irrotational sequences of bi-
nary neutron stars and strange stars. We also verify that
these sequences are in a good agreement with PN calcu-
lations for large separations.

We note important differences in the evolution of binary
systems consisting of strange stars or neutron stars. The
strange star sequence shows a minimum of the binding
energy at fGW ’ 1390 Hz, which locates a dynamical in-
stability [36] and thus defines the ISCO. The minimum of
Ebind coincides with the minimum of total angular momen-
tum J. This is in accordance with the ‘‘first law of binary
relativistic star thermodynamics’’ within the IWM ap-
proximation as derived by Friedman, Uryu, and Shibata
[36] and which states that, along an evolutionary sequence,

/MADM � �/J: (31)

The surface of strange stars at the ISCO is smooth (see
Fig. 5). On the contrary the neutron star sequence does not
present any turning point of Ebind, so that the ISCO in this
case corresponds to the mass-shedding limit (final point on
the dashed curves in Fig. 4). The gravitational-wave fre-
quency at the ISCO is much lower for neutron star binaries
than for strange star binaries.

As already mentioned the adiabatic index in the outer
layers of a compact star in a binary system plays a crucial
role in its evolution, especially in setting the mass-
shedding limit. Although the crust of a 1:35 M� neutron
star contains only a few percent of the stellar mass, this
region is easily deformed under the action of the tidal
-7
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through the centers of stars in a binary system) and lower lines
are polar radius Rz (radius along the rotation axis).

FIG. 5. Internal velocity fields of irrotational strange quark
stars binaries at the ISCO. upper panel: velocity U in the orbital
plane with respect to the ‘‘inertial’’ frame (Eulerian observer);
lower panel: velocity field with respect to the corotating frame.
The thick solid lines denote the surface of each star.
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forces resulting from the gravitational field produced by
the companion star. The end of inspiral phase of binary
stars strongly depends on the stiffness of matter in this
region. It has been shown that the turning-point orbital
instability for irrotational polytropic neutron stars binaries
can be found only if � � 2:5 and if the compaction pa-
rameter is smaller than certain value ([4,25]). In fact, as
shown in Fig. 31 of paper [4], they did not find ISCO for
064012
irrotational binary neutron stars with � � 2:5 or � � 3 for
compaction parameter as high as M=R � 0:187.

In Fig. 6 we present the evolution of two different stellar
radii: the equatorial radius Rx, defined as half the diameter
in the direction of the companion and the polar radius,
defined as half the diameter parallel to the rotation axis. For
spherical stars Rx � Rz. We see that at the end of the
inspiral phase, neutron stars are, for the same separation,
more oblate (more deformed) than strange stars. Binary
neutron stars reach the mass-shedding limit (the point at
which they start to exchange matter—a cusp form at the
stellar surface in the direction of the companion) at coor-
dinate separation d� 25 km. We do not see any cusps for
strange stars even for distances slightly smaller than the
distance corresponding to the ISCO �23:5 km.

It is worth to remind here the results on rapidly rotating
strange stars and neutron stars. The Keplerian limit is
obtained for higher oblateness (more deformed stars),
measured, for example, by the ratio of polar and equatorial
radius, in the case of strange stars than in the case of
neutron stars [42,57–61].

The differences in the evolution of binary (or rotating)
strange stars and neutron stars stem from the fact that
strange stars are principally bound by another force than
gravitation: the strong interaction between quarks.

As already mentioned the frequency of gravitational
waves is one of potentially observable parameters by the
gravitational-wave detectors. We can see from Fig. 7 that
the 3rd PN approximations for point masses derived by
different authors are giving ISCO at very high frequencies
of gravitational waves >2 kHz. Since in the hydrodynam-
ical phase of inspiral the effect of a finite size of the star
-8
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(e.g. tidal forces) is very important we see deviation of our
numerical results from point-masses calculations. The fre-
quency of gravitational waves at the ISCO strongly de-
pends on equation of state. For irrotational equal-mass (of
1:35 M� at infinite separation) strange stars binaries de-
scribed by the simplest MIT bag model this frequency is
�1400 Hz and for neutron stars binaries described by
realistic EOS it is between 800 Hz and 1230 Hz [5,6].
VI. SUMMARY AND DISCUSSION

We have computed evolutionary sequences of irrota-
tional and corotating binary strange stars by keeping the
baryon mass constant to a value that corresponds to indi-
vidual gravitational masses of 1:35 M� at infinite separa-
tion. The last orbits of inspiraling binary strange stars have
been studied in the quasiequilibrium approximation and in
the framework of Isenberg-Wilson-Mathews approxima-
tion of general relativity. In order to calculate hydrody-
064012
namical phase of inspiraling irrotational strange stars
binaries, i.e., assuming that the fluid has zero vorticity in
the inertial frame, we found the boundary condition for the
velocity potential. This boundary condition is valid for
both the case of nonvanishing (e.g., self-bound matter)
and vanishing density at the stellar surface (neutron star
matter). In our calculations strange stars are built by
strange quark matter described by the simplest MIT bag
model (assuming massless and noninteracting quarks).

We have located the end of each quasiequilibrium se-
quence (ISCO), which corresponds to some orbital insta-
bilities (the dynamical instability for irrotational case or
the secular one for synchronized case) and determined the
frequency of gravitational waves at this point. This char-
acteristic frequency yields important information about the
equation of state of compact stars and is one of the poten-
tially observable parameters by the gravitational-wave de-
tectors. In addition, the obtained configurations provide
valuable initial conditions for the merger phase. We found
-9
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the frequency of gravitational waves at the ISCO to be
�1400 Hz for irrotational strange star binaries and
�1000 Hz for synchronized case. The irrotational case is
more realistic since the viscosity of strange star matter is
far too low to ensure synchronization during the late stage
of the inspiral. For irrotational equal mass (of 1:35 M�)
neutron star binaries described by realistic EOS [5,6] the
frequency of gravitational waves at the ISCO is between
800 Hz and 1230 Hz, much lower than for a binary strange
quark star built of self-bound strange quark matter. In the
present paper we considered only strange quark stars de-
scribed by the simplest MIT bag model with massless and
noninteracting quarks. In order to be able to interpret future
gravitational-wave observations correctly it is necessary to
perform calculations for different strange star EOS pa-
rameters (taking also into account the existence of a thin
crust) and for large sample of neutron stars described by
realistic equations of state. For some MIT bag model
parameters one is able to obtain less compact stars than
considered in the present paper and have lower values of
the frequency of gravitational waves at the end of inspiral
phase. It also should be taken into account that stars in a
binary system can have different masses [30]. The case of
binary stars (with equal masses and different masses)
described by different strange quark matter models will
be presented in a separate paper [62].

We have shown the differences in the inspiral phase
between strange quark stars and neutron stars described
by polytropic equation of state having the same gravita-
tional mass and radius in the infinite separation. It was
already shown by Bejger et al. 2005 [6] that the frequency
of gravitational waves at the end point of inspiraling neu-
tron stars described by several realistic EOS without exotic
phases (such as meson condensates or quark matter) can be
predicted, in a good approximation, by studying binaries
064012
with assumed polytropic EOSs with � � 2 or 2.5. For
realistic EOS and polytropes with � � 2:5 [4,25] a qua-
siequilibrium irrotational sequence terminates by mass-
shedding limit (where a cusp on the stellar surface
develops).

We found that it was not the case for inspiraling strange
star binaries which are self-bound objects having very
large adiabatic index in the outer layer. For both synchro-
nized and irrotational configurations, we could always find
a turning point of binding energy along an evolutionary
sequence of strange quark stars, which defines an orbital
instability and thus marks the ISCO in this case. In the
irrotational case for the same separation strange stars are
less deformed than polytropic neutron stars and for the
same ratio of coordinate radius Rx=Rz their surfaces are
more smooth. A cusp is not appearing on the surface of a
strange star in a binary system even for separation corre-
sponding to orbital instability. The frequency of gravita-
tional waves at the end of inspiral phase is higher by
300 Hz for the strange star binary system than for the
polytropic neutron star binaries.

The differences in the evolution of binary (or rotating)
strange stars and neutron stars stem from the fact that
strange stars are principally bound by an additional force,
strong interaction between quarks. Strange stars would
exist stably even if gravity were switched off.
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Haensel, K. Taniguchi, and J. L. Zdunik, Astron.
Astrophys. 431, 297 (2005).

[7] P. Haensel, in Final Stages of Stellar Evolution, edited by
J.-M. Hameury and C. Motch, EAS Publications Series
Vol. 7, (EDP Sciences, Les Ulis, 2003) p. 249.
[8] A. R. Bodmer, Phys. Rev. D 4, 1601 (1971).
[9] E. Witten, Phys. Rev. D 30, 272 (1984).

[10] P. Haensel, J. L. Zdunik, and R. Schaeffer, Astron.
Astrophys. 160, 121 (1986).

[11] C. Alcock, E. Farhi, and A. Olinto, Astrophys. J. 310, 261
(1986).

[12] F. Weber, Prog. Part. Nucl. Phys. 54, 193 (2005).
[13] J. Madsen, Lect. Notes Phys. 516, 162 (1999).
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