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We solve Einstein’s constraint equations in the conformal thin-sandwich decomposition to model thin
shells of noninteracting particles in circular orbit about a nonrotating black hole. We use these simple
models to explore the effects of some of the freely specifiable quantities in this decomposition on the
physical content of the solutions. Specifically, we adopt either maximal slicing or Kerr-Schild slicing, and
make different choices for the value of the lapse on the black hole horizon. For one particular choice of
these quantities the resulting equations can be solved analytically; for all others we construct numerical
solutions. We find that these different choices have no effect on our solutions when they are expressed in
terms of gauge-invariant quantities.
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I. INTRODUCTION

A 3� 1 decomposition of Einstein’s equations results in
a set of constraint equations, which constrain the gravita-
tional fields at all instants of coordinate time, and a set of
evolution equations, which propagate the fields forward in
time (e.g. [1–3]). The four constraint equations can con-
strain only a subset of the gravitational fields. Therefore,
the constraint equations can be solved, for example, for the
construction of initial data, only after the constrained
variables have been separated from freely specifiable
ones, and after suitable choices have been made for the
latter (see e.g. [4,5] for reviews).

The constrained variables are separated from the freely
specifiable ones by choosing a decomposition of the con-
straint equations. The conformal thin-sandwich decompo-
sition [6,7] has been particularly popular for the
construction of quasiequilibrium data; it has been used
extensively, for example, to model compact binaries con-
taining black holes or neutron stars (see, e.g., [8,9] for
reviews). In the conformal thin-sandwich formalism, the
spatial metric is conformally decomposed into a conformal
factor and the conformally related metric, and the extrinsic
curvature into its trace and a traceless part. In the so-called
extended version [7], the freely specifiable variables are the
conformally related metric and the trace of the extrinsic
curvature together with their time derivatives (which we
may set to zero to construct equilibrium data), and the
constrained variables are the lapse, the shift, and the con-
formal factor.

Black holes may be constructed within the conformal
thin-sandwich formalism by excising the black hole inte-
rior, and imposing suitable inner boundary conditions. In
particular, these boundary conditions may be chosen so

that the black hole is momentarily isolated, or in equilib-
rium (see [10–12], also compare the isolated horizon for-
malism laid out in [13–15] and references therein). As
discussed in detail in [11], these geometric conditions
lead to boundary conditions on some of the constrained
variables in the thin-sandwich formalism, namely, the con-
formal factor and the shift vector. The boundary condition
for the lapse, however, remains arbitrary.

Some of the choices in this formalism will clearly have
an effect on the physical content of the solution. We can
expect to find equilibrium solutions only if we set the time
derivatives of the conformally related metric and the trace
of the extrinsic curvature to zero. Also, a conformally flat
solution is physically distinct from solutions that are not
conformally flat. The choice of the trace of the extrinsic
curvature, or mean curvature, is usually associated with an
initial temporal gauge, and the lapse plays a similar role. It
is less clear, then, whether or how the mean curvature and
the boundary condition on the lapse affect the solutions.

In [11], the authors found that sequences of binary black
holes, and, in particular, their innermost stable circular
orbit, do depend on the horizon lapse for their example
of a nonmaximal slicing, i.e. nonzero mean curvature. This
finding, however, may be an artifact of their particular
choice of the mean curvature, namely, a superposition of
two copies of its analytical value for a single
Schwarzschild black hole expressed in Kerr-Schild coor-
dinates [see (13b) below], one for each companion in the
binary. As the authors caution, the resulting background
geometry then depends on binary separation, making the
physical meaning of these sequences somewhat arguable.

We consider a very simple physical system in order to
analyze whether, at least in this context, the choice of the
mean curvature and the horizon lapse affect the physical
content of the solutions. Specifically, we solve the con-
straint equations in the thin-sandwich decomposition to
construct thin shells of noninteracting, isotropic particles
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in circular orbit about a Schwarzschild black hole (com-
pare [16], whose results we generalize to account for the
black hole). For one particular choice of the mean curva-
ture and the horizon lapse the equations can be solved
analytically (see the appendix), and we construct numeri-
cal solutions for many others. We find that these different
choices have no effect on our solutions when they are
expressed in terms of gauge-invariant quantities.

II. BASIC EQUATIONS

A. Constraint equations

We write the spacetime metric gab in the form

 gabdx
adxb � ��2dt2 � �ij�dx

i � �idt��dxj � �jdt�;

(1)

where � is the lapse function, �i the shift vector, and �ij
the spatial metric. We further decompose the latter as

 �ij �  4 ��ij; (2)

where  is a conformal factor and ��ij a conformally related
metric. We then solve Einstein’s constraint equations in the
conformal thin-sandwich decomposition (see [6,7], as well
as [5,8,9] for reviews). Specifically, the Hamiltonian con-
straint becomes

 

�D 2 � 1
8 

�R� 1
12 

5K2 � 1
8 
�7 �Aij �Aij � 2� 5�N: (3)

Here �N � Tabn
anb is the energy density as measured by a

normal observer, �D2 � ��ij �Di
�Dj, and �Di and �R are the

covariant derivative and the Ricci scalar associated with
the metric ��ij. We have also split the extrinsic curvature
Kij into its trace K and a traceless part Aij according to

 Kij � Aij �
1
3�ijK �  �2 �Aij �

1
3�ijK: (4)

From the evolution equation for the spatial metric we can
express �Aij as

 

�A ij �
1

2 ��
�� �L��ij � �uij�: (5)

Here �� �  �6� and �uij � @t ��ij, and the conformal
Killing operator �L is defined as

 � �L��ij � �Di�j � �Dj�i � 2
3 ��ij �Dk�k: (6)

The momentum constraint can now be written as
 

� ��L��i � � �L��ij �Dj ln� ��� � �� �Dj� ���1 �uij� � 4
3 �� 6 �DiK

� 16� �� 10ji; (7)

where � ��L��i � Dj� �L��ij is a vector Laplacian, and ji �
��ianbTab is the mass current as measured by a normal
observer. Finally, the trace of the evolution equation for
Kij, combined with the Hamiltonian constraint, results in

 

�D2�� � � � �78 
�8 �Aij �Aij � 5

12 
4K2 � 1

8
�R

� 2� 4��� 2S�� �  5@tK �  5�i �DiK; (8)

where S � �ijTij the trace of the spatial stress.
The above equations form a set of equations for the lapse

�, the shift �i, and the conformal factor  . Before these
equations can be solved, however, we have to make choices
for the freely specifiable quantities ��ij, �uij � @t ��ij, K, and
@tK. For the construction of quasiequilibrium data it is
natural to choose �uij � 0 and @tK � 0. We will also re-
strict our analysis to spherical symmetry, where we may
assume conformal flatness, ��ij � �ij, without loss of gen-
erality. Here �ij is the flat metric in whatever coordinate
system. We will, however, experiment with different
choices for K [see Eqs. (13) below], as well as with differ-
ent boundary conditions for the lapse � [see (17c) below].

With these choices, and in spherical symmetry, the
above equations simplify dramatically. We write the spatial
metric as

 �ijdxidxj �  4�dr2 � r2�d�2 � sin2�d�2��; (9)

where r is the isotropic radial coordinate. The shift �i is
now purely radial, and we abbreviate � � �r. We may
evaluate (6) to find

 � �L��ij � �
2

3r

�2r2 0 0
0 1 0
0 0 sin�2�

0
B@

1
CA@r

�
�
r

�
; (10)

so that �Aij �Aij becomes

 

�A ij
�Aij �

2

3 ��2 r
2

�
@r
�
r

�
2
: (11)

The Hamiltonian constraint (3) can then be written as

 r@2
r � 2@r � r

 5

12

�
�@r�� �=r�2

�2 � K2

�

� �2� 5�N; (12a)

the momentum constraint (7) as

 @2
r��

�
2

r
�
@r�
�
� 6

@r 
 

��
@r��

�
r

�

� �@rK � 12� 4�ji; (12b)

and the lapse Eq. (8) as
 

@2
r�� � � � 

�
7 4

12�2

�
@r��

�
r

�
2
�

5

12
 4K2

� 2� 4��� 2S� �  5�@rK
�
: (12c)

Here we have expressed all quantities in terms of those
variables that are used in our code.

In the above equations the trace of the extrinsic curva-
ture K can still be chosen arbitrarily. Following [11] we
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consider two different possibilities, namely, maximal slic-
ing

 KMS � 0 (13a)

and Kerr-Schild slicing

 KKS �
2MBH

R2

�
1�

2MBH

R

�
�3=2

�
1�

3MBH

R

�
: (13b)

Here R is the areal radius, R �  2r, and we identify MBH

with the black hole’s irreducible mass [see (30) below].
Kerr-Schild coordinates are identical to ingoing
Eddington-Finkelstein coordinates.

Throughout this paper, we use the subscript BH to refer
to the black hole, and SH to indicate a property of the shell.

B. Boundary conditions

At spatial infinity we impose asymptotic flatness, which
results in the boundary conditions

  ! 1; �! 1; �! 0 (14)

as r!1.
We excise the black hole interior inside an isotropic

radius rBH and impose the black hole equilibrium boundary
conditions of Cook and Pfeiffer [11] on the resulting ex-
cision surface S (compare the notion of isolated horizons
laid out in [13,15]). In particular, the condition

 mabrakbjS � mij�Disj � Kij�jS � 0; (15)

where si is the outward-pointing unit normal to the hori-
zon, ensures that this surface corresponds to a marginally
trapped surface (apparent horizon), while the condition

 �?jS � �rsrjS � �jS (16)

ensures that the coordinate system tracks the horizon. (The
tangential components of the shift vanish identically in
spherical symmetry.) In our case, (15) becomes

 

�
@r �

 
2r
�
 3

6

�
@r�� �=r

�
� K

��
S
� 0 (17a)

and (16)

 � 2jS � �jS : (17b)

As discussed in [11], the boundary condition for the lapse
� is arbitrary. We will experiment with the Dirichlet
boundary condition

 �jS � �AH; (17c)

and will compare results for values of �AH ranging from
zero to unity in increments of 0.1.

C. Matter equations

We consider a spherically symmetric shell of isotropic,
noninteracting particles in circular orbit about the black
hole (compare [16]). The rest energy (baryon mass) of a

spherically symmetric matter source may be written as

 MSH �
Z
�0u

t �������
�g
p

d3x � 4�
Z
�0W 

6r2dr; (18)

where W � �n�u� � �ut is the Lorentz factor between a
normal observer na and an observer comoving with the
fluid ua. For an infinitesimally thin shell we can then
identify the rest energy density (baryon density) as

 �0 �
MSH

4�W 6r2
	�r� rSH�; (19)

where rSH is the (isotropic) radius of the shell.
Since the particles are noninteracting, their stress-energy

tensor is that of a pressureless fluid (dust): Tab � �0uaub.
The matter sources �N , S, and jr in Eqs. (12a)–(12c), can
therefore be expressed as

 �N � �0W2; S � �0�W2 � 1�; jr � �0�W2=�:

(20)

The delta function in these matter sources leads to a dis-
continuity in the derivatives of the solutions. We can find
the jump in these derivatives by integrating Eqs. (3), (7),
and (8) from rSH � 
 to rSH � 
, which, in the limit 
! 0,
results in the jump conditions
 

@r�� � @r�� �
3WMSH�

r2
SH 

2 ;

@r � � @r � �
�MSHW

2r2
SH 

;

@r�� �� � @r�� �� � � 
�
MSH�3W

2 � 2�

2r2
SHW 

2

�
:

(21)

Since the particles are noninteracting, their 4-velocity ua

obeys the geodesic equation

 dua=d�� �4��abcu
buc � 0: (22)

Assuming circular orbits with ur � 0 and dur=d� � 0 and,
without loss of generality, focusing on a particle in the
equatorial plane, we find

 

�4��rtt�u
t�2 � �4��r���u

��2 � 0: (23)

Using the normalization condition uau
a � �1, which is

equivalent to 1 � W2 � �ijuiuj, we evaluate (23) to find
the geodesic condition

 1�W�2 �

�
�2

r2 �
 3�� @r�� 2�@r � � �@r�

�2r@r �  � 3r

�
 4r2

�2 ;

(24)

for circular orbits. To compute the Christoffel symbols we
averaged the derivatives of the gravitational field variables
inside and outside the shell (compare [16]).
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D. Diagnostics

We compute the ADM (Arnowitt-Deser-Misner) and
Komar masses using the expressions (see e.g. Chap. 7 of
[17])

 MADM � �
1

2�

Z
@�

�Di d �Si (25)

and

 MK �
1

4�

Z
@�
�Di�� �

jKij�dS
i; (26)

where dSi is the outward-pointing unit surface element of a
closed surface at infinity. In our case, these expressions
reduce to

 MADM � lim
r!1
� 2r2@r (27)

and

 MK � lim
r!1

r2@r�: (28)

For all configurations considered in this paper, the two
mass expressions are found to be equivalent to within the
accuracy of our code when the geodesic Eq. (24) is used to
force the particles into circular orbit (compare [16]). This
is in agreement with a general theorem about the equality
of ADM and Komar masses established by Beig [18] and
Ashtekar and Magnon-Ashtekar [19]. We also define the
binding energy as

 EB �
MADM=K

MBH �MSH
� 1; (29)

either in terms of the ADM or Komar mass. Finally, we
compute the black hole’s irreducible mass from the area A
of the apparent horizon,

 Mirr �

�
A

16�

�
1=2
�
RBH

2
�
rBH 

2
BH

2
: (30)

III. NUMERICS

A. Code

We developed a pseudospectral code to solve the differ-
ential equations (12) subject to the boundary conditions
(14) and (17) as well as the jump conditions (21), using
Chebyshev polynomials as basis functions (see [20] for a
recent review of spectral methods). Equations (12b) and
(12c) can be solved directly, while Eq. (12a) has to be
linearized and then solved iteratively.

One complication arises as a consequence of the jump
conditions (21). Representing the solution functions across
these jumps as a linear combination of the continuous
Chebyshev polynomials would result in undesirable
Gibbs phenomena. To avoid this problem, we solve the
equations in two separate domains inside and outside the
shell, each one represented by N Chebyshev polynomials.

The N coefficients can then be determined by evaluating
the equation at N collocation points in each domain, and
the jump conditions (21) can then be imposed exactly as
matching conditions between the two sets of Chebyshev
polynomials.

Each set of Chebyshev polynomials is Tn�s� with 0 �
n � N � 1 and s 2 ��1; 1	. We map the inner region into
the interval ��1; 1	 with the transformation

 sI �
2rBHrSH=r� rBH � rSH

rBH � rSH
(31)

and the outer region with

 sO � �2rSH=r� 1: (32)

Our computational domain therefore extends to r � 1,
and we can evaluate the masses (27) and (28) exactly.

In addition to the choices for �AH and K, our solution
depends on the parameters MSH and rSH in (19), and the
excision radius rBH. To construct a solution of given black
hole mass MBH, we need to iterate over rBH until the
resulting irreducible black hole mass (30) agrees with the
desired black hole mass MBH to within a certain predeter-
mined tolerance. For a given shell radius rSH a further
iteration is needed to fix the Lorentz factor W in such a
way that the solution satisfies the geodesic condition (24),
and the particles are in circular orbit. In practice, we
instead fix W and then iterate over rSH until (24) is
satisfied.

For each case we start the iteration from the analytical
solution for K � 0 and �AH � 0 provided in the appendix,
and continue until the solution has converged. Specifically,
our convergence criterion requires that the relative change
between iteration steps in any of the fields is less than
10�10 at all collocation points.

B. Tests

We tested our program for a number of different known
vacuum solutions expressing the Schwarzschild geometry
in different coordinate systems, as well as an analytical
solution describing thin shells around black holes that we
derive in the appendix.

As a first vacuum test (for which we set MSH � 0 and
rSH � 10MBH), we considered Schwarzschild in ‘‘stan-
dard’’ isotropic coordinates, representing the symmetry
plane in a Carter-Penrose diagram. In our code, we can
produce the solution

  � 1�
M
2r
; � � 1�

M
2r
; � � 0 (33)

by choosing K � KMS � 0 and �AH � 0. After applying
the transformations (31) and (32), these solutions become
linear in our code’s coordinates sI and sO, meaning that the
solution can be represented exactly in terms of the first two
Chebyshev polynomials. For any N 
 1, our code there-
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fore converges to the correct solution within the predeter-
mined tolerances.

More interesting are the two isotropic representations of
the Schwarzschild geometry presented in [11,21]. The
former is a transformation of Kerr-Schild (Eddington-
Finkelstein) coordinates to isotropic coordinates, keeping
the same time slicing, which we can produce by choosing
K � KKS and �AH � 1=

���
2
p

in our code. The latter is an
isotropic representation of a maximal slice (with the criti-
cal parameter C � 3

���
3
p
M2=4, see [22,23]), which has

recently attracted interest as an analytic ‘‘puncture’’ solu-
tion (compare [24]). We can produce this solution by
choosing K � KMS � 0 and �AH � 3

���
3
p
=16 in our code.

To measure the deviation from an analytic solution, we
compute the average of the absolute error 
n at all N
collocation points in each of the two domains,

 EN �
1

2N

X2N
n�1

j
nj; (34)

where the collocation points N � 1 � n � 2N are in the
region outside of the shell. In Fig. 1 we graph this error as a
function of the number of collocation points N. As ex-
pected, the errors fall off exponentially for all variables,
until they reach a floor corresponding to the predetermined
tolerance.

In addition to these vacuum solutions we also consider
an analytic solution describing thin shells of noninteracting
particles around a static black hole. As we demonstrate in
the appendix, we can solve the differential equations (12)
subject to the boundary conditions (14) and (17) as well as
the jump conditions (21) analytically for maximal slicing
and �AH � 0. As for the solution (33), the field variables
become linear in our code’s variables sI and sO [see (A2)
and (A3) below], so that they can be represented exactly for
any N 
 1. In addition to testing the solution of the field
equations, however, this test also verifies that our code
correctly solves the jump conditions at the shell. As in
the example, we show in Fig. 2 the analytic and numerical
solutions for the lapse � and the conformal factor  as a
function of areal radius R for a Lorentz factor ofW � 1:20
and a mass ratio MBH=MSH � 1. Our numerical solutions
agree with the analytical ones to within better than 10�10,
making them indistinguishable in the plot.

IV. RESULTS

We now construct constant-mass sequences, meaning
sequences of varying shell radius rSH but constant shell
rest mass MSH and black hole irreducible mass MBH.

FIG. 1 (color online). The average error over all collocation
points EN as a function of the number of collocation points N for
two analytic representations of the Schwarzschild geometry in
isotropic coordinates. The label AP denotes the analytic punc-
ture solution presented in [21], while the label KS denotes the
Kerr-Schild solution in [11]. The errors drop off exponentially as
a function of the number of collocation points N, until a ‘‘floor’’
of specified tolerance has been reached.

FIG. 2 (color online). The conformal factor  and the lapse �
as a function of areal radius for the analytic shell solution (K �
0 and �EH � 0) for a Lorentz factor of W � 1:20 and a mass
ratio of MBH=MSH � 1, corresponding to an areal shell radius of
about 8:013MBH. The field variables are continuous across the
shell, but, according to the jump conditions (21) their derivatives
are not. Our numerical solutions agree with the analytical ones to
within better than 10�10, making the error far smaller than the
line width in the graph.
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Specifically, we focus on ‘‘extreme-mass-ratio’’ sequences
with MBH=MSH � 1000 and equal-mass sequences
MBH=MSH � 1. For both choices of the mass ratio we
construct sequences for our two choices of the extrinsic
curvature (13), maximal slicing and Kerr-Schild slicing,
and for the horizon lapse (17c) ranging from �AH � 0 to
�AH � 1 in increments of 0.1.

In the following, we will graph the binding energy (29)
as a function of the areal radius. Typically, the binding
energy MB is only a small fraction of the involved masses,
meaning that the relative error in the binding energy is
larger than that for the masses—and hence the fields—
themselves. We found that, to achieve similar accuracy, the
extreme-mass-ratio sequences (for which the binding en-
ergy is much smaller than for the equal-mass sequences)
required slightly more collocation points than the equal-
mass sequences.

In Fig. 3 we show the binding energy for extreme-mass-
ratio sequences with MBH=MSH � 1000. The graph repre-
sents 22 plots, corresponding to the 11 different values of
�AH and to evaluating the ADM binding energy (29) for
both maximal slicing and Kerr-Schild slicing. To within the
accuracy of our code, all 22 lines agree with each other, so
that they all lie on top of each other and appear as one line
in Fig. 3.

The minimum of the binding energy corresponds to the
innermost stable circular orbit (ISCO). In the extreme-
mass-ratio limit we may neglect the particles’ self-gravity,
so that we are effectively solving for a test particle in the
Schwarzschild geometry. As expected, we find that the
ISCO is located at R � 6MBH, representing another inde-
pendent test of our code.

In Fig. 4 we show the equivalent graphs for equal-mass
sequences with MBH=MSH � 1. As for the extreme-mass-
ratio sequences in Fig. 3 all 22 graphs coincide to within
our numerical accuracy. We note that the ISCO is now
located at a larger radius of about 9:367MBH.

Even in this case, we do not find any evidence that the
choice of the slicing condition (13), or the choice of the
boundary condition for the lapse on the horizon (17c), have
any effect on the physical content of our solutions. Clearly,
these different choices lead to different solutions for the
conformal factor  , the lapse � and the shift �. When
expressed in terms of gauge-invariant quantities, however,
all our solutions become indistinguishable to within the
accuracy of our numerical code.

V. SUMMARY

We solve Einstein’s constraint equations in the extended
conformal thin-sandwich decomposition to construct
spherical shells of noninteracting, isotropic particles in

FIG. 3. The ADM binding energy (29) EB as a function of the
shell’s areal radius R for an extreme-mass-ratio sequence with
MBH=MSH � 1000. Values of the horizon lapse �AH range from
zero to unity in increments of 0.1. The graph includes 11 solid
lines [representing an evaluation of the binding energy (29) in
maximal slicing] and 11 dashed lines (for Kerr-Schild slicing).
All 22 lines coincide within our numerical error. We computed
these sequences using N � 26 collocation points in each do-
main.

FIG. 4. The ADM binding energy EB as a function of the
shell’s areal radius R for an equal-mass sequence, MBH=MSH �
1. As in Fig. 3, values of �AH again range from zero to unity in
increments of 0.1, and the graph again contains 11 lines each for
Maximal and Kerr-Schild slicing. All 22 lines again coincide
within our numerical error. We obtained these results with N �
20 collocation points in each domain.
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circular orbit about a nonrotating black hole. We construct
these solutions for both maximal slicing and Kerr-Schild
slicing [see Eqs. (13)], and for a number of different
choices for the horizon lapse. These different choices
lead to very different solutions for the lapse �, the shift
�i and the conformal factor  . However, when expressed
in terms of gauge-invariant quantities—for example the
binding energy as a function of the shell’s areal radius for
given shell and black hole masses—our solutions become
indistinguishable. At least in the limited context of our
spherically symmetric solutions, these findings provide no
evidence that the choices for the mean curvature and
horizon lapse affect the physical content of the solutions.
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APPENDIX: AN ANALYTICAL SOLUTION

For maximal slicing (K � 0) and the lapse boundary
condition �AH � 0, we can find an analytic solution to the
differential equations (12), subject to the boundary con-
ditions (14) and (17). The solution depends on the input
parametersMSH,W, rBH, and rSH. We may then enforce the
geodesic condition (24) to eliminate one of these variables,
and compute the mass of the black hole from (30). The
solution presented here represents a generalization of the
solutions of [16], who considered the same system but
without a black hole.

We begin with the momentum constraint (12b). ForK �
0 and �AH � 0 we find that

 � � 0 (A1)

is a self-consistent solution to both the equation and its
boundary conditions. This implies that Eqs. (12a) and (12c)
for, respectively, the conformal factor  and the combina-
tion � reduce to flat Laplace equations in the vacuum
regions away from the shell. In spherical symmetry, the
only possible solutions are of the form k1 � k2=r, where k1

and k2 are arbitrary constants that have to be determined
from the boundary conditions. For each function we need
four conditions to determine these constants both in the
interior and the exterior of the shell. These four conditions
arise from the outer boundary conditions (14), the inner
boundary conditions (17), continuity of the functions at the
shell, and the jump conditions (21) for their first deriva-
tives. Using these conditions, we find

  �
� a�1� rBH

r �; r � rSH

1� a�rSH�rBH��rSH

r ; r 
 rSH
(A2)

for the conformal factor and

 � �

8<
:
c�1�rBH=r�
a�1�rSH=r�

; r < rSH

1��c�rBH�rSH��rSH�=r
1��a�rSH�rBH��rSH�=r

; r 
 rSH

(A3)

for the lapse. Here the constants a and c are given by

 a � 1�
MSHW

2rSH SH
(A4)

and

 c � 1�
MSH�SH�3W

2 � 2�

rSH�2W SH�
: (A5)

Inserting these constants, which themselves depend on the
values of the conformal factor and the lapse at the shell,
into (A2) and (A3), we find

  SH �
1

2

�
1�

rBH

rSH

��
1�

�
1�

2MSHW
rBH � rSH

�
1=2
�

(A6)

and

 �SH �

�
p�
�3� p�W2 � 2

2rSH SHW

�
�1
: (A7)

Here we have abbreviated p � �rSH � rBH�=�rSH � rBH�.
So far these solutions depend on all four parameters

MSH, W, rBH, and rSH. We now find a relation between
these parameters by inserting (A2) and (A3) into the geo-
desic equation (23), which yields

 �2 �

�
u�

ut

�
2
� �

�4��rtt
�4��r��

�
r3

SHc�rBH � rSH��rSH�a� c� � rBH�a� c� 2ac��

2�a�rSH � rBH��
6�arBH � rSH�

:

(A8)

Unfortunately, this expression is not very useful for our
purposes in this form. We find an alternative form by
evaluating (24) for our solution (A2) and (A3), which
results in a fifth order polynomial for W,
 

0 � 4�rBH � rSH�
3rSH �MSH�rBH � rSH�

2�rBH � rSH�W

� 2rSH�rBH � rSH��5r
2
BH � 14rBHrSH � 5r2

SH�W
2

� 2MSH�rBH � 2rSH��rBH � rSH��rBH � rSH�W
3

� 6rSH�rBH � rSH��r2
BH � 4rBHrSH � r2

SH�W
4

�MSH�rBH � 2rSH�
2�rBH � rSH�W5: (A9)

In the limit of a zero-mass black hole we have rBH � 0 and
(A9) reduces to
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0 � �4rSH �MSHW � 10rSHW
2 � 4MSHW

3 � 6rSHW
4

� 4MSHW5; (A10)

which agrees with the corresponding equation 26 of [16].
Instead of parameterizing the solution by rBH, it is more

desirable to fix the black hole mass MBH � Mirr. Towards
this end we combine (A9) with (30) and (A2), which
results in a quadratic equation for rSH. The solutions to
this equation are
 

rSH � �4MBHr2
BH � 2MBHMSHrBHW � 2M2

BHrBH

� 2
���
2
p
�MBHM2

SHr
3
BHW

2�1=2	=�2�M2
BH � 2MBHrBH�	:

(A11)

We henceforth ignore the ‘‘�’’ solution, as only the ‘‘�’’
solution refers to stable solutions.

Finally, we may insert (A11) back into (A9), which
results into a polynomial for rBH that can be factored into
two cubic polynomials

 

0 � �a3 �r3
BH � a2 �r2

BH � a1 �rBH � a0��b3 �r3
BH � b2 �r2

BH

� b1 �rBH � b0�: (A12)

Here we have abbreviated �rBH � rBH=MSH, and the coef-
ficients ai and bi are, in terms of the mass ratio q �
MBH=MSH,

 

a3 � b3 � 32q2��2� 3W2�2;

a2 � �16q��2� 3W2���4q2 � 6qW � �6q2 � 1�W2 � 9qW3 � 2W4	;

b2 � �4q��2� 3W2�2�8q2 � 8qW � 5W2�;

a1 � 2�16q4 � 48q3W � �44q2 � 48q4�W2 � �144q3 � 12q�W3 � �36q4 � 136q2 � 1�W4 � �38q� 108q3�W5

� �105q2 � 2�W6 � 30qW7 �W8	;

b1 � 2��2� 3W2���8q4 � 16q3W � �12q4 � 20q2�W2 � �10q� 24q3�W3 � �26q2 � 2�W4 � 12qW5 � 3W6	;

a0 � b0 � �qW
2��2q�W � 3qW2 � 2W3�2: (A13)

We can now construct a solution for given masses MBH

and MSH and Lorentz factor W as follows. Given the mass
ratio q andW we first find the six solutions for �rBH from the
two polynomials in (A12). We then insert the correspond-
ing values rBH into (A11), which yields six solutions for

rSH. The largest real solution is the solution of interest; we
keep only this solution as well as its corresponding value of
rBH and disregard all others. These values can then be
inserted into (A2) and (A3), which determines the solution
completely.
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