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A new method is described for constructing initial data for a binary neutron-star system in quasiequili-

brium circular orbit. Two formulations for nonconformally flat data, waveless and near-zone helically

symmetric, are introduced; in each formulation, the Einstein-Euler system, written in 3þ 1 form on an

asymptotically flat spacelike hypersurface, is exactly solved for all metric components, including the

spatially nonconformally flat potentials, and for irrotational flow. A numerical method applicable to both

formulations is explained with an emphasis on the imposition of a spatial gauge condition. Results are

shown for solution sequences of irrotational binary neutron-stars with matter approximated by parame-

trized equations of state that use a few segments of polytropic equations of state. The binding energy and

total angular momentum of solution sequences computed within the conformally flat—Isenberg-Wilson-

Mathews—formulation are closer to those of the third post-Newtonian (3PN) two point particles up to the

closest orbits, for the more compact stars, whereas sequences resulting from the waveless/near-zone

helically symmetric formulations deviate from the 3PN curve even more for the sequences with larger

compactness. We think it likely that this correction reflects an overestimation in the Isenberg-Wilson-

Mathews formulation as well as in the 3PN formula, by �1 cycle in the gravitational-wave phase during

the last several orbits. The work suggests that imposing spatial conformal flatness results in an under-

estimate of the quadrupole deformation of the components of binary neutron-star systems in the last few

orbits prior to merger.

DOI: 10.1103/PhysRevD.80.124004 PACS numbers: 04.25.D�, 04.25.dk, 04.25.Nx, 04.40.Dg

I. INTRODUCTION

Inspiral to merger of binary neutron stars (BNS) is one
of the most promising sources of ground-based
gravitational-wave detectors. A fully general relativistic
numerical simulation is the unique approach to predict
the gravitational waveform from the late inspiral to merger
phase. Such a simulation begins with preparing quasiequi-
librium initial data with a close orbital separation
�45–50 km.

Quasiequilibrium initial data for binary neutron stars
introduce two kinds of inaccuracies into inspiral simula-
tions. One is due to ignoring the radial component of the
velocity of orbiting stars, the other to artificial restrictions
on the geometry of the initial hypersurface [1]. A common
choice for the geometry of the initial hypersurface is a
conformally flat three-geometry [2,3], and a similarly re-
strictive alternative is presented in [4].1 The former error is
reduced by adding radial velocity to minimize the oscil-
lation around the inspiral orbit, where the radial velocity
may be determined empirically or calculated from the post-
Newtonian formula of inspiraling point masses. Both er-
rors become negligible if the initial separation of the binary
is large enough, possibly five orbits or more before the

merger; but increasing separation increases the cost of
computing time, and maintaining accuracy in numerical
simulations may still be an issue.2

In a previous paper [7], we have reported that the in-
accuracy of the binary orbit arising from spatial conformal
flatness can be largely removed if one solves the full
Einstein equation for all metric components, including
the nonconformally flat part of the spatial metric, on a
Cauchy surface �t, using the formulation presented in
[8–10]. In this formulation, Einstein’s equation is written
in a 3þ 1 form and the time derivative of the conformal
three metric, @t ~�ab, which carries the dynamics of the
spacetime in our choice of the gauge, is set to zero. ~�ab

is conformally related to the spatial metric �ab in each slice
�t by �ab ¼ c 4 ~�ab, with c a conformal factor. As a
result, the field equations for the metric components be-
come elliptic equations on an initial slice�t, and they yield
an asymptotically flat metric. We call this approach the
waveless (WL) formulation .
We have also experimented with another formulation for

quasiequilibrium initial data in which all components of
the metric are computed; preliminary results were pre-
sented in [11]. In this approach, helical symmetry is im-
posed in the near zone from the center of mass to the radius

1For the computation of black hole-neutron star binary in
quasiequilibrium, see e.g. [5]

2For long-term simulation of binary black hole inspirals and
matching to the post-Newtonian results, see e.g. [6]
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�� ¼ �=�, and either the WL formulation is applied
outside, or the computational domain is truncated at this
radius. Here, � is the orbital angular velocity and � is the
wavelength of the dominant, primarily ‘ ¼ m ¼ 2 quad-
rupole, mode of the gravitational waves expected to be
radiated from the system. In this paper, we discuss the
near-zone helically symmetric (NHS) formulation together
with theWL formulation, for which numerical methods are
common.

A significant difference in the binding energy and total
angular momentum between the solutions from WL/NHS
formulations and those from a conformally flat formula-
tion, the Isenberg-Wilson-Mathews (IWM) formulation
[12,13], is found and is discussed in the later section. In
the IWM formulation, the solution sequences—the plots of
these quantities as functions of orbital angular velocity—
become closer to those of third post-Newtonian (3PN)
point particles up to the closest orbits when the compact-
ness of each star is increased. In contrast, sequences ob-
tained from the WL/NHS formulations deviate more from
the 3PN curve for larger compactness.

We expect waveless and helically symmetric solutions to
accurately approximate the outgoing metric in the near
zone, where the gravitational-wave amplitude is small
compared to the Coulomb part of each metric potential.
Results of Ref. [11] and of the present paper support this
expectation by showing that corresponding WL and NHS
solutions nearly coincide.

Several groups have developed simulation codes for
BNS inspirals and merger; stable long-term simulations
[14,15], magnetized BNS simulations [16], and black hole-
neutron star binary merger simulations [17] are now fea-
sible. As mentioned above, however, accurate modeling of
the last several orbits of inspiraling binary compact object
using quasiequilibrium sequences will be still useful, be-
cause the lower computational cost allows one to study
gravitational-wave sources by exploring a wider parameter
space, varying the mass ratio and the dense matter equation
of state (EOS). One of the other applications will be the
comparison with the results of simulations, which becomes
a reliable calibration for both of the numerical solutions.

This paper is organized as follows: In Sec. II we describe
the WL/NHS formulations. These are essentially identical
to those introduced in our previous papers [9–11], except
for a few modifications suitable for coding. All equations
used in actual coding are written in Appendix A in detail.
As a model for the EOS of high density matter, the pa-
rametrized EOS developed in [15,18] is used in the com-
putations and is briefly introduced in this section. In
Sec. III the numerical method is discussed, with emphasis
on the major differences from the previous conformally flat
code. In Sec. IV we report results from the WL/NHS
computation of binary systems and of constant-rest-mass
quasiequilibrium sequences.

In this paper, spacetime indices are Greek, spatial in-
dices Latin, and the metric signature is �þþþ . For

writing the basic equations, geometric units with G ¼ c ¼
1 are used, while for tabulating the numerical solutions, cgs
units or other appropriate units are used.

II. FORMULATION

A. 3þ 1 decomposition and gauge conditions

The spacetime M ¼ R� � is foliated by a family of
spacelike hypersurfaces ð�tÞt2R parametrized by t. The
future-pointing unit normal n� to the hypersurface �t is
related to the generator t� of time translations, for which
t�r�t ¼ 1, by

t� ¼ �n� þ ��: (1)

Here � is the lapse function and �� the shift vector, with
��n� ¼ 0. n� is related to the gradient of t by n� ¼
��r�t. It is also related to the helical vector k�, the
generator of time translation in a rotating frame, by

k� ¼ �n� þ!�; (2)

where a spatial vector !� :¼ �� þ��� is the rotating
shift in the rotating frame, and � is a constant angular
velocity of the rotating frame. The helical vector k� is not
everywhere timelike, but it is transverse to the surface �t,
and normalized as k�r�t ¼ 1.
The spatial metric �abðtÞ induced on�t by the spacetime

metric g�� is equal to the projection tensor orthogonal to

n�, ��� ¼ g�� þ n�n�, restricted to �t. We introduce a

conformal factor c , a conformally rescaled spatial metric
~�ab, and a flat spatial metric fab, with �ab ¼ c 4 ~�ab, and
with the conformal factor specified by the condition ~� ¼ f,
where ~� and f are the determinants of ~�ab and fab. In a
chart ðt; xaÞ, the metric g�� has the form

ds2 ¼ ��2dt2 þ c 4 ~�abðdxa þ �adtÞðdxb þ �bdtÞ: (3)

Let us denote by hab and hab the differences between the
conformal metric and the flat one:

~� ab ¼ fab þ hab; ~�ab ¼ fab þ hab: (4)

The extrinsic curvature of each slice �t is defined by

Kab ¼ � 1

2
£n�ab; (5)

where the action of £n on �ab in the above definition, and
on other spatial tensors hereafter, is given by

£n�ab :¼ 1

�
@t�ab � 1

�
£��ab; (6)

here @t�ab is the pullback of £t��� to �t, with £t the Lie

derivative along the vector t� defined on M, and £� is the

Lie derivative along the spatial vector �a on �t.
Einstein’s equation is written in the 3þ 1 form

ðG�� � 8�T��Þn�n� ¼ 0; (7)
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ðG�� � 8�T��Þ�a
�n� ¼ 0; (8)

ðG�� � 8�T��Þ
�
��� þ 1

2
n�n�

�
¼ 0; (9)

ðG�� � 8�T��Þ
�
�a

��b
� � 1

3
�ab�

��

�
¼ 0: (10)

These equations are the Hamiltonian and momentum con-
straints, the trace of the spatial projection combined with
the Hamiltonian constraint, and the tracefree part of the
spatial projection, respectively. They are solved for c , �a,
the combination�c , and hab. For perfect-fluid spacetimes,
the stress-energy tensor T�� is written

T�� ¼ ð�þ pÞu�u� þ pg��; (11)

where � is the energy density, p the pressure, and u� the 4-
velocity of the fluid.

The above set of equations are solved imposing as
coordinate conditions the maximal slicing condition,

K ¼ 0; (12)

and the generalized Dirac gauge condition [9–11],

D
�
b ~�

ab ¼ D
�
bh

ab ¼ 0; (13)

whereD
�
a is the covariant derivative associated with the flat

metric fab. Concrete forms of Eqs. (7)–(10) are presented
in Appendix A.

B. Waveless and near-zone helically symmetric
formulations

As a model for binary compact objects in general rela-
tivity, helically symmetric spacetimes have been intro-
duced [19] and studied by several authors [20–27].
Helically symmetric binary solutions for point particles
in a post-Minkowski framework [28] analogous to the
electromagnetic two-body solution [29], and for several
toy models have been calculated [11].

Helically symmetric spacetimes do not admit flat
asymptotics. However, it is expected that, up to a certain
truncation radius where the energy of radiation does not
dominate the gravitational mass of the system, solutions
have an approximate asymptotic region in which gravita-
tional waves are propagating in a curved background. Such
a solution, however, has not yet been calculated success-
fully in the regime of strong gravity.

Helical symmetry,

£kg�� ¼ 0; (14)

implies for the 3-metric and extrinsic curvature on a initial
hypersurface �t,

£k�ab ¼ 0; £kKab ¼ 0: (15)

Using the relation k� ¼ �n� þ!�, we have

£n�ab ¼ � 1

�
£!�ab; (16)

£nKab ¼ � 1

�
£!Kab: (17)

Because k� is timelike in the fluid, helical symmetry for
the fluid variables,

£ku
� ¼ 0; £k� ¼ 0; £kp ¼ 0; (18)

has the meaning of stationarity for a rotating observer.
Our formulation for the nonconformally flat data of

binary compact objects in a quasiequilibrium quasicircular
orbit is based on the helically symmetric formulation. We
further impose either a waveless condition or near-zone
helical symmetry in the gauge (12) and (13).
a. Waveless formulation As discussed in [10], the con-

dition, @t ~�
ab ¼ Oðr�3Þ, is sufficient to enforce Coulomb-

type fall-off in the asymptotics. For our waveless formu-
lation in this paper, we impose the stronger condition

@t ~�ab ¼ 0; (19)

which amounts to writing the extrinsic curvature as

Kab ¼ 1

2�
£��ab � 1

2�
�ab

�
~�

�

�
1=3

@t

�
�

~�

�
1=3

¼ 1

2�
£��ab þ 1

2�
�ab�£� lnc 4; (20)

where helical symmetry is used to get the second equality.
Only the first term on the right-hand side (r.h.s.) remains in
the maximal slicing condition. Because the trace of
Eq. (20) has the same form for K ¼ 0 as the trace of the
original Eq. (5), the waveless condition (19) does not affect
the maximal slicing condition. Note that the second term of
the r.h.s. of Eq. (20) does not appear in the tracefree part of
Kab; in other words, the time derivative of the conformal
factor c does not appear in the initial value formulation in
this slicing. The other time derivatives are given by the
helical symmetry conditions, Eqs. (17) and (18).
b. Near-zone helically symmetric formulation Near-zone

helical symmetry means that we impose helically symmet-
ric conditions (16)–(18) in the region from the center of the
source to about one wavelength of the ‘ ¼ m ¼ 2 mode of
the gravity wave, r & � :¼ �=�; we then either truncate
the domain of numerical computation at this radius or use
the waveless formulation outside. The latter implies for
Kab the condition

Kab ¼
� 1
2� £!�ab for r < a�;
1
2� £��ab þ 1

2� �ab�£� lnc 4 for r � a�;

(21)

where the constant a, the coordinate radius of the helically
symmetric zone in units of � ¼ �=�, is restricted to
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a & 1:5. Without this restriction, iterations fail to con-
verge to a binary solution. In the near-zone-helicalþ
outside-waveless formulation, all metric components, in-
cluding those of the spatial metric, have Coulomb-type
fall-off. We have compared the NHS solution to the WL
solution in our previous paper [11] and confirmed that the
difference in the nonconformal flat part of the spatial
metric is about 1% for the BNS of M1=R� 0:17, where
M1=R is the compactness, the ratio of the gravitational
mass to the circumferential radius of a spherical star having
the same rest mass as each component star of the binary.

C. Formulation for the irrotational flow

The late stage of BNS inspiral is modeled by a constant-
rest-mass sequence of quasiequilibrium solutions with
negligible spins and magnetic fields, a description appro-
priate to a binary of old pulsars with spin periods longer
than 100 ms. Since the viscosity of the high density matter
is expected to be negligible, a neutron star in a binary
system is not spun up by the tidal torque during the
inspirals. Hence, the flow field remains approximately
irrotational, and each neutron star is modeled by an irro-
tational perfect fluid [30].

The equation of motion, r�T�
� ¼ 0, for a perfect fluid

has the form

r�T�
� ¼ �½u�r�ðhu�Þ þ r�h� þ hu�r�ð�u�Þ

� �Tr�s ¼ 0; (22)

where s is the entropy per baryon mass, h is the relativistic
enthalpy per baryon mass h :¼ ð�þ pÞ=�, and local ther-
modynamic equilibrium dh ¼ Tdsþ dp=� is assumed.
We assume constant entropy per baryon (s ¼ const) every-
where inside the neutron star, together with a one-
parameter EOS,

p ¼ pð�Þ: (23)

The form

u�r�ðhu�Þ þ r�h ¼ 0 (24)

of the relativistic Euler equation then follows from local
conservation of baryon mass,

r�ð�u�Þ ¼ 0: (25)

Written in terms of the Lie derivative along u�, these last
equations have the form

1ffiffiffiffiffiffiffi�g
p £uð� ffiffiffiffiffiffiffi�g

p Þ ¼ 0; (26)

£uðhu�Þ þ r�h ¼ 0: (27)

A state is stationary state in the rotating frame if it is
helically symmetric, if each physical field is Lie derived by
the helical vector field k�, as in Eq. (18), or

£kð�ut ffiffiffiffiffiffiffi�g
p Þ ¼ 0; and £kðhu�Þ ¼ 0; (28)

where ut is the scalar u�r�t.
The relativistic Euler Eq. (24) can be rewritten as

u�!�� ¼ 0; (29)

where

!�� :¼ r�ðhu�Þ � r�ðhu�Þ (30)

is the relativistic vorticity tensor. This implies that, for
irrotational flow, hu� has a potential �,

hu� ¼ r��; (31)

and hence the relativistic Euler equation has a first integral.
With a spatial velocity v� in the rotating frame defined by

u� ¼ utðk� þ v�Þ; (32)

where v�n� ¼ 0, Eq. (27) becomes

£uðhu�Þ þ r�h ¼ ut
�
£kþvðhu�Þ þ r�

h

ut

�

¼ utr�

�
£v�þ h

ut

�
¼ 0; (33)

therefore the first integral is

£v�þ h

ut
¼ E; (34)

where E is a constant.3 Note that Eqs. (28) and (31) imply a
flow with £k� ¼ constant. Such a flow is both irrotational
and helically symmetric with the shape of the star fixed in
the rotating frame. Solutions describing irrotational bi-
naries in Newtonian and post-Newtonian gravity are found
in [31], and details of the formulation for helically sym-
metric irrotational flow are given in [20,32].
There are three fluid variables and two parameters to be

determined in the above formulation. The fluid variables
are a thermodynamic variable, the velocity potential �,
and the time component of the 4-velocity ut; and these are
calculated from the first integral (34), the rest-mass con-
servation Eq. (26), and the normalization of the 4-velocity,
u�u

� ¼ �1. A concrete form of these equations are pre-
sented in Appendix A 3. For the independent thermody-
namic variable, we choose q :¼ p=�, and other
thermodynamic variables are determined from the thermo-
dynamic relations and the one-parameter EOS, which are
briefly explained in the next section. The number of fluid
variables and parameters are augmented in the numerical
computation, which is mentioned in Appendix B 2 (or see
[33]).

3Cartan identity k�!�� ¼ £kðhu�Þ � r�ðhu�k�Þ implies, for
the helically symmetric irrotational flow satisfying £kðhu�Þ ¼ 0
and !�� ¼ 0, a relation, hu�k

� ¼ constant, equivalent to
Eq. (34).
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D. Parametrized equations of state

Recently, a parametrization for the EOS of nuclear
matter has been studied, and it is shown that a parametrized
EOS with three polytropic intervals approximates with fair
accuracy a variety of current candidate EOS, over a range
of densities that extends from the inner crust to the maxi-
mum neutron-star density [18]. Two of these intervals and
three parameters cover densities below the central density
of a 1:4M� neutron star, and waveforms from binary
inspiral can be used to constrain this three-dimensional
subspace of the parameter space [15]. This parametrized
EOS is used in our models for BNS data.

1. Construction of piecewise polytropic EOS

In presenting these piecewise polytropes, it is helpful to
introduce a relativistic Emden function q by

q :¼ p=� (35)

and to write the remaining thermodynamic variables in
terms of q. For an isentropic flow with s ¼ 0, the local
first law of thermodynamic equilibrium, dh ¼ Tdsþ
1
� dp, takes the form

dh ¼ 1

�
dp; (36)

where h is the enthalpy per baryon mass.
A piecewise polytropic EOS is given by

p ¼ Ki�
�i ; (37)

in the intervals � 2 ½�i�1; �iÞ, i ¼ 1; � � � ; N, with �0 ¼ 0
and �N ¼ 1. In this section the subscript i denotes the ith
interval, associated with a set of constants f�i; Kigwith i ¼
1; � � � ; N, and labels the value of quantities at the higher
density side of each interval, ½�i�1; �iÞ. Because we con-
sider only continuous EOS, pi, hi, �i and qi are the values
of each of these quantities at density �i.

The constant indices �i are N model parameters, and
values of one thermodynamic variable at interfaces com-
prise a set of N � 1 model parameters. A requirement that
the pressure at the interface is continuous,

Ki�
�i
i ¼ Kiþ1�

�iþ1
i ; (38)

uniquely specifies values of Ki up to one free parameter,
one of Ki of a specific ith interval, which is usually
specified by prescribing the value of pressure pi at the
corresponding interface density �i. Therefore we have
2N parameters for a parametrized EOS with N intervals.

To compute other thermodynamic quantities from q, we
use the following relations, valid in the ith interval, q 2
½qi�1; qiÞ:

� ¼ K�1=ð�i�1Þ
i q1=ð�i�1Þ; (39)

p ¼ K�1=ð�i�1Þ
i q�i=ð�i�1Þ; (40)

h� hi�1 ¼ �i

�i � 1
ðq� qi�1Þ; (41)

� ¼ �h� p; (42)

where Eq. (41) is obtained by integrating the relation

dh ¼ 1

�
dp ¼ �i

�i � 1
dq (43)

in the ith interval q 2 ½qi�1; qiÞ. Here,

hi ¼ h0 þ
Xi
j¼1

�j

�j � 1
ðqj � qj�1Þ; (44)

with h0 ¼ 1 and q0 ¼ 0.

2. Choice for the parameters

In the latter sections, we present the results of quasi-
equilibrium BNS solutions calculated using two types of
parametrized EOS. The first EOS contains one free pa-
rameter, which is used to estimate the accuracy of the
measurement of the EOS parameter, and the neutron-star
radius, by gravitational-wave observations of the inspirals
of BNS [15]. The second EOS is a four-parameter fit to the
candidates of neutron-star EOS. Those candidate EOS are
tabulated nuclear EOS, and the parametrized EOS with
four parameters approximates each candidate within the
rms residual typically in the order of �0:1%, and �4:3%
for the worst case [18].
The parametrized EOS with one parameter uses two

polytropic intervals. The lower density interval approxi-
mates the known subnuclear density EOS, the fixed crust
EOS, around 0:1�nuc � �nuc by setting ð�0; K0Þ ¼
ð1:356 92; 3:593 89� 1013Þ. Here, �nuc is the nuclear satu-
ration density, and the constant K0 is in cgs units which
give the pressure p in dyn=cm2. For the second polytropic
interval at the higher density side, the adiabatic index is set
�1 ¼ 3. Then, the pressure p1 at the density �1 ¼
1014:7 g=cm3 is chosen as a parameter, and the dividing
density at the fixed crust and the next polytropic piece �0 is
determined as the intersection of the two intervals. Further
details are found in [15].
The four-parameter fit uses the same crust EOS as

above, and three other polytropic intervals. The adiabatic
indices of higher polytropic intervals f�1;�2;�3g, and the
pressure p1 at the interface between i ¼ 1 and 2 are chosen
as fitting parameters, while the dividing density �0 is
evaluated in the same way as above, and other dividing
densities are fixed as �1 ¼ 1014:7 g=cm3 and �2 ¼
1015 g=cm3. The EOS parameters and corresponding data
for the spherical solutions are summarized in the later
Sec. IV. Further details for the four-parameter fit are found
in [18].
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III. COMPUTATION

A system of elliptic equations and algebraic relations are
solved applying a self-consistent field iteration scheme
[34]. Recently, the convergence of such scheme for
Newtonian barotropic stars has been mathematically ana-
lyzed in [35].

The WL/NHS code for the irrotational BNS presented in
this paper is developed on top of the former BNS code in
which the IWM formulation is used [36]. Another version
of the WL/NHS code, based on the triaxially deformed
rotating neutron-star code described in [33], has been
developed, and its results are presented elsewhere. The
numerical method used in these codes is briefly repeated
in Appendix B.

A. Imposition of Dirac gauge

The primary difference between the WL/NHS code and
an IWM code is the computation of the nonconformally flat
part of the spatial metric ~�ab ¼ fab þ hab. The conformal
spatial metric ~�ab has to satisfy two conditions, ~� ¼ f and

D
�

b ~�
ab ¼ 0, which turn out not to be automatically satis-

fied when the spatial tracefree part of Einstein’s equa-
tion (10) or its concrete form in the code, either
Eq. (A57) or (A60), is solved for hab. To impose these
conditions on ~�ab accurately, we first make a gauge trans-

formation of hab to satisfyD
�

bh
ab ¼ 0, and we then correct

the conformal factor to enforce the relation � ¼ c 12f at
each iteration cycle. Note that these two conditions are not
explicitly imposed in Eq. (A57) or (A60), and they are
violated mainly due to the numerical error of finite
differencing.

The gauge vector is calculated numerically by the fol-
lowing procedure: a perturbation of the spatial metric 	�ab

	�ab ! 	�ab �D
�

a
b �D
�
b
a; (45)

implies, to the same order, that the conformally rescaled
metric with ~� ¼ f satisfies

	~�ab ! 	~�ab �D
�

a
b �D
�
b
a þ 2

3
fabD

�
c


c: (46)

We adjust hab to this order to satisfy the Dirac gauge
condition; namely, writing

h0ab ¼ hab �D
�

a
b �D
�

b
a þ 2

3
fabD

�
c


c; (47)

we let h0ab satisfy the Dirac gauge condition to linear order

in hab, D
�

bh0ab ¼ 0, which leads to

�
�

a þ 1

3
D
�

aD
�

b
b ¼ D
�

bhab: (48)

This equation is solved by introducing the decomposi-
tion


a ¼ Ga � 1

4
D
�
aB; (49)

which results in a set of elliptic equations,

�
�
Ga ¼ D

�
bhab; and �

�
B ¼ D

�
aGa: (50)

These equations (50) are solved using the same Poisson
solver described in Appendix B, and a solution is substi-
tuted in Eq. (49) and then in Eq. (47). In the r.h.s. of
Eq. (47), hab is calculated from the tracefree part of
Einstein’s equation, either Eq. (A57) or (A60), and it is
replaced by h0ab, which satisfies the Dirac gauge condition

more accurately. We have also experimented with a trans-
formation of the contravariant components of hab analo-

gous to Eq. (47), and let D
�

bh
ab ¼ 0 be satisfied; however,

the results did not change.
After the above gauge transformation, the condition ~� ¼

f is imposed by adjusting the conformal factor c to

c 0 ¼ c

�
~�0

f

�
1=12

; (51)

where ~�0 is the determinant of ~�0
ab ¼ fab þ h0ab. Note that,

to impose ~� ¼ f, we do not change the value of h0ab. These
two corrections to hab and c are made once per iteration
The other parts of the method of computation, including

the iteration scheme, are common to our previous codes
[33,36,37], which are briefly reviewed in Appendix B.

B. Coordinate and grid parameters

The WL/NHS code uses two coordinate patches: a
spherical patch, called the central coordinate system, on
which the metric components are calculated, and a surface-
fitted spherical-coordinate patch on which the fluid varia-
bles are computed. The origin of the central coordinates
ðr; �;�Þ is the mass center of the binary system, and that of
the surface-fitted coordinates ðr̂f; �f; �fÞ is the geometric

center of the component star, where r̂f is related to the

radial coordinate rf by r̂f ¼ rf=Rð�f;�fÞ and Rð�f;�fÞ is
the surface of the star. We match the radial coordinate lines
at ð�;�Þ ¼ ð�=2; 0Þ of the central coordinates, and that of
the surface-fitted coordinates ð�f;�fÞ ¼ ð�=2; 0Þ, and set

the � ¼ 0 and �f ¼ 0 lines to be parallel. Only the octant

of the whole space for the central coordinate is solved,

TABLE I. Summary of grid parameters. (CC) stands for the
central coordinates, and (SFC) for the surface-fitted coordinates.

Nr: Number of intervals �ri in r 2 ½0; rb� (CC).
nr: Number of intervals �ri in r 2 ½0; rc� (CC).
N�: Number of intervals ��i in � 2 ½0; �=2� (CC).
N�: Number of intervals ��i in � 2 ½0; �=2� (CC).
Nf

r̂ : Number of intervals �r̂i in r̂f 2 ½0; 1� (SFC).
Nf

� : Number of intervals ��i in �f 2 ½0; �=2� (SFC).
Nf

�: Number of intervals ��i in �f 2 ½0; �� (SFC).
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while a quarter for the surface-fitted coordinate. The
spherical coordinates correspond to the Cartesian coordi-
nates in the usual way; the ð�;�Þ ¼ ð�=2; 0Þ line to the
(positive) x axis, the ð�=2; �=2Þ line to the y axis, and the
� ¼ 0 line to the z axis.

The accuracy of the numerical solutions depends on the
resolution of the finite differencing determined by the grid
spacings ð�r;��;��Þ, and the order of the truncation of
multipole expansion ‘max. The latter is constrained by the
resolution since the multipoles involved in the Green’s
function, which oscillates rapidly for the larger ‘, should
be resolved on the grids. The radial grid spacing �r of the
central coordinates is equidistant for r 2 ½0; rc�, and in-
creases in geometric progression for r 2 ½rc; rb�. The grid
spacings of the other coordinates are equidistant. For fur-
ther details, see [33,36,37]. For the grid parameters defined
in Table I, we choose values listed in Table II. Typically, 1
cycle of iteration takes about 70 s for this grid setup using a
single core of Intel Xeon CPU X5450 with 3.00 GHz clock.

IV. QUASIEQUILIBRIUM SOLUTIONS

A. Behavior of hij for selected solutions

Quasiequilibrium solutions of irrotational BNS are cal-
culated for the various sets of EOS parameters summarized
in Table III. As an example of theWL solutions, we present
in Fig. 1 contours of selected components of hij for the

parametrized EOS HB, with orbital radius d=R0 ¼ 1:5,

where R0 is the coordinate radius (half the diameter) of
the neutron star along the x axis. For a qualitative com-
parison, contours are also shown for the leading order
terms Oðr�1Þ of the asymptotic solution of hij in a second

order post-Newtonian (2PN) approximation with maximal
slicing and a transverse-traceless gauge for hij, as derived

in [38] [see, Eq. (5.30)], namely,

hij ¼ 1

r

�
1

4
Iij þ 3

4
nkðniIkj þ njIkiÞ � 5

8
ninjIkk

þ 3

8
ninjnknlIkl þ 1

8
	ijIkk � 5

8
	ijn

knlIkl

�

þOðr�2Þ; (52)

where

Iij ¼
Z

�xixjd3x; and ni ¼ xi

r
: (53)

In the quadrupole integrals Iij, we substituted two 1:35M�
point masses, separated by the same coordinate length as
the above WL solution. The region shown in these figures
does not extend far enough to have asymptotic behavior,
though the contours qualitatively agree.
In Fig. 2, selected components of hij are plotted along

the x axis for the cases with parametrized EOS 2H, HB,
and 2B, from top to the bottom panels. In each case the
orbital radius is again d=R0 ¼ 1:5. In our models, the
gravitational mass of the corresponding spherical star is
M1 ¼ 1:35M� and M1=R of each EOS increases in the
order of 2H, HB, 2B (see Table III), which is reflected by
the increasing amplitude of hij. Here and after, the com-

pactness of each component star in the binary system
means the value of M1=R for a single spherical star with
the same rest mass.
In the right panels, corresponding to the left panels, log-

log plots of the hyy and hzz components are shown up to the

TABLE II. Coordinate parameters, and the number of grid
points used in this paper. R0 is the geometrical radius of the

neutron star along the ð�f;�fÞ ¼ ð�=2; 0Þ line. lmax and lfmax are

the highest multipoles included in the Legendre expansion in the
central and surface-fitted coordinates, respectively.

rb rc Nr nr N� N� lmax Nf
r̂ Nf

� Nf
� lfmax

104R0 5R0 250 160 64 64 40 32 32 24 8

TABLE III. Parameters of each EOS and properties of the spherical neutron-star model based on that EOS and having gravitational
mass M1 ¼ 1:35M�. The pressure p1 [dyn=cm2] is the value at the dividing density �1 ¼ 1014:7 g=cm3, and values of logðp1Þ and
f�1;�2;�3g are taken from Table I of [15] and Table III of [18]. The parameters to fit the crust EOS are chosen as ð�0; K0Þ ¼
ð1:356 92; 3:593 89� 1013Þ where K0 is in cgs units, and the dividing density �0 used to model the transition from the crust to the
nuclear matter is tabulated in the log of �0 [g=cm3]. In the following calculations for BNS, a spherical solution of each EOS with
gravitational mass M1 ¼ 1:35M� is used as a reference, whose rest mass M0 in solar mass units, circumferential radius R in km,
compactness M1=R in the geometric unit G ¼ c ¼ 1, and log of the central density �c in g=cm3 are tabulated.

Model logð�0Þ logðp1Þ �1 �2 �3 M1½M�� M0½M�� R [km] M1=R logð�cÞ
2H 13.847 34.90 3 3 3 1.35 1.4549 15.224 0.13097 14.573

HB 14.151 34.40 3 3 3 1.35 1.4927 11.606 0.17181 14.918

2B 14.334 34.10 3 3 3 1.35 1.5251 9.7268 0.20500 15.141

SLy 14.165 34.384 3.005 2.988 2.851 1.35 1.4947 11.469 0.17385 14.934

APR1 14.294 33.943 2.442 3.256 2.908 1.35 1.5388 9.1385 0.21819 15.221

FPS 14.220 34.283 2.985 2.863 2.600 1.35 1.5055 10.702 0.18631 15.038

BGN1H1 14.110 34.623 3.258 1.472 2.464 1.35 1.4789 12.626 0.15792 14.912

ALF3 14.188 34.283 2.883 2.653 1.952 1.35 1.5069 10.350 0.19264 15.150
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FIG. 1 (color online). Contours of ðhxx � hyyÞ=2 (left panels)
and hzz (right panels) in the xy plane. Top panels are those of a
WL solution with the EOS parameter HB and the orbital radius
d=R0 ¼ 1:5, where R0 is the coordinate radius (a half of the
diameter) of the neutron star along the x axis. Contours are drawn
every 0.001 step, where the solid (dashed) contours in the top
panels corresponds to positive (negative) values of hij. Thick

dotted circles are the surface of neutron stars. Bottom panels are
the contours of the 2PN asymptotic formula (52) calculated for
the two point masses assuming the same coordinate separation
d=R0 ¼ 1:5, and mass M ¼ 1:35M� � 2. Contours are also
drawn every 0.001 step. In the left top and bottom panels, the
outermost contour (interrupted by the boundary of the figure)
corresponds to�0:002. In the bottom two panels, contours out of
range (<�0:01 for the left panel, and _ 	0:005 for the right)
are truncated.
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FIG. 2 (color online). Selected components of hij along the x axis of the WL solutions with the orbital radius d=R0 ¼ 1:5 for
parametrized EOS 2H, HB, and 2B, from top to bottom panels of both sides, respectively. Left (right) panels are log-linear (log-log)
plots, where the x axis is normalized by � :¼ �=�. Upper and lower thin solid lines in the right panels are, respectively, the hyy and hzz
components of the asymptotic solutions (52) of two point mass,M1 ¼ 1:35M� each, separated as the numerical solutions, d=R0 ¼ 1:5.
hþ in left panels is defined by hþ :¼ ðhxx � hyyÞ=2.
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boundary of the computational domain. Upper and lower
thin black lines in the right panels are, respectively, the hyy
and hzz components of the asymptotic solutions (52) of two
point masses. These lines do not exactly match the hij
countours of the corresponding of numerical solutions for
several reasons, including finite-size and higher order post-
Newtonian effects. However, the lines shift systematically
from the numerical hij, which suggest that the numerical

hij scales properly in the asymptotic region (as well as in

the near zone) as the compactness increases.

B. Quasiequilibrium sequences with different
compactness

A constant-rest-mass sequence of quasiequilibrium so-
lutions for irrotational BNS is considered as a model for
the last several orbits of inspiral before merger. Such
sequences are computed for the models with different
EOS parameters listed in Table III. The fixed rest mass
of each model is that of a spherical star whose gravitational
mass is M1 ¼ 1:35M�. Quantities of the spherical star for
each model are also presented in the same Table.

In Fig. 3, the binding energy Eb :¼ MADM �M and the
total angular momentum J, normalized by twice the gravi-
tational mass of the spherical starM ¼ 2M1, are plotted for
models 2H, HB, and 2B. In the top and middle panels, the
results of the WL sequences are compared with the results
of IWM sequences and of nonspinning point particles in
3PN circular orbits. Clearly, the IWM sequences coincide
with the 3PN curve up to smaller separation (larger �M),
whereas the WL sequences significantly deviate from the
3PN sequence. As the compactness (in this case from 2H to
2B) increases, the curves of the IWM sequence around the
smallest separation come closer to the 3PN curve. In con-
trast to this, deviations of the WL sequences from the 3PN
curve are even larger for the larger compactness.

In the bottom panel of the Fig. 3, the binding energy
Eb :¼ MADM �M of the WL sequences are compared
with the results of the NHS sequences. Clearly, the differ-
ence in the binding energy of two formulations is less than
a percent; that is, the WL solutions almost coincide with
the helically symmetric solution in the near zone.

In [10], we have derived asymptotic conditions for
equality MADM ¼ MK of the ADM and Komar masses
[39], which is related to the relativistic virial relation for
the equilibrium [40],

Z
xa�a

�r�T�
� ffiffiffiffiffiffiffi�g
p

d3x ¼ 0: (54)

In the WL/NHS formulation, the asymptotic fall-off of
each field is sufficiently fast to enforce the equality. In
Fig. 4, we evaluate the values of the fractional differences
jMADM �MKj=MADM for the WL sequences with the pa-
rametrized EOS 2H, HB, and 2B. The plots show that the
differences are less than 2� 10�4. The compactness in-
creases in the order of 2H, HB, and 2B; the fractional
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FIG. 3 (color online). Plots of the WL, NHS, and IWM se-
quences for the parametrized EOS 2H, HB, and 2B. Top panel:
Binding energy Eb ¼ MADM �M normalized byM ¼ 2M1 with
respect to the normalized angular velocity �M of the WL and
IWM sequences. Middle panel: Total angular momentum J
normalized by M2 of the WL and IWM sequences. Bottom
panel: Normalized binding energy of the WL and NHS sequen-
ces. In each panel, a thin solid curve corresponds to that of the
3PN approximation.
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differences, however, do not necessarily increase with in-
creasing compactness in this range M1=R & 0:2. The fact
that the fractional difference is well controlled for these
sequences is evidence that the binding energy in Fig. 3 is
calculated accurately. The virial relation Eq. (54), normal-
ized by MADM, is also calculated to examine the accuracy
of the numerical solutions, whose absolute value is about
0:5� 1 times that of the fractional difference of two
masses.

C. Quasiequilibrium sequences with four-parameter
fitted EOS

In the paper [18], optimal values for the parameters of
four-parameter fitted EOS have been derived for 34 candi-
dates of the neutron-star EOS (17 selected EOS of nuclear
matter with varied parameters). We choose five represen-
tative EOS, which are SLy [41], APR1 [42], FPS [43],
BGN1H1 [44], and ALF3 [45]. The first three are made
only from normal nuclear matter, while BGN1H1 involves
a mixed phase with hyperons, and ALF3 with quarks. For
the latter two EOS, the value of � becomes smaller in the
mixed phase with the exotic matter at a few times above
nuclear density [18]. However, BGN1H1 is a stiff EOS
having the largest p1 among them, and hence the core of
the mixed phase is not large for the mass M1 ¼ 1:35M�.

In Fig. 5, the binding energy Eb of the WL sequences for
these parametrized EOS are plotted. As in the case of the
one-parameter parametrized EOS in Sec. IVB, the sequen-
ces with higher compactnessM1=R extend to higher values
of �M. Also, the WL sequences deviate from the 3PN
curve at larger �M. Among these EOS, APR1 is the
softest, giving the most compact neutron-star model; and
the corresponding binary sequence reaches the highest
value, �0:058, of �M. However, as seen in the bottom
panel of Fig. 5, the binding energy curve of APR1 is
slightly off from the 3PN curve even for the smaller �M

of the sequence. In our neutron-star code, using a finite
difference scheme, the core of the neutron star is covered
by fewer grid points in the central coordinates when the
binary separation becomes larger and the neutron stars
more compact; this may increase the numerical errors.
We plan to incorporate a binary computation in the new
code [33], in which enough grids are maintained, to
densely to cover the neutron star, irrespective of the binary
separation or neutron-star radius. The results of the APR1
curve as well as more compact binary sequences will be
studied using the new code.
In [15], the gravitational waveform computed from in-

spiral simulations has been analyzed to estimate the accu-
racy with which gravitational-wave observations can
constrain neutron-star radius, an EOS parameter correlated
with the departure from point-particle inspiral. A promis-
ing result is that the neutron-star radius can be constrained
to 	R� 1 km for an interferometric detector with the
sensitivity of Advanced LIGO, in either a broadband con-
figuration or a narrowband with peak sensitivity around
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FIG. 4 (color online). Fractional differences of MADM and MK

with respect to the orbital radius d=R0 of the WL sequences for
parametrized EOS 2H, HB and 2B.
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1150 Hz. This suggests that the successful observations of
gravitational waves may exclude even a couple of EOS
shown in Fig. 5.

D. Comparison of the orbital phase in the last several
orbits

In this section, we approximately determine the orbital
evolution in the late inspiral phase up to the onset of
merger using the quasiequilibrium sequences computed
in the previous section. To construct a quasiequilibrium
sequence, one assumes that each BNS evolves adiabati-
cally along the sequence, that the radial velocity is much
smaller than the orbital velocity. Given the rest mass and
the EOS, each quasiequilibrium sequence is defined by one
parameter: The total energy and angular momentum of the
binary system along a sequence are parametrized by the
orbital angular velocity as Eð�Þ and Jð�Þ.

The time evolution of the angular velocity then becomes

d�

dt
¼

�
dE

d�

��1 dE

dt

 Fð�Þ�1: (55)

For the gravitational-wave luminosity, dE=dt, we adopt the
3.5PN formula for two point masses [46]. Tidal deforma-
tion of the neutron stars in close orbits makes the attractive
force between two stars stronger, and hence it accelerates
the orbital velocity, resulting in the enhancement of the
gravitational-wave luminosity. Thus, the 3.5PN formula for
the luminosity is likely to underestimate that of the BNS.
However, this effect plays an important role only for the
last �1 orbit, and for most of the late inspiral orbits, the
3.5PN formula is a good approximation.

Numerical integration of Eq. (55) provides the relation
between t and � from

t ¼
Z

d�Fð�Þ: (56)

From this, the angular velocity as a function of time,�ðtÞ,
is obtained. Using this relation, we can also compute the
approximate orbital phase evolution by

N ¼ 1

2�

Z
�ðtÞdt: (57)

We note that the numerical model with the maximum value
of � for each sequence presented in this paper does not
exactly, but does approximately, correspond to a solution at
the closest orbit. We stop the integration of Eq. (56) when
� reaches its maximum.

In the top panel of Fig. 6,�M is plotted as a function of
time for EOS 2B, HB, FPS, and SLy in the WL formula-
tion. In the bottom panel of Fig. 6, the results for 2B and
HB, calculated in both the WL and IWM formulation, are
compared. We also plot the results of two point masses,
derived from the Taylor-T4 formula [47].

The top panel of Fig. 6 shows that for the small values of
�, all the curves approximately agree, irrespective of the

EOS. This is natural because for such small values,
tidal deformation does not play an important role and
orbital velocity is sufficiently small (v < 0:3c) that the
post-Newtonian formula (Taylor-T4 formula) with the
point-particle approximation should be an excellent
approximation.
By contrast, the values of �ðtÞ computed from the

numerical sequences deviate from those given by the
Taylor-T4 formula for �M * 0:035–0:04, for all of the
EOS and all formulations used to compute the quasiequi-
libria. This is due to the tidal deformation of the neutron
stars; the rate of change of the energy as a function of �
approaches zero for the close orbits, as seen in Figs. 3 and
5. This deviation occurs at more distant orbits for less
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FIG. 6 (color online). Top panel: Orbital angular velocity, �,
as a function of time for EOS 2B, HB, FPS, and SLy of the WL
sequences. Bottom panel: Same as the top panel but for EOS 2B
and HB of the WL and IWM sequences. For the both panels, the
results by the Taylor-T4 formula are also plotted. The units of �
and time areM�1 andM, respectively. For comparing the results,
the time axis is shifted such that �M ¼ 0:03 is aligned at t ¼ 0
for all the curves.
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compact neutron stars (i.e., for the stiffer EOS), indicating,
as expected, that one can extract from the curve �ðtÞ a
characteristic of the component neutron stars related to
their compactness and a corresponding parameter of the
EOS.

The bottom panel of Fig. 6 shows that the curves �ðtÞ
computed by the WL and IWM formulations are signifi-
cantly different, as expected from the results of Eð�Þ. In
the case that the IWM formulation is adopted, the merger
time is overestimated by �50M, which is a quite a large
factor. This suggests that the results in the IWM formula-
tion do not work well for predicting the evolution of the
last several orbits before the onset of merger.

In Fig. 7, we plot the curves of N as a function of �M;
the top panel is for EOS 2B, HB, FPS, and SLy in the WL
formulation and the bottom for EOS 2B and HB in the WL
and IWM formulation. The top panel shows that the num-
ber of orbital cycles in the late inspiral phase depends

strongly on the EOS. For a soft EOS, e.g., EOS 2B, in
which the compactness of the neutron star is largest, the
number of cycle is largest. By contrast, for a stiff EOS such
as SLy, the number of cycles may be smaller by �1 than
that for EOS 2B.
In the bottom panel of Fig. 7, the results for the number

of cycle calculated from different formulations are com-
pared. As expected from the results for �ðtÞ, the IWM
formulation overestimates the number of cycles. The error
�N is�0:5 for the EOS 2B; i.e., one cycle of gravitational
waves would be overestimated.

V. DISCUSSION

The deviations of the binding energy and total angular
momentum of WL/NHS sequences from the 3PN point-
particle sequence as well as from the IWM sequences are
likely to be due to the tidal deformation of neutron stars in
the binary system coupled with general relativistic effects.
As the compactness of the component neutron stars in-
creases, the deviation from the 3PN sequence at a certain
value of �M decreases—WL/NHS sequences become
closer to the point-particle sequence, but not by as much
as the IWM sequences do. It has been believed that, as the
compactness of the component neutron stars increases, the
behavior of the binding energy and angular momentum of
binary sequences more closely approximates that of point
masses. This is found in the results of IWM sequences but
to a lesser extent in the WL/NHS sequences. The behavior
of the IWM sequence was interpreted as the effacing of the
tidal effects due to the strong gravity: that is, as the
compactness increases, the sequences of binary neutron-
star solutions become much closer to the sequences of two
point masses, because the tidal effect is masked by the
stronger self-gravity of each component star. However, the
results of WL/NHS sequences suggest that such effacing of
the tidal effect seen in IWM sequence is an artifact of the
conformally flat approximation, at least for the case of
equal mass binary neutron stars.
In the WL/NHS formulations, all components of

Einstein’s equation are solved without approximation on
a initial hypersurface, while in the IWM formulation, some
terms of second post-Newtonian order are truncated. As
discussed in [7] the difference between the IWM and WL/
NHS formulations in the binding energy Eb is estimated at
second post-Newtonian order as Mhabv

avb, where the

magnitude of the orbital velocity va is typically v�
0:34ð�M=0:04Þ1=3. Since hab is Oðv4Þ, the order of the
difference in the binding energy is given by �Eb=M ¼
Oðv6Þ � 10�3, and a larger deviation as v becomes larger
for more compact sequences is expected. This estimate is
consistent with our results shown in Figs. 3 and 5. Note also
that the tidal effect is larger for the EOS with a larger � as
we used in our computations. So far, our WL/NHS codes
have passed several code tests (as have the IWM codes),
and results of two independent WL codes agreed for a BNS
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FIG. 7 (color online). Top panel: Orbital cycle, N, as a func-
tion of time for EOS 2B, HB, FPS, and SLy of the WL
sequences. Bottom panel: The same as the above but for EOS
2B and HB of the WL and IWM sequences. For the both panels,
the results of the Taylor-T4 formula are also plotted. For com-
paring the results, the time axis is shifted such that N ¼ 0 is
aligned at �M ¼ 0:03 for all the curves.
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sequence withM1=R ¼ 0:17 as shown in [7]. These results
support our argument that the WL/NHS results accurately
correct the IWM results. A computation of quasiequili-
brium BNS sequences using a totally different numerical
method, such as the fully constrained scheme [9], would be
a helpful additional check.

We think our results suggest that the circularity of orbit
is more accurately enforced on a WL/NHS sequence than a
IWM sequence. However, in such quasiequilibrium se-
quences, some important features of realistic inspirals are
ignored. Those include the radial velocity due to gravita-
tional radiation reaction at 2.5PN order that is likely to be
comparable to the 2PN terms during the last few orbits
where the neutron-star velocity is of order v� 0:1, and a
tidal lag angle of about 10–20 degrees that is found in
inspiral simulations. Therefore, a caveat is that estimates of
the merger time and orbital cycles using quasiequilibrium
sequences shown in Sec. IVD involve errors due to ignor-
ing these effects.

Recently, several groups have developed methods to
treat the general relativistic tidal deformations analytically
[48]. Comparison of these analytic results and the present
results for WL/NHS sequences may be useful in calibrating
the binding energy or the total angular momentum of the
quasiequilibrium sequence in the regime where the relativ-
istic tidal effects become important. Finally, by combining
the analytic and numerical results, more accurate quasie-
quilibrium models for the late inspirals may be constructed
[49].

TheWL/NHS formulations can be also used to construct
models of rotating neutron stars. In [50], axisymmetric
rotating relativistic stars are computed using the fully con-
strained formulation with maximal slicing and the gener-
alized Dirac gauge conditions [9]. Those solutions agreed
with the ones calculated using a stationary axisymmetric
metric with the additional discrete symmetry of the simul-
taneous transformation, t ! �t and � ! ��. The WL/
NHS formulations include more general stationary axisym-
metric spacetimes, which do not depend on the additional
symmetry. Therefore, the WL/NHS formulations can be
applied, for example, to rotating neutron stars that may
have both toroidal and poloidal components of the mag-
netic fields as well as meridional circulation. Even in this
case, the WL/NHS formulation can be used to compute
exact equilibria that are more general than those calculated
in [51]. We plan to extend our codes to compute relativistic
rotating stars and binary systems that each include strong
magnetic fields.
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APPENDIX A: BASIC EQUATIONS

In this Appendix, the system of equations used in WL/
NHS codes is presented in detail. The equations include all
components of Einstein’s equation, the first integral of the
relativistic Euler equation, and the rest-mass conservation
equation for the irrotational flow. The WL/NHS formula-
tions are based on [9–11].

1. Conventions

As mentioned in Sec. II A, the 3þ 1 decomposition is
applied to the spacetimeM in the WL/NHS formulations.
First, several definitions for the quantities relating to the
spatial geometry are introduced.

a. Connections

The spatial metric �ab, a conformally rescaled spatial
metric ~�ab, and a flat metric fab are associated with the

derivatives Da, ~Da, and D
�

a, respectively. We introduce the
conformal rescaling by �ab ¼ c 4 ~�ab, whose determinant
~� is equal to that of the flat metric f, ~� ¼ f, to specify the
decomposition of the spatial metric uniquely. Covariant
derivatives Da and ~Da are related by

DbX
a ¼ ~DbX

a þ ~Ca
bcX

c; (A1)

where Xa is a spatial vector, and a coefficient ~Cc
ab is written

~C c
ab ¼ 1

2
�cdð ~Da�db þ ~Db�ad � ~Dd�abÞ

¼ 2

c
ð~�c

b
~Dac þ ~�c

a
~Dbc � ~�ab ~�

cd ~Ddc Þ: (A2)

Also, ~Da and D
�
a are related by

~DbX
a ¼ D

�
bX

a þ Ca
bcX

c; (A3)

where Cc
ab is written

Cc
ab ¼ 1

2
~�cdðD�a ~�db þD

�
b ~�ad �D

�
d ~�abÞ

¼ 1

2
~�cdðD�ahdb þD

�
bhad �D

�
dhabÞ: (A4)

A trace of Cc
ab

Cb
ba ¼ 1

2
~�bcD

�
a ~�bc ¼ 1ffiffiffiffi

~�
p D

�
a

ffiffiffiffi
~�

p
; (A5)

and the condition ~� ¼ f that specifies the conformal de-
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composition imply Cc
ca ¼ 0 and hence ~Dac ¼ D

�
ac . The

relations

~� abCc
ab þ ~�bcCa

ab þD
�

a ~�
ac ¼ 0 (A6)

and ~� ¼ f, and the Dirac gauge condition D
�

b ~�
ab ¼ 0

imply ~�abCc
ab ¼ 0.

b. Conformally rescaled extrinsic curvatures

The form of the extrinsic curvature Kab is discussed in
Sec. II B. In the equations for our numerical code, it is
decomposed in terms of the trace K ¼ �abKab and the
tracefree part Aab,

Kab ¼ Aab þ 1

3
�abK: (A7)

The conformally rescaled tracefree part ~Aa
b is defined as

~A a
b ¼ Aa

b; (A8)

and its index is lowered (raised) by ~�ab (~�ab).
We define LX�ab as the tracefree part of £X�ab, where

Xa is a spatial vector on �t,

LX�ab ¼ £X�ab � 1

3
�ab�

cd£X�cd (A9)

¼ DaXb þDbXa � 2

3
�abDcX

c: (A10)

The r.h.s. of this equation is a conformal Killing operator,
and its conformally rescaled version is defined by

~L X ~�ab ¼ c 4LX�ab: (A11)

Note that a vector is rescaled, ~Xa ¼ Xa, and ~�ab is used
when lowering the index of the rescaled vector.

When helical symmetry, £kg�� ¼ 0, is imposed as in

Sec. II B, the tensors Aab and ~Aab have the forms

Aab ¼ 1

2�
L!�ab and ~Aab ¼ 1

2�
~L! ~�ab; (A12)

respectively; while for the WL formulation,

Aab ¼ 1

2�
L��ab and ~Aab ¼ 1

2�
~L� ~�ab: (A13)

The following expression for the conformally rescaled ~Aab

is used later,

~A a
b ¼ 1

2�

�
~Da

~�b þ ~Db ~�a � 2

3
~�a

b ~Dc
~�c

�

þ 1

2�
�~�bc ~L� ~�ac: (A14)

The last term in the above

~L� ~�ab ¼ £� ~�ab � 1

3
~�ab ~�

cd£� ~�cd (A15)

¼ ~Da
~�b þ ~Db

~�a � 2

3
~�ab

~Dc
~�c; (A16)

with ~�a ¼ �a and ~�a :¼ ~�ab
~�b, appears only in the

helically symmetric case and is eliminated when the WL
formulation is used.

c. Conformally rescaled intrinsic quantities

The Ricci tensor 3Rab of the spacelike hypersurface �t

associated with the spatial metric �ab is decomposed into

terms related to the conformal factor c , 3 ~Rc
ab, and the

conformal Ricci tensor 3 ~Rab associated with ~�ab:

3Rab ¼ 3 ~Rc
ab þ 3 ~Rab: (A17)

The first term is written

3 ~Rc
ab ¼ � 2

c
~Da

~Dbc � ~�ab

2

c
~Dc ~Dcc þ 6

c 2
~Dac ~Dbc

� ~�ab

2

c 2
~Dcc ~Dcc : (A18)

In 3 ~Rab, terms linear in hab or hab are separated as

3 ~Rab ¼ � 1

2
D
�

cD
�

chab þ ~RD
ab þ ~RNL

ab ; (A19)

where ~RD
ab includes terms linear in the conformal metric in

the form of flat divergences

~R D
ab ¼ � 1

2
ðfacD

�
bF

c þ fbcD
�
aF

cÞ; (A20)

Fa :¼ D
�
b ~�

ab ¼ D
�

bh
ab; (A21)

nonlinear terms, ~RNL
ab , are written

~R NL
ab ¼ � 1

2
ðD�bh

cdD
�

chad þD
�

ah
cdD
�

chbd

þ hcdD
�

cD
�

dhabÞ �D
�

aC
c
cb þ Cc

abC
d
dc � Cd

acC
c
bd

� 1

2
½D�bðhacFcÞ þD

�
aðhbcFcÞ� þ FcCc;ab;

(A22)

where Cc;ab :¼ ~�cdC
d
ab. The above expression for

~RNL
ab can

be simplified by applying the condition ~� ¼ f and the
generalized Dirac gauge condition, implying Cb

ba ¼ 0
and Fa ¼ 0.
The Ricci scalar curvature 3R of �t is related to the

conformal Ricci scalar 3 ~R :¼ ~�ab3 ~Rab by

3R ¼ 1

c 4
3 ~R� 8

c 5
~Da ~Dac : (A23)

2. Equations for the gravitational fields

Equations used in the numerical code are shown below.
Although we impose the gauge conditions (12) and (13),
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the following equations are not restricted to these choices.
The conformal decomposition, however, is specified by a
condition ~� ¼ f that is used, for example, to obtain the

relation ~Dac ¼ D
�

ac .

a. Hamiltonian constraint

The projection of Einstein’s equation along the normal
n� to the hypersurface yields

ðG�� � 8�T��Þn�n� ¼ 1

2
ð3Rþ K2 � KabK

ab � 16��HÞ
¼ 0: (A24)

Substituting Eq. (A23), we have

ðG�� � 8�T��Þn�n�

¼ 4

c 5

�
� ~Da ~Dac þ c

8
3 ~R� c 5

8

�
~Aab

~Aab � 2

3
K2

�

� 2�c 5�H

�
¼ 0: (A25)

The above equation is rewritten to isolate the flat

Laplacian �
�
c :¼ D

�
aD
�
ac on the left-hand side, and the

other terms are treated as a source on the r.h.s.,

�
�
c ¼ SH (A26)

with the source SH given by

SH ¼ �habD
�

aD
�

bc þ ~�abCc
abD
�

cc þ c

8
3 ~R

� c 5

8

�
~Aab

~Aab � 2

3
K2

�
� 2�c 5�H: (A27)

b. Momentum constraint

The momentum constraint is written in an elliptic equa-
tion to be solved for the covariant component of the con-

formally rescaled nonrotating shift ~�a :¼ ~�ab�
b. We

begin with

ðG�� � 8�T��Þ�a
�n�

¼ �DbKa
b þDaK þ 8�ja

¼ � 1

c 6
~Dbðc 6 ~Aa

bÞ þ 2

3
~DaK þ 8�ja ¼ 0; (A28)

then substitute Eq. (A14) and a relation

~Db
~Da�

b � ~Da
~Db�

b ¼ 3 ~Rab�
b; (A29)

to obtain

~Db
~Db ~�aþ 1

3
~Da

~Db
~�b þ 3 ~Rab

~�b þ� ~Dbð ~L�Þab

þ 2� ~Aa
b �

c 6
~Db

�
c 6

�

�
� 4

3
� ~DaK� 16��ja ¼ 0: (A30)

From the first two terms of the r.h.s. of Eq. (A30), the flat

terms �
�
~�a þ 1

3D
�

aD
�

b ~�b are similarly isolated,

~Db
~Db ~�a þ 1

3
~Da

~Db
~�b

¼ �
�
~�a þ 1

3
D
�

aD
�

b ~�b þ hbcD
�

bD
�

c
~�a

� ~�bcD
�

bðCd
ca
~�dÞ � ~�bcCd

bc
~Dd

~�a � ~�bcCd
ba

~Dc
~�d

þ 1

3
D
�

aðhbcD
�

b
~�c � ~�bcCd

bc
~�dÞ: (A31)

We keep ~Da instead of replacing it byD
�
a and a connection

Cc
ab in a couple of terms in the Eq. (A31), to shorten the

equation. A decomposition proposed by Shibata,

~� a ¼ Ga þ 1

8
D
�
aðB� xbGbÞ; where D

�
ax

b ¼ 	b
a;

(A32)

is substituted in the expression for the flat operator �
�
~�a þ

1
3D
�

aD
�

b ~�b,

�
�
~�a þ 1

3
D
�

aD
�

b ~�b ¼ �
�
Ga þ 1

6
D
�

að�
�
B� xb�

�
GbÞ;
(A33)

to obtain elliptic equations that are solved simultaneously,

�
�
Ga ¼ Sa; (A34)

�
�
B ¼ xaSa; (A35)

where the source Sa is written

Sa :¼ �hbcD
�
bD
�
c
~�a þ ~�bcD

�
bðCd

ca
~�dÞ þ ~�bcCd

bc
~Dd

~�a

þ ~�bcCd
ba

~Dc
~�d � 1

3
D
�

aðhbcD
�
b
~�c � ~�bcCd

bc
~�dÞ

� 3 ~Rab
~�b �� ~Db ~L� ~�ab � 2� ~Aa

b �

c 6
~Db

�
c 6

�

�

þ 4

3
� ~DaK þ 16��ja: (A36)

A term ~Db ~L� ~�ab is computed from

~Db ~L� ~�ab ¼ ~�bcD
�

c
~L� ~�ab � Cc

ba ~�
bd ~L� ~�cd

þD
�
c ~�

cb ~L� ~�ab þ Cd
dc ~�

cb ~L� ~�ab; (A37)
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which is dropped when the WL formulation is used (see
Sec. II B).

c. Spatial trace part of Einstein’s equation

The spatial trace of Einstein’s equation is combined with
the Hamiltonian constraint,

ðG�� � 8�T��Þ
�
��� þ 1

2
n�n�

�

¼ � 1

4
3Rþ 2

�
DaDa�þ 2£nK

� 1

4
ðK2 þ 7KabK

abÞ � 4�ð�H þ 2SÞ ¼ 0; (A38)

and it is solved for the combination �c . Using a relation,

� 1

4
3Rþ 2

�
DaDa� ¼ 2

�c 5

�
~Da ~Dað�c Þ � �c

8
3 ~R

�
;

(A39)

and applying helical symmetry, the above equation is
rewritten

ðG�� � 8�T��Þ
�
��� þ 1

2
n�n�

�

¼ 2

�c 5

�
~Da ~Dað�c Þ��c

8
3 ~R� c 5£!K

��c 5

�
7

8
~Aab

~Aab þ 5

12
K2

�
� 2��c 5ð�H þ 2SÞ

�
¼ 0:

(A40)

Isolating the flat part�
�
ð�c Þ, an elliptic equation is derived

�
�
ð�c Þ ¼ Str; (A41)

where the source Str is written

S tr :¼ �habD
�

aD
�

b þ ~�abCc
abD
�

cð�c Þ þ �c

8
3 ~R

þ c 5£!K þ �c 5

�
7

8
~Aab

~Aab þ 5

12
K2

�

þ 2��c 5ð�H þ 2SÞ: (A42)

d. Spatial tracefree part of Einstein’s equation

The projection of Einstein’s equation to the initial hyper-
surface �t is written

ðG�� � 8�T��Þ�a
��b

�

¼ �£nKab þ �ab£nK þ 3Rab �
1

2
�ab

3Rþ KKab

� 2KacKb
c � 1

2
�abðK2 þ KcdK

cdÞ

� 1

�
ðDaDb�� �abD

cDc�Þ � 8�Sab: (A43)

The equation to solve for the nonconformal part of the
spatial metric hab is derived from the tracefree part of the
above Eq. (A43). The tracefree operation eliminates terms
proportional to �ab. Applying helical symmetry, (16) and
(17), the tracefree part of Eq. (A43) is written

ðG�� � 8�T��Þ
�
�a

��b
� � 1

3
�ab�

��

�
¼ ETF

ab ¼ 0;

(A44)

where Eab is defined by

Eab :¼ 1

�
£!Kab þ 3Rab �

1

�
DaDb�

þ KKab � 2KacKb
c � 8�Sab; (A45)

and ETF
ab is its trace free part

E TF
ab

:¼
�
�a

c�b
d � 1

3
�ab�

cd

�
Ecd

¼
�
~�a

c ~�b
d � 1

3
~�ab ~�

cd

�
Ecd: (A46)

The tracefree part of the tensors are also denoted by super-
scripts TF, hereafter. We further eliminate terms propor-
tional to �ab remaining in this expression for Eab later in
this section.
We derive two different equations to solve for hab. One

is an elliptic equation in which�
�
hab is separated from

3Rab

as in Eq. (A19); it is used for both the WL/NHS formula-
tion. The other is for the NHS formulation in which an

operator ð�
�
��2@2�Þhab is separated. The � derivative

term in this operator is separated from a term 1
� £!Kab,

which is derived by applying helical symmetry, (16) and
(17), to the time derivatives. For the former equation, the
above Eab is rewritten

E ab ¼ � 1

2
�
�
hab þ ~RD

ab þ ~RNL
ab þ 3 ~Rc

ab �
1

�
DaDb�

þ KKab � 2KacKb
c þ 1

�
£!Kab � 8�Sab;

(A47)

and for the latter,

Eab ¼ � 1

2
ð�
�
��2@2�Þhab þ ~RD

ab þ ~RNL
ab þ 3 ~Rc

ab

� 1

�
DaDb�þ KKab � 2KacKb

c

þ 1

�
£!Kab � 1

2
�2@2�hab � 8�Sab: (A48)

Terms proportional to �ab in Eqs. (A47) and (A48) are
now eliminated further to simplify the equations.
Introducing barred quantities,
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3 �Rc
ab ¼ � 2

c
~Da

~Dbc þ 6

c 2
~Dac ~Dbc ; (A49)

�Da
�Db� ¼ D

�
aD
�

b�� Cc
abD
�
c�� 2

c
ðD�aD

�
bc þD

�
b�D

�
ac Þ;

(A50)

their combination becomes

3 �Rc
ab �

1

�
�Da

�Db�

¼ � 1

�c 2
D
�

aD
�
bð�c 2Þ þ 1

�c 2
Cc
abD
�

cð�c 2Þ

þ 4

�c 2
½D�að�c ÞD�bc þD

�
bð�c ÞD�ac �; (A51)

which satisfies�
3 ~Rc

ab �
1

�
DaDb�

�
TF ¼

�
3 �Rc

ab �
1

�
�Da

�Db�

�
TF
: (A52)

Next, substituting Kab ¼ Aab þ 1
3�abK to terms relating to

Kab, their tracefree part satisfies�
KKab � 2KacKb

c þ 1

�
£!Kab

�
TF

¼
�
1

3
KAab � 2AacAb

c þ 1

�
£!Aab

�
TF
: (A53)

For the matter source term,

Sab ¼ T���a
��b

� ¼ ð�þ pÞuaub þ �abp; (A54)

where ua :¼ �a
�u�. We also introduce a barred quantity

�S ab :¼ �huaub; (A55)

that satisfies STFab ¼ �STFab , where h ¼ ð�þ pÞ=� is used. The

tracefree operation to the operator ð�
�
��2@2�Þhcd is writ-

ten

� 1

2

�
~�a

c ~�b
d � 1

3
~�ab ~�

cd

�
ð�
�
��2@2�Þhcd

¼ � 1

2

�
ð�
�
��2@2�Þhab þ

1

3
~�abD

�
ehcdD

�
ehcd

� 1

3
~�ab�

2@�h
cd@�hcd

�
; (A56)

where relations ~�cdD
�

ehcd ¼ ~�cd@�hcd ¼ 0 implied by

~� ¼ f is used. The same operation to the Laplacian is
written similarly as above, but without @� terms.

Finally, the trace free part ETF
ab ¼ 0 results in the follow-

ing elliptic equation,

�
�
hab ¼ Sab; (A57)

where the source Sab is defined by

S ab :¼ 2�ETF
ab �

1

3
~�abD

�
ehcdD

�
ehcd; (A58)

and �ETF
ab is a tracefree part of

�Eab, which is written using the

rescaled ~Aab,

�Eab :¼ ~RD
ab þ ~RNL

ab þ 3 �Rc
ab �

1

�
�Da

�Db�þ 1

3
c 4K ~Aab

� 2c 4 ~Aac
~Ab

c þ 1

�
£!ðc 4 ~AabÞ � 8� �Sab: (A59)

For the equation with the operator �
�
��2@2�, it is written

ð�
�
��2@2�Þhab ¼ Sab (A60)

with

S ab :¼ 2�ETF
ab �

1

3
~�abD

�
ehcdD

�
ehcd

þ 1

3
~�ab�

2@�h
cd@�hcd: (A61)

Using the rescaled ~Aab, �Eab is defined by

�Eab :¼ ~RD
ab þ ~RNL

ab þ 3 �Rc
ab �

1

�
�Da

�Db�þ 1

3
c 4K ~Aab

� 2c 4 ~Aac
~Ab

c þ 1

�
£!ðc 4 ~AabÞ � 1

2
�2@2�hab

� 8� �Sab; (A62)

where a difference from (A59) is a term in the last line.

e. Matter source terms

In the above, the matter source terms, �H, ja, S and Sab,
that appear in the field equations are obtained from the
stress-energy tensor. We write the projection of the stress-
energy tensor in terms of the fluid variables and metric
potentials. The 4-velocity for irrotational flow u� ¼
utðk� þ v�Þ is decomposed with respect to the foliation
�t as

u�n� ¼ ��ut (A63)

u���a ¼ ua ¼ 1

h
Da� ¼ 1

h
D
�

a�; (A64)

where the velocity potential � is introduced by hu� ¼
r��.
Using these relations, the matter source terms of the field

equations become

�H :¼ T��n
�n� ¼ h�ð�utÞ2 � p; (A65)

ja :¼ �T���a
�n� ¼ ��utD

�
a�; (A66)

S :¼ T���
�� ¼ h�½ð�utÞ2 � 1� þ 3p; (A67)
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Sab :¼ T���a
��b

� ¼ �

h
D
�

a�D
�

b�þ p�ab; (A68)

or with a barred quantity,

�S ab ¼ �

h
D
�

a�D
�

b�: (A69)

3. Equations for irrotational fluid

Following Sec. II C and II D, a set of equations used in
our codes to solve for the matter variables are derived. As
independent variables, we choose the relativistic enthalpy
per baryon mass, the time component of the 4-velocity, and
the velocity potential, fh; ut;�g. For the first two variables,
the first integral Eq. (34) and the normalization of the 4-
velocity u�u

� ¼ �1 are solved. Using a relation derived
from Eqs. (31) and (32),

va þ!a ¼ 1

hut
Da�; (A70)

these equations are rewritten,

h ¼
�
1

�2
ðE þ!aDa�Þ2 �Da�Da�

�
1=2

; (A71)

ut ¼ 1

�2h
ðE þ!aDa�Þ; (A72)

where the first one is from u�u
� ¼ �1, and the second

from Eq. (34).
An equation to calculate the velocity potential � is

derived from the rest-mass conservation law, Eq. (26),

1ffiffiffiffiffiffiffi�g
p £uð� ffiffiffiffiffiffiffi�g

p Þ ¼ 1

�
ffiffiffiffi
�

p £vð�ut� ffiffiffiffi
�

p Þ

¼ 1

�
Dað��utvaÞ ¼ 0: (A73)

Substituting Eq. (A70) in the above relation, we have an
elliptic equation for �,

DaDa� ¼ Daðhut!aÞ � ðDa�� hut!aÞ h

��
Da ��

h
:

(A74)

This equation is solved with Neumann boundary condition
to impose the fluid 4-velocity u� to follow the surface of
the star. The surface is defined by the vanishing pressure
p ¼ 0, which coincide with the h ¼ 1 surface in our EOS
(see Sec II D). Hence, the boundary condition is written

u�r�h ¼ 0 at h ¼ 1; (A75)

and, using £kh ¼ 0 and Eq. (A70), Neumann boundary
condition for the potential � is rewritten,

ðDa�� hut!aÞDah ¼ 0; (A76)

where Dah is normal to the stellar surface.

Finally, we rewrite the above set of equations for the
helically symmetric irrotational flow using the flat deriva-

tive D
�

a;

h ¼
�
1

�2
ðE þ ~!aD

�
a�Þ2 � 1

c 4
~�abD

�
a�D

�
b�

�
1=2

; (A77)

ut ¼ 1

�2h
ðE þ ~!aD

�
a�Þ; (A78)

�
�
� ¼ S; (A79)

where S is defined by

S ¼ �habD
�

aD
�

b�þ ~�abCc
abD
�
c�� 2

c
~�abD

�
acD

�
b�

þ 1

c 2
~!aD

�
aðhutc 6Þ þ c 4hut ~Da ~!

a

� ð~�abD
�
b�� c 4hut ~!aÞ h

��
D
�

a

��

h
; (A80)

and, for ~� ¼ f, ~Da ~!
a ¼ D

�
a ~!

a ¼ D
�
a
~�a.

APPENDIX B: SELF-CONSISTENT FIELD
ITERATION SCHEME

1. Elliptic equation solver

As mentioned in Sec. III B, components of the metric are
computed on a spherical-coordinate grid whose origin is
placed at the center of mass. The momentum constraints
and the tracefree part of Einstein’s equation are a spatial
vector and a tensor equation, respectively, and it would be
natural to write the equations in components along the
spherical coordinates [36]. It is simpler, however, to solve
these equations for Cartesian components, yet on the
spherical coordinates, because each Cartesian component
satisfies a field equation whose principal part is the same as
that of a scalar equation.
For the spatial tracefree part of Einstein’s equation

solved for the nonconformally flat part hab, writing the

principal part L :¼ �
�

or �
�
��2@2�, the field equations

become

L hab ¼ Sab: (B1)

Expanding each Cartesian component of hab in scalar

multipoles, the equation with the operator �
�
��2@2� be-

comes a Helmholtz equation for each mode,

ð�
�
þm2�2Þh‘mab Y‘m ¼ S‘m

ab Y‘m: (B2)

Hence these elliptic equations are integrated using Green’s
formula,
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habðxÞ ¼ � 1

4�

Z
V
Gðx; x0ÞSabðx0Þd3x0

þ 1

4�

Z
@V
½Gðx; x0ÞD�0chabðx0Þ

� habðx0ÞD
�0cGðx; x0Þ�dS0c; (B3)

where x and x0 are positions, x, x0 2 V � �t, and the
Green function Gðx; x0Þ satisfies

LGðx; x0Þ ¼ �4�	ðx� x0Þ: (B4)

We choose the Green function Gðx; x0Þ without boundary
for the BNS calculations.

For the Laplace operator,L ¼ �
�
, a multipole expansion

of Gðx; x0Þ in associated Legendre functions on the spheri-
cal coordinate is written

Gðx; x0Þ ¼ 1

jx� x0j

¼ X1
‘¼0

g‘ðr; r0Þ
X‘
m¼0

�m
ð‘�mÞ!
ð‘þmÞ!P‘

mðcos�Þ

� P‘
mðcos�0Þ cosmð’� ’0Þ; (B5)

where the radial Green function g‘ðr; r0Þ becomes

g‘ðr; r0Þ ¼ r‘<
r‘þ1
>

; (B6)

with r> :¼ maxfr; r0g, r< :¼ minfr; r0g, and the coeffi-
cients �m are equal to �0 ¼ 1 for m ¼ 0, and �m ¼ 2 for
m � 1.

For the case with the Helmholtz operator, L ¼
�
�
þm2�2, we choose the Green function for the

half-retardedþ half-advanced field [11],

Gðx; x0Þ ¼ X1
‘¼0

X‘
m¼0

g‘mðr; r0Þ�m ð‘�mÞ!
ð‘þmÞ!P‘

mðcos�Þ

� P‘
mðcos�0Þ cosmð’� ’0Þ; (B7)

where the radial Green function g‘mðr; r0Þ is constructed
from the spherical Bessel functions of the first and second
kinds j‘ðxÞ and n‘ðxÞ,

g‘mðr; r0Þ ¼
� r‘<
r‘þ1
>

; for m ¼ 0;

�m�ð2‘þ 1Þj‘ðm�r<Þn‘ðm�r>Þ; for m � 1:
(B8)

2. Summary for iteration scheme

Equation (B3) is used as an elliptic equation solver for
the field variables f�;�a; c ; habg. In the code, the elliptic
solver is used to compute the combination �c from
Eq. (A41); to compute the potentials (A32) of the shift

vector ~�a from Eqs. (A43) and (A35); and to compute the
gauge potentials (49) from Eq. (50).

For the fluid variables, fh; ut;�g are found from
Eqs. (A77)–(A79), respectively. A detailed description of
a method to solve Eq. (A79) is found in [36]. As we use the
surface-fitted coordinates to calculate neutron stars, the
surface Rð�f;�fÞ becomes an additional variable. A stellar

surface is defined by the pressure p ¼ 0, and, instead, it is
located by a condition q ¼ p=� ¼ 0 in the code.

A solution is specified by two parameters for an equal
mass binary, which we take to be the orbital angular
momentum and the injection energy, f�; Eg. We introduce
one more parameter R0 to normalize the radial coordinate,
where R0 is half the coordinate diameter of a neutron star
along the ð�f;�fÞ ¼ ð�=2; 0Þ line. These parameters are

calculated from the conditions Rð�=2; 0Þ=R0 ¼ 1 and
Rð�=2; �Þ=R0 ¼ 1, after prescribing a value of a thermo-
dynamic variable at a point in a star, for which a central

value of h is fixed at rf ¼ 0. These conditions are applied

to Eq. (A77), and solved for the three parameters.
All these variables are assigned on each grid point, and

the parameters are calculated from the equations men-
tioned above in each iteration cycle. If we represent the

set of fluid and metric variables by �̂, we can describe the
iteration schematically as follows. The variables are up-

dated from their values at the Nth iteration cycle, �ðNÞ, to
the (N þ 1)th, �ðNþ1Þ, using softening, in the manner

�ðNþ1Þ ¼ ��̂þ ð1� �Þ�ðNÞ; (B9)

where � is the softening parameter, chosen to be in the
range 0.1 to 0.3 to accelerate convergence. For a criteria to
determine convergence, a relative difference of successive
cycles

2j�ðNþ1Þ ��ðNÞj
j�ðNþ1Þj þ j�ðNÞj < 	 (B10)

is used, with 	 ¼ 10�6 in the present calculations.
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APPENDIX C: FORMULAS FOR MASS AND
ANGULAR MOMENTUMS

Definitions of the quantities shown in tables and figures,
which characterize a solution of BNS, and their expres-
sions used in actual numerical computations, are summa-
rized in this Appendix.

The rest mass is the baryon mass density measured by
comoving observers integrated over the initial hypersur-
face, and during the inspiral phase of binary neutron star, it
is considered to be conserved. The rest mass of one com-
ponent of a binary system is written M0 and defined by

M0 :¼
Z
�
�u�dS� ¼

Z
�
�ut�c 6

ffiffiffiffi
~�

p
d3x; (C1)

where dS� ¼ r�t
ffiffiffiffiffiffiffi�g

p
d3x, and

ffiffiffiffiffiffiffi�g
p

d3x ¼ �c 6
ffiffiffiffi
~�

p
d3x

¼ �c 6r2 sin�drd�d�, because ~� ¼ f is assumed.
In this paper, the mass M1 is used to specify an equal

mass BNS sequence, and M ¼ 2M1 is used to normalize
quantities. M1 is the gravitational mass of a single spheri-
cal star whose rest mass is equal to the rest massM0 of one
neutron star in the binary system of each model (see
Table III).

The ADM mass MADM is rewritten using conformal
spatial metric,

MADM :¼ 1

16�

Z
1
ðfacfbd � fabfcdÞD�b�cddSa

¼ 1

16�

Z
1
ðfacfbd � fabfcdÞD�b ~�cddSa

þ 1

16�

Z
1
ð�2ÞfabD�bc

4dSa

¼ � 1

2�

Z
1
D
�
ac dSa; (C2)

where, in the second equality, the first term vanishes be-
cause of our choice ~� ¼ f; and c ! 1 is used in the
second term. We have calculated approximate values of
MADM using this surface integral at the boundary of the
computational domain. Also, we fit Mc =2r to c � 1 near

the boundary, to ensure a constant Mc � MADM. In the

tables, however, the values of MADM are calculated from a
formula in which the above surface integral is converted to
a volume integral using the Gauss-Stokes lemma.We apply
this on the conformal spatial hypersurface, which results in
a simpler formula; since, at spatial infinity c ! 1, ~�ab !
fab and dSa ¼ rar

ffiffiffi
f

p
d2x ¼ rar

ffiffiffiffi
~�

p
d2x ¼: d~Sa, we have

MADM ¼ � 1

2�

Z
1

~Dac d~Sa;¼ � 1

2�

Z
�

~�c d~S;

¼ 1

2�

Z
�

�
� c

8
3 ~Rþ 1

8
c 5

�
~Aab

~Aab � 2

3
K2

�

þ 2�c 5�H

� ffiffiffiffi
~�

p
d3x: (C3)

The Komar mass associated with a timelike Killing field
t� is written

MK :¼ � 1

4�

Z
1
r�t�dS�� ¼ � 1

4�

Z
�
R�

�t
�dS�

¼
Z
�
ð2T�

� � Tg��Þt�dS�;

¼
Z
�
½�ð�H þ SÞ � 2ja�

a�c 6
ffiffiffiffi
~�

p
d3x; (C4)

where dS� ¼ n�
ffiffiffiffi
�

p
d3x is used. To derive this, the global

existence of a timelike Killing field is assumed. For the
spacetime of WL/NHS formulations, no such timelike
Killing field exists. Instead, an asymptotic Komar mass
can be written

MK :¼ � 1

4�

Z
1
r�t�dS�� ¼ 1

4�

Z
1
Da�dSa

¼ 1

4�

Z
�
��d�

¼ 1

4�

Z
�

��
� ~Aab

~Aab þ 1

3
K2

�

þ £!K þ 4��ð�H þ SÞ
�
c 6

ffiffiffiffi
~�

p
d3x; (C5)

where ðG�� � 8�T��Þg�� ¼ 0 is used.

In [10], we have derived asymptotic conditions for an
equality of the ADM mass, and the asymptotic Komar
mass [39], MADM ¼ MK. The equality is related to the
relativistic virial relation for the equilibrium [40],

Z
xa�a

�r�T�
� ffiffiffiffiffiffiffi�g
p

d3x ¼ 0: (C6)

In the WL/NHS formulation the asymptotic fall-off of each
field is sufficiently fast to enforce the equality. And in this
case, the above two definitions for MK agree as well.
Finally, the total angular momentum is calculated from a

volume form of surface integral at spatial infinity

J :¼ � 1

8�

Z
1
�a

b�
bdSa ¼ 1

8�

Z
1
Ka

b�
bdSa: (C7)

To calculate J, we set the surface near the boundary of the
computational domain of the central coordinates and use
the Gauss-Stokes lemma to write

J ¼ 1

8�

Z
�
DaðKa

b�
bÞdS

¼ 1

8�

Z
�
ð8�ja�a þ Ka

bDa�
bÞdS:

¼ 1

8�

Z
�

�
8�ja�

a þ Aa
b
~Da�

b

þ 2

c
K�aD

�
ac

�
c 6

ffiffiffiffi
~�

p
d3x: (C8)

The values of J listed in the tables in next section, are
calculated from the latter formula.
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APPENDIX D: SELECTED SOLUTION
SEQUENCES

Selected waveless solutions of irrotational BNS for pa-
rametrized EOS presented in Table III of Sec. IV are

tabulated in Tables IV, V, VI, VII, VIII, IX, X, and XI.
All quantities are dimensionless in the geometric units
G ¼ c ¼ 1, except for the ADM mass which is in a unit
of solar mass MADM [M�].

TABLE V. Solution sequence for the EOS HB.

d=R0 2d=M R0=M �M MADM J=M2

1.3750 6.8380 4.9731 0.045 877 2.665 07 0.890 82

1.4062 6.9403 4.9353 0.045 086 2.665 21 0.892 16

1.4375 7.0511 4.9051 0.044 231 2.665 36 0.893 78

1.5000 7.2800 4.8533 0.042 526 2.665 80 0.898 12

1.6250 7.7600 4.7754 0.039 177 2.666 88 0.908 29

1.7500 8.2681 4.7246 0.036 025 2.668 10 0.920 72

1.8750 8.7975 4.6920 0.033 145 2.669 32 0.934 85

2.0000 9.3425 4.6712 0.030 526 2.670 57 0.949 26

2.5000 11.606 4.6423 0.022 621 2.675 11 1.0132

3.0000 13.931 4.6435 0.017 521 2.678 60 1.0789

TABLE IV. Solution sequence for the EOS 2H.

d=R0 2d=M R0=M �M MADM J=M2

1.3125 9.2784 7.0693 0.030 149 2.671 91 0.966 37

1.3438 9.4190 7.0095 0.029 649 2.672 06 0.968 19

1.3750 9.5654 6.9566 0.029 126 2.672 23 0.970 48

1.4375 9.8715 6.8671 0.028 019 2.672 65 0.975 82

1.5000 10.192 6.7948 0.026 901 2.673 11 0.982 79

1.6250 10.873 6.6912 0.024 693 2.674 22 0.999 05

1.7500 11.590 6.6229 0.022 648 2.675 37 1.0178

1.8750 12.330 6.5759 0.020 794 2.676 48 1.0375

2.0000 13.090 6.5451 0.019 118 2.677 56 1.0572

2.5000 16.234 6.4936 0.014 113 2.681 30 1.1415

3.0000 19.455 6.4852 0.010 889 2.684 04 1.2229

TABLE VI. Solution sequence for the EOS 2B.

d=R0 2d=M R0=M �M MADM J=M2

1.4375 5.5971 3.8936 0.059 912 2.661 09 0.856 42

1.4688 5.6801 3.8673 0.058 871 2.661 18 0.857 33

1.5000 5.7713 3.8475 0.057 759 2.661 33 0.858 40

1.5313 5.8622 3.8284 0.056 652 2.661 50 0.859 59

1.5625 5.9542 3.8107 0.055 575 2.661 71 0.860 99

1.6250 6.1443 3.7811 0.053 414 2.662 11 0.864 24

1.7500 6.5438 3.7393 0.049 241 2.663 18 0.872 25

1.8750 6.9613 3.7127 0.045 416 2.664 32 0.882 46

2.0000 7.3930 3.6965 0.041 907 2.665 55 0.893 11

2.5000 9.1954 3.6782 0.031 170 2.670 36 0.942 83

3.0000 11.050 3.6835 0.024 219 2.674 33 0.997 55

TABLE VII. Solution sequence for the EOS SLy.

d=R0 2d=M R0=M �M MADM J=M2

1.3750 6.7360 4.8989 0.046 804 2.664 79 0.8804

1.4375 6.9455 4.8316 0.045 130 2.665 05 0.8987

1.4687 7.0572 4.8049 0.044 256 2.665 26 0.8983

1.5000 7.1692 4.7795 0.043 403 2.665 46 0.8998

1.5625 7.4012 4.7367 0.041 683 2.666 00 0.8952

1.6250 7.6424 4.7030 0.039 990 2.666 55 0.9093

1.7500 8.1425 4.6529 0.036 778 2.667 77 0.9109

1.8750 8.6640 4.6208 0.033 842 2.668 99 0.9397

2.0000 9.2007 4.6004 0.031 172 2.670 25 0.9413

2.5000 11.431 4.5722 0.023 105 2.674 81 1.082

3.0000 13.721 4.5737 0.017 898 2.678 34 1.031

TABLE VIII. Solution sequence for the EOS APR1.

d=R0 2d=M R0=M �M MADM J=M2

1.6875 5.8207 3.4493 0.057 394 2.661 44 0.855 85

1.7500 6.0069 3.4325 0.055 113 2.661 95 0.859 33

1.8125 6.1950 3.4179 0.052 972 2.662 47 0.863 39

1.8750 6.3877 3.4068 0.050 902 2.663 02 0.867 70

1.9375 6.5845 3.3985 0.048 909 2.663 63 0.872 33

2.0000 6.7839 3.3920 0.047 008 2.664 23 0.877 06

2.5000 8.4399 3.3760 0.035 057 2.669 00 0.921 98

3.0000 10.148 3.3826 0.027 269 2.673 08 0.972 31

TABLE IX. Solution sequence for the EOS FPS.

d=R0 2d=M R0=M �M MADM J=M2

1.4375 6.3451 4.4140 0.050 851 2.663 31 0.874 58

1.4688 6.4477 4.3899 0.049 882 2.663 46 0.876 09

1.5000 6.5504 4.3669 0.048 919 2.663 64 0.877 82

1.5313 6.6534 4.3451 0.047 977 2.663 87 0.879 55

1.5625 6.7597 4.3262 0.047 029 2.664 15 0.881 56

1.6250 6.9799 4.2953 0.045 139 2.664 67 0.886 18

1.7500 7.4359 4.2491 0.041 551 2.665 85 0.896 72

1.8750 7.9127 4.2201 0.038 262 2.667 09 0.909 18

2.0000 8.4036 4.2018 0.035 261 2.668 35 0.921 83

2.5000 10.447 4.1786 0.026 166 2.673 04 0.979 44

3.0000 12.547 4.1822 0.020 291 2.676 77 1.0401
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