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Abstract
The equations governing null and timelike geodesics are derived within the
3+1 formalism of general relativity. In addition to the particle’s position,
they encompass an evolution equation for the particle’s energy leading to a
3+1 expression of the redshift factor for photons. An important application is
the computation of images and spectra in spacetimes arising from numerical
relativity, via the ray-tracing technique. This is illustrated here by images of
numerically computed stationary neutron stars and dynamical neutron stars
collapsing to a black hole.

PACS numbers: 04.25.D−, 95.30.Sf

(Some figures may appear in colour only in the online journal)

1. Introduction

The computation of trajectories of photons or test-mass particles in the Kerr metric is a
topic of major importance in relativistic astrophysics. This notably allows the investigation of
spacetime properties around black holes (see e.g. [1–6] and references therein), the aim being
to determine the black hole’s mass and spin and to test general relativity (GR). Photons and
test-mass particles follow spacetime null and timelike geodesics, respectively. Their motion is
thus governed by the so-called geodesic equation.

However, within the framework of metric theories, strong tests of GR require a comparison
of the Kerr geometry with geometries generated by alternative models of compact objects. The
metric is then generally not known analytically and must be computed numerically. Rotating
gravastars and boson stars are examples of such objects. Numerical metrics being almost
exclusively computed using the 3+1 formalism of GR (see e.g. [7]), it is quite useful to derive
the geodesic equation within this framework. This is a way to build an optimized ray-tracing
algorithm.
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In addition to the GR tests around astrophysical black holes, another field of application
is the visualization of computer-generated spacetimes, resulting from numerical relativity
studies of sources of gravitational radiation, such as gravitational collapse or coalescing binary
compact objects [8, 9]. Such spacetimes are generally computed with the 3+1 formalism, and
this motivates the design of a ray-tracing algorithm based on a 3+1 geodesic equation.

A ray-tracing code capable of using a 3+1 metric, GYOTO, has recently been developed in
our group [10]. This code is written in C++, is open source and can be freely downloaded from
[11]. It computes null and timelike geodesics, both in the Kerr metric and in any numerically
computed spacetime. The goal of this paper is to derive the 3+1 geodesic equation that allows
GYOTO to compute images and spectra in numerically generated spacetimes, and to give the
first examples of astrophysical interest of this capability. To our knowledge, in previous works,
the geodesic equation has only been integrated in numerical spacetimes for the purpose of
locating event horizons [12–14], but not to form images nor to compute spectra.

The plan of the paper is as follows. Section 2 derives the 3+1 geodesic equation. Section 3
derives the 3+1 expression of the redshift factor, useful for ray-tracing computations. Section
4 presents the first applications of ray-tracing in numerical spacetimes considering stationary
and collapsing neutron star spacetimes. Finally, section 5 gives conclusions and perspectives
for future works.

2. 3+1 geodesic equation

2.1. Framework

Let (M, gαβ ) be a four-dimensional spacetime, i.e. a four-dimensional smooth manifold M
endowed with a pseudo-Riemannian metric gαβ , of signature (−,+,+,+). We denote by ∇α

the Levi–Civita connection associated with gαβ . The 3+1 formalism of GR (see e.g. [7, 8, 15])
is based on the assumption that (M, gαβ ) is globally hyperbolic, so that it can be foliated by
a one-parameter family of spacelike hypersurfaces (�t )t∈R. Let nα be the future-directed unit
normal to the hypersurface �t . nα is collinear to the gradient of t, the proportionality factor
defining the lapse function N: nα = −N∇αt. The unit timelike vector nα is the 4-velocity of
the so-called Eulerian observers OE, i.e. the observers whose worldlines are orthogonal to the
hypersurfaces �t .

Using standard notations, we denote by γαβ the metric induced by gαβ on each hypersurface
�t (first fundamental form). Since �t is assumed to be spacelike, γαβ is a Riemannian metric
(i.e. positive definite). One has

γαβ = gαβ + nαnβ (1)

and γ α
β is the orthogonal projector onto �t . We denote by Dα the Levi–Civita connection

associated with the metric γαβ on �t . The 4-acceleration of an Eulerian observer is
aα := nμ∇μnα and obeys

aα = Dα ln N. (2)

In particular, nμaμ = 0, so that aα is tangent to �t .
The extrinsic curvature tensor, or second fundamental form, of the hypersurface �t is

defined by

Kαβ := −γ μ
αγ ν

β∇μnν . (3)

One has Kαμnμ = 0 as well as the useful relation (see e.g. [7])

∇βnα = −Kαβ − Dα ln Nnβ. (4)
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In this paper, we shall consider only coordinate systems on M that are adapted to the
3+1 foliation (�t )t∈R, i.e. a coordinate system (xα ) such that x0 = t. The three remaining
coordinates3 (xi) span the hypersurfaces �t : by construction the vectors ∂/∂xi are tangent to
�t . The vector ∂/∂t is transverse to �t and its 3+1 decomposition defines the shift vector βα:(

∂

∂t

)α

= Nnα + βα, with nμβμ = 0. (5)

The knowledge of the lapse function N, the shift vector4 β i and the induced metric γi j is
sufficient to reconstruct the spacetime metric gαβ according to

gμν dxμ dxν = −N2 dt2 + γi j(dxi + β i dt)(dx j + β j dt). (6)

In the 3+1 formalism, the solution of the Einstein equation is obtained by solving a Cauchy
problem (with constraints) for (γi j, Ki j): some initial values being given on a hypersurface
�0, obeying the constraint equations, the fundamental forms (γi j, Ki j) are evolved in time to
construct the whole spacetime [7–9]. In this formulation, the lapse and shift are not dynamical
variables; their role is to set the coordinates.

2.2. Geodesic equation in 3+1 covariant form

Let us consider a particle P of 4-momentum pα . P can either be a photon, in which case
pμ pμ = 0, or a massive particle, of mass m = √−pμ pμ. IfP is subject only to the gravitational
field, its worldline L is a either a null (photon), or a timelike (massive particle) geodesic of
(M, gαβ ). The 4-momentum then obeys

pμ∇μ pα = 0. (7)

This is the geodesic equation in covariant four-dimensional form. To write it in 3+1 form, we
start by performing an orthogonal decomposition of pα according to

pα = E(nα + V α ), with nμV μ = 0. (8)

The scalar E is nothing but the energy of P as measured by the Eulerian observer OE; indeed,
nα is the 4-velocity of OE, and then (8) implies E = −pμnμ. The vector V α is by construction
tangent to �t and coincides with the 3-velocity of P as measured by OE. To show it, we note
that the orthogonal projection Pα := γ α

μ pμ of pα on OE’s rest space is the linear 3-momentum
of P with respect to OE and (8) implies Pi = EV i, which is exactly the relation between the
3-momentum and the 3-velocity of a particle (massive or not) of energy E. For a photon, the
property pμ pμ = 0, together with nμnμ = −1 and (8), imply VμV μ = ViV i = 1, i.e. with
respect to OE, the photon travels at the speed of light (as it should!). For a massive particle,
one has instead pμ pμ < 0. The assumption E > 0, (8) leads then to ViV i < 1: P cannot reach
the speed of light.

In the remaining part of this section, we do not consider a single geodesic, but a full
congruence of them. This means that pα , E and V α are fields defined on the spacetime.
Accordingly, we may consider their derivatives in any direction and not only along a geodesic
as in (7). Let us then rewrite (7) by substituting (8) for pα and making use of (2) and (4) to
express nμ∇μnα and ∇μnα; we obtain

(nμ + V μ)∇μE(nα + V α ) + E
(
Dα ln N + nμ∇μV α − Kα

μV μ + V μ∇μV α
) = 0. (9)

3 Latin indices span {1, 2, 3}, whereas Greek indices span {0, 1, 2, 3}.
4 We write β i when we consider the shift as a tangent vector on the manifold �t and βα when we consider it as a
vector on M, as in (5); then β0 = 0. We extend this notation to all tensor fields tangent to �t , in the sense that their
contraction with nα or nα vanishes (for instance γαβ or the vector V α introduced below).
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Now, in the 3+1 formalism, the natural evolution operator is the Lie derivative £m along the
vector field mα := Nnα , for it preserves the property of being tangent to �t [7]. Therefore, we
write

nμ∇μV α = N−1mμ∇μV α = N−1
[
£mV α + V μ∇μ(Nnα )

]
= N−1£mV α − Kα

μV μ + V μDμ ln Nnα. (10)

Similarly, since E is a scalar field,

nμ∇μE = N−1£mE. (11)

Also, the four-dimensional and three-dimensional covariant derivatives of V α are related by

DβV α = γ α
μγ ν

β∇νV μ, (12)

from which we deduce the identity

V μ∇μV α = V μDμV α − KμνV μV νnα. (13)

Note that, as in many places in the paper, we have used the property nμV μ = 0 along with
expression (4) for ∇βnα .

Inserting (10), (11) and (13) into (9), we obtain, after division by E,

N−1£mV α + V μDμV α − 2Kα
μV μ + E−1(N−1£mE + V μDμE )V α + Dα ln N

+ [
V μDμ ln N − KμνV μV ν + E−1(N−1£mE + V μDμE )

]
nα = 0. (14)

Let us note that the first line of this equation contains only terms tangent to �t , whereas the
term in the second line is manifestly parallel to nα . Hence, the projections of (14) along nα

and onto �t give, respectively,

N−1£mE + V μDμE + E
(
V μDμ ln N − KμνV μV ν

) = 0 (15)

N−1£mV α + V μDμV α − 2Kα
μV μ + E−1(N−1£mE + V μDμE )V α + Dα ln N = 0. (16)

These two equations involve only quantities intrinsic to �t . We may then write them in a
three-dimensional form, using (5) to express the Lie derivative along mα :

£m = ∂

∂t
− £β. (17)

If, in addition, we substitute (15) for £mE in (16), we obtain
1

N

(
∂

∂t
− £β

)
E + V jDjE + E(V jDj ln N − KjkV

jV k) = 0 (18)

1

N

(
∂

∂t
− £β

)
V i + V jDjV

i − 2Ki
jV

j + V i(KjkV
jV k − V jDj ln N) + Di ln N = 0. (19)

This system constitutes the 3+1 geodesic equation in covariant form for a congruence of
geodesics.

2.3. 3+1 geodesic equation for a single geodesic

Let us consider a specific member L of the geodesic congruence, representing the worldline of
a given particle P . In a coordinate system (xα ) = (t, xi) adapted to the 3+1 foliation (�t )t∈R

(cf. section 2.1), the equation of L can be written as

xi = Xi(t), (20)

where the Xis are three smooth functions R → R. This is nothing but a parametrization of L
by the coordinate time t. Note that, a priori, t is not an affine parameter along L.
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Figure 1. Relation between the 3-velocity of P relative to the Eulerian observer V i = d�i/(N dt),
the coordinate displacement dXi/dt and the shift vector β i.

By definition, the velocity of P with respect to the Eulerian observer OE is

V i = d�i

dτE
, (21)

where d�i is the displacement vector of Ps worldline with respect to the OEs one between t
and t + dt, and dτE is the increment of OEs proper time between t and t + dt. The origin of the
(xi) coordinates being ‘shifted’ by the amount β i dt with respect to OE’s worldline, we have
(cf figure 1)

dτE = N dt and d�i = β i dt + dXi. (22)

Hence,

V i = 1

N
(Ẋ i + β i), with Ẋ i := dXi

dt
. (23)

The variation of E along L associated with the parametrization by t is

dE

dt
= ∂E

∂t
+ Ẋ j∂ jE, (24)

where ∂ j := ∂/∂x j. Also, since E is a scalar field, £βE = β j∂ jE and V jDjE = V j∂ jE. Thanks
to (23), (18) can be then written as

dE

dt
= E(NKjkV

jV k − V j∂ jN). (25)

This evolution equation for the particle energy relative to the Eulerian observer is equivalent
to equation (6) of [16]. The latter is actually an evolution equation in term of some affine
parameter λ along the geodesic, i.e. a parameter whose associated tangent vector is (up to
some constant factor) the particle’s 4-momentum: pα = dxα/dλ. Then, nμ pμdλ = nμdxμ,
which results in −Edλ = −Ndt. Hence, the relation between the two parametrizations of L:

dλ

dt
= N

E
. (26)

Taking into account (26), we check that (25) is indeed equivalent to (6) of [16].
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Let us now consider equation (19); we may express the Lie and covariant derivatives in
terms of partial derivatives:

1

N

(
∂

∂t
− £β

)
V i + V jDjV

i = 1

N

(
∂V i

∂t
− β j∂ jV

i + V j∂ jβ
i

)
+ V j∂ jV

i + 3�i
jkV

jV k,

where the 3�i
jks are the Christoffel symbols of the metric γi j in �t . Then, by means of (23)

and the analog of (24) for V i:

dV i

dt
= ∂V i

∂t
+ Ẋ j∂ jV

i, (27)

we transform (19) into

dV i

dt
= NV j

[
V i

(
∂ j ln N − KjkV

k
) + 2Ki

j − 3�i
jkV

k
] − γ i j∂ jN − V j∂ jβ

i.

Let us supplement this equation by the evolution equation for Xi deduced from (23), to form
the system⎧⎪⎪⎪⎨
⎪⎪⎪⎩

dXi

dt
= NV i − β i (28a)

dV i

dt
= NV j

[
V i

(
∂ j ln N − KjkV

k
) + 2Ki

j − 3�i
jkV

k
] − γ i j∂ jN − V j∂ jβ

i. (28b)

Given the spacetime metric in 3+1 form, and hence the terms N, β i, γ i j, 3�i
jk and Ki j, (28)

constitutes a system of six first-order ordinary differential equations, that it is sufficient to
integrate with respect to t from initial data (Xi(0),V i(0)) to obtain the geodesic worldline of
P in the form (20).

Note that, contrary to (18)–(19), the energy equation (25) and the system (28) are
meaningful for a single geodesic: they involve only the derivatives dE/dt, dXi/dt and dV i/dt,
which are derivatives along the geodesic (and not transverse to it). To strengthen this point,
we present in appendix A an alternative derivation of (25) and (28), which does not rely on
the assumption that L belongs to some geodesic congruence.

A 3+1 form of the geodesic equation has already been derived by Hughes et al [12]
(cf also section 7.2 of the textbook [9]). However, it differs from the present one by the
following features: (i) it involves the components pi of the 4-momentum instead of V i, (ii)
the evolution parameter is the affine parameter λ and not the coordinate time t, (iii) it is valid
only for massless particles. Moreover, in [12] no evolution equation for the particle’s energy,
equivalent to our equation (25) is provided. Note also that the 3+1 geodesic system of [12] is
applied to the determination of the event horizon, not to the formation of images.

In appendix B, we combine (28a) and (28b) into a single second-order equation for Xi(t).
We recover in this way the standard 4-dimensional geodesic equation. However, this equation
is less convenient for numerical integration for it involves time derivatives of the lapse and
shift, contrary to the system (28).

3. Redshift factor

3.1. General formula

The integration of (25) forward in t gives the energy of the particle P with respect to the
Eulerian observer at any point. Let us consider the case in which P is a photon emitted at some
event A by an observer Oem (the ‘emitter’) and received at some event B by an observer Orec

(the ‘receiver’). Note that these observers are not necessarily Eulerian observers. In this way,

6
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the problem considered here generalizes that of [16], which was limited to Eulerian observers.
The redshift factor z is defined by

1 + z = νem

νrec
, (29)

where νem (resp. νrec) is the photon frequency measured by Oem (resp. Orec). The frequency
being related to the energy by the Planck–Einstein formula ε = hν, the above relation can be
written

1 + z = εem

εrec
= pμ

∣∣
A uμ

em

pμ

∣∣
B

uμ
rec

, (30)

where εem = − pμ

∣∣
A uμ

em (resp. εrec = − pμ

∣∣
B uμ

rec) is the photon energy with respect to Oem

(resp. Orec) and uα
em (resp. uα

rec) is the 4-velocity of Oem at A (resp. of Orec at B). Let us perform
the 3+1 decomposition of these 4-velocities:

uα
em = �em

(
nα + Uα

em

)
with nμUμ

em = 0 (31)

uα
rec = �rec

(
nα + Uα

rec

)
with nμUμ

rec = 0. (32)

�em (resp. �rec) is then the Lorentz factor of Oem (resp. Orec) with respect to the Eulerian
observer OE and Uα

em (resp. Uα
rec) the 3-velocity of Oem (resp. Orec) with respect to OE. From

the normalization relation uμuμ = −1, we obtain

�em = (
1 − γi jU

i
emU j

em

)−1/2
and �rec = (

1 − γi jU
i
recU

j
rec

)−1/2
. (33)

Combining (8) and (31) yields

εem = − pμ

∣∣
A

uμ
em = E|A �em

(
1 − γi j V i

∣∣
A

U j
em

)
. (34)

A similar relation holds for εrec, so that (30) becomes, once (33) is taken into account,

1 + z = E|A
E|B

1 − γi j V i
∣∣
A U j

em

1 − γi j V i
∣∣
B U j

rec

(
1 − γi jUi

recU
j

rec

1 − γi jUi
emU j

em

)1/2

. (35)

The procedure to compute the redshift factor is then as follows. Given some initial data5

E|A = E(t = tA), V i
∣∣
A = V i(t = tA) and Xi(t = tA) = xi

A, where (xi
A) are the coordinates

of the event A on the hypersurface �tA , one integrates the system formed by (25) and (28)
to obtain E|B = E(t = tB) and V i

∣∣
B = V i(t = tB). Then, one uses (35) to evaluate z. Note

that since (25) is a homogeneous equation in E and only the ratio E|A / E|B is involved in
the expression of z, the initial value E|A can be chosen arbitrarily. Of course, if one wants to
manipulate some physically relevant value of E, one may deduce E|A from the photon energy
with respect to the emitter, εem, via (34).

3.2. Limiting cases

As a check of formula (35), let us consider the special case of an inertial observer in Minkowski
spacetime receiving a photon emitted by a moving source. Choosing for (�t )t∈R the time
foliation associated with that inertial observer, we have OE = Orec, so that Ui

rec = 0. Moreover,
N = 1 and Ki j = 0, so that (25) reduces to dE/dt = 0, implying E|B = E|A. Accordingly,
(35) reduces to

1 + z = 1 − fi j V i
∣∣
A U j

em√
1 − fi jUi

emU j
em

, (36)

5 In a ray-tracing code, the integration is usually performed backward, i.e. from B to A. Accordingly, the roles of A
and B have to be swapped in the following discussion.
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where fi j is the flat metric. We recover the special relativistic formula for the Doppler effect.
In particular, if the photon travels in the same direction (up to a sign) as the emitter, we have

fi j V i
∣∣
A U j

em = U and fi jUi
emU j

em = U2 with U := ±
√

fi jUi
emU j

em, with a + (resp. −) sign if the
emitter is approaching to (resp. receding from) the receiver, so that (36) gives the well-known
formula

1 + z =
√

1 − U

1 + U
. (37)

Another check of formula (35) and equation (25) is provided by the propagation of a photon
between two static observers in Schwarzschild spacetime. Choosing (�t ) to be the standard
foliation associated with Schwarzschild time coordinate t, the static observers coincide with
Eulerian observers, so that we have Ui

em = 0 and Ui
rec = 0. Accordingly, (35) reduces to

1 + z = E|A
E|B

. (38)

On the other side, (25) reduces to
dE

dt
= −E

N
(Ẋ j∂ jN) (39)

because Ki j = 0 for the foliation (�t ) and β i = 0 in standard Schwarzschild coordinates
(t, r, θ, ϕ). Since ∂N/∂t = 0, we may rewrite the above equation as

dE

dt
= −E

N

dN

dt
, (40)

from which we deduce immediately
d

dt
(EN) = 0. (41)

Hence, E = const/N and (38) becomes 1 + z = N|B / N|A. Using the value of the lapse in
terms of the mass parameter M of Schwarzschild metric and the Schwarzschild coordinate r,
N = √

1 − 2M/r, we obtain

1 + z =
√

1 − 2M/rB

1 − 2M/rA
. (42)

We recognize the classical formula for the gravitational redshift (Einstein effect). In particular,
in the ‘Sirius B configuration’ (rB → +∞ and M/rA � 1), we obtain z � M/rA, as it should
be.

4. Applications

4.1. Implementation in the GYOTO code

The 3+1 geodesic equations (25) and (28) have been implemented in the ray-tracing code
GYOTO [10, 11]. The integration in t is performed by means of a fourth-order Runge–Kutta
algorithm. The 3+1 fields

(
N, β i, γi j, Ki j

)
have to be provided by an external code. An example

of using the 3+1 fields from a numerical relativity spectral code is given in section 3 of [10],
where it is shown how to obtain the values of

(
N, β i, γi j, Ki j

)
at each point of the geodesic

from the outputs of the spectral code.
The derivatives with respect to some affine parameter λ along the geodesic,

(dt/dλ, dr/dλ, dθ/dλ, dϕ/dλ), can be derived from the 3+1 derivatives (dr/dt, dθ/dt, dϕ/dt)
provided that one knows the value of dt/dλ. The latter is deduced from the value of E resulting
from the integration of (25), by noting that E = −nμ pμ = N pt and pt = mut = m dt/dλ for
a massive particle (λ is then the particle’s proper time) and pt = dt/dλ (up to some constant
rescaling of λ) for a photon.
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Figure 2. Relative error, in units of 10−5, on a null geodesic integrated by GYOTO in a numerically
computed Kerr metric with spin parameter a = 0.5 M, when compared to the standard integration
using the analytical expression of the Kerr metric, for the Boyer–Lindquist coordinates r (yellow),
θ (green) and ϕ (magenta) as a function of time coordinate t. The geodesic is integrated backward
in coordinate time from t = 1000 M, r = 100 M until t = 0, r = 865 M. It reaches the smallest
distance (r = 4.3 M) from the black hole around t = 900 M: this is where the error is the largest.

4.2. Numerical tests

A preliminary test of the 3+1 computation of geodesics in a numerical spacetime has been
provided in figure 8 of [10], where a timelike geodesic computed by the 3+1 method was
compared to that computed by integrating the standard four-dimensional geodesic equation
(equation (B.1)). The spacetime was that of a rapidly rotating relativistic star, numerically
generated by means of the LORENE/nrotstar code [17, 18].

We present here a more detailed test, regarding a null geodesic around a Kerr black hole,
with a spin parameter a = 0.5 M (M being the black hole mass). The Kerr spacetime is
described in Boyer–Lindquist coordinates (t, r, θ, ϕ) and its 3+1 ‘numerical’ version has been
prepared on a spectral grid via a code using the LORENE library [18]. A test null geodesic,
that comes close to the event horizon and therefore subject to strong-field effects, has been
integrated by GYOTO via two methods: (i) integration of the 3+1 geodesic equations in the
numerically generated Kerr spacetime, and (ii) standard 4–dimensional integration using the
analytical expression of the Kerr metric in Boyer–Lindquist coordinates [10].

Figure 2 shows the resulting relative difference between the spatial coordinates
(r(t), θ (t), ϕ(t)) obtained by the two methods. The maximum relative error, occurring when
the geodesic comes at the closest distance to the black hole, is of a few 10−5, which is very
satisfactory.

4.3. Images of a stationary rotating neutron star

Using the 3+1 geodesic equations implemented in GYOTO, we have computed the image
perceived by a distant observer of a rapidly rotating neutron star in a spacetime computed

9
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Figure 3. Images (i.e. map of specific intensity) of a non-rotating (left) and 716 Hz rotating (right)
stationary neutron star, with an optically thick surface emitting black body radiation at 106 K. The
color bar is common to the two panels and is given in SI units, W m−2 ster−1 Hz−1. The frequency
of the photons in the observer’s frame is chosen to be 1017 Hz, close to the maximum of the Planck
function at 106 K.

by the LORENE/nrotstar numerical code [17, 18]. The neutron star model is built upon an
equation of state derived by Akmal et al [19] and is described in detail in section 3.5.3 of [17].
The mass of the star in M = 1.4M	 and it is chosen to be either non-rotating or rotating at the
frequency of 716 Hz (the largest observed frequency [20]).

Figure 3 shows the image of these two models of neutron stars, assuming the surface of
the star is optically thick and emits as a black body at 106 K. The effect of relativistic beaming,
due to the star’s rotation, appears clearly on the right panel. Moreover, the rotating star is
oblate, the ratio of its apparent polar radius to its apparent equatorial radius is 94%. This effect
is a known consequence of its rotation.

Since the spacetime is stationary and axisymmetric, two quantities must be conserved
along each geodesic: the components pt and pϕ of the 4-momentum. A third constant of
motion is the squared norm of the 4-momentum : pμ pμ = 0 (null geodesic). The constancy
of these three quantities is not imposed in the code. We therefore monitor them along the
geodesics in order to check that the integration is performed correctly. In the present case, the
squared norm of the photon pμ pμ stays below a few 10−5, the maximum relative error on pt

is a few 10−6 and the maximum relative error on pϕ is a few 10−4.
Let us end this section by a remark that concerns also the followiing section. Considering

a neutron star at a distance of 1 kpc with a size of 10 km, its apparent size disregarding any
relativistic effect on the photon’s trajectory would be less than 10−10 arc s. This is of course
far beyond the resolution of any current or near future instrument. The present and following
sections must therefore not be read as describing possible observational tests.

4.4. Images of the collapse of a neutron star to a black hole

To illustrate the 3+1 geodesic computation in dynamical spacetimes, we consider the
astrophysical scenario of an unstable non-rotating neutron star collapsing to a black hole. This
scenario is numerically modeled using the CoCoNuT code [21], which solves the relativistic
hydrodynamics equations, coupled to the Einstein equations for the gravitational field, within
the so-called conformal flatness condition (CFC). In the multi-dimensional case, CFC is an
approximation to general relativity where the 3-metric γi j (1) is conformally flat:

γi j = ψ4 fi j, (43)

10
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where ψ is the conformal factor and fi j a flat 3-metric. In our particular case of spherical
symmetry (no rotation), this is not an approximation but reduces to the choice of isotropic
coordinates. Therefore, the whole non-rotating simulation can be exactly described within
CFC, even after the formation of the black hole’s apparent horizon.

Initial models of spherical neutron stars are equilibrium configurations on the unstable
branch, computed in isotropic gauge using the LORENE/rotstar_dirac code [18, 22]. The
equation of state used for generating initial data and for computing the collapse is a polytropic
one, neglecting any temperature effects; pressure p is related to baryon density n̄ through

p = κ n̄γ̄ , (44)

with the adiabatic index γ̄ = 2 and κ = 4.01 × 10−56 in SI units.
The neutron star used as initial data for the CoCoNuT code is a 1.62M	 (gravitational

mass) configuration, corresponding to a 1.77M	 baryon mass. Its central density is 1.56 fm−3,
central lapse Nc = 0.40 and circumferential equatorial radius Rcirc = 10.4 km. The global
accuracy indicator [25] gives 4 × 10−9. To this configuration, we add a perturbation to the
density profile ensuring that the unstable star collapses to a black hole and does not evolve to
the stable branch (migration). The density profile is modified according to

ρ → ρ

[
1 + A sin

(
πr

R0

)]
, (45)

where r is the coordinate radius, A = 0.01 is the relative amplitude of the perturbation and
R0 = 10 km its typical size. For the CoCoNuT code, we use 500 radial cells on a uniform grid.

The collapse proceeds as expected (see e.g. [23]), until the formation of an apparent
horizon detected by the finder described in [24], at t = 0.438 ms after the beginning of the
collapse. The simulation is stopped at t = 0.495 ms, when all the matter has entered the black
hole (up to numerical accuracy). The run is stopped because of the too strong increase of the
gradients in many quantities (e.g. the conformal factor ψ) near the center of the star. This is
due to the use of maximal slicing gauge condition (trace of Ki j set to zero), which has the well-
known property of yielding a singularity-avoiding time slicing. Nevertheless, as stated before,
most of the matter has entered the black hole at that time and there is no longer evolution of
the black hole. During the computation of the collapse, quantities which are used to integrate
the system (28) are exported from CoCoNuT to GYOTO following the procedure described in
section 3.3 of [10]. These quantities are the 3+1 metric and related fields

(
N, β i, γi j, Ki j

)
,

together with the fluid 4-velocity uμ

fluid, the radius of the neutron star and the location of the
black hole apparent horizon.

When integrating a null geodesic, GYOTO uses an interpolation at third order in the time
coordinate to determine the value of the 3+1 fields at each integration step. Each geodesic is
integrated backward in time until it either reaches the star’s surface, or the black hole’s event
horizon. The difficulty here is that the location of the event horizon is not known by CoCoNuT,
only that of the apparent horizon (that lies inside the event horizon) is known. The integration
of geodesics that reach the star after the event horizon radius has become larger than the star’s
radius is thus non trivial. There are thus two stop conditions for geodesics that reach the central
object (i.e. for geodesics not escaping towards infinity).

• The star’s surface is hit. In such cases, the specific intensity emitted by the hit point can
be computed.

• The fourth-order Runge–Kutta adaptive step becomes smaller than a given lower limit
(fixed to 10−6 M). This latter case corresponds to a geodesic ‘accumulating’ near the event
horizon. Let us remind the reader that a backward integrated geodesic can never cross the
event horizon (by the very definition of an event horizon).

11
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Figure 4. Images (i.e. map of specific intensity) of a non-rotating collapsing neutron star, with an
optically thick surface emitting black body radiation at 106 K. The color bar is common to the four
panels and is given in SI units, W m−2 ster−1 Hz−1. The frequency of the photons in the observer’s
frame is chosen to be 1017 Hz, close to the maximum of the Planck function at 106 K.

The value of the integration step lower limit is chosen in such a way that the image of the
event horizon on the observer’s screen is smooth and spherically symmetric (choosing a too
big limit results in a non spherically symmetric, noisy event horizon image).

Moreover, the norm of the 4-momentum is not conserved in the very last integration steps
close to the apparent horizon. This is due to the fact that the quantity dt/dλ becomes very large
(it should, actually, diverge if the integration were perfect) at the event horizon: as the norm
is proportional to this quantity, it is no longer conserved. As a check of this fact, the evolution
of the norm divided by dt/dλ has been considered. This new quantity stays close to zero even
at the horizon.

Figure 4 shows four images of a collapsing non-rotating neutron star, as perceived by a
distant observer. The first image is computed before the start of the collapse: it is thus the
image of a stationary (unstable) neutron star. The other three images show different stages
of the collapse, until the whole star nearly disappears below the event horizon. The intensity
is shown in logarithmic scale, since the very high gravitational redshift leads to a very high
dynamic range in the last images. The event horizon first appears at the center of the star due
to the fact that this part of the star is closer to the observer: photons at different parts of the
image have been emitted at different coordinate times t, later times for the central parts of
the image, earlier times for the external parts of the image. As a consequence of this fact, the
coordinate radius of the star at which a given photon is emitted is not the same for all pixels in
a given image: it is shorter at the center of the image (more evolved part) than at the edge. For
instance, the coordinate radius of the star at the emission of the photon reaching the central
pixel of the second image on the left is of 2.7 km, while it is 4.7 km on a pixel located at the
edge of the star’s image. The coordinate radius of the star on the left image is of about 7 km
(here, the coordinate radius is the same at any pixel on the image, as the left star is stationary,
and smaller than the circumferential radius cited above of 10.4 km), whereas the coordinate
radius of the star in the rightmost image is of approximately 2.9 km for a pixel at the edge of
the image. The fact that the ratio of the apparent radii of the star on the left and right panels
of figure 4 is much less than 7/2.9 � 2.4 is due to the strong bending of geodesics in the
vicinity of the nascent black hole, resulting in its apparent radius being larger as the object
becomes more compact. This effect is exactly the same as the one which makes the black hole
shadow (the black area in the image of a black hole in front of an emitting region) larger than
the projected size of the event horizon. For a Schwarzschild black hole, the enlarging factor
is 3

√
3/2 � 2.6. This explains why the shrink of the size of the image of the collapsing star

shown in figure 4 is not very pronounced. Finally, let us stress the fact that the time elapsed
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between the appearance of the event horizon and the disappearance of the whole star behind
it is extremely short. It is of approximately 0.2 ms in the observer’s frame.

Figures 3 and 4 are the first examples of ray-traced images in numerically computed
spacetimes. In this work, the physics of emission at the surface of the neutron star has not
been studied in detail at all. In particular, the emission during the collapse will most certainly
be quite different from a simple blackbody. However, the aim of the computations presented
here is not (yet) to propose astrophysically relevant images, but to give first examples of the
interest of such a ray-tracing code as GYOTO, capable of integrating geodesics in numerical
spacetimes. Future works will be devoted to applying this code to diverse astrophysically
realistic scenarios.

5. Conclusion

We have re-expressed the geodesic equation within the framework of the 3+1 formalism of
general relativity, obtaining equations (25), (28) and (35). Equation (25), ruling the evolution
of the particle energy with respect to Eulerian observers, has already been derived (in an
equivalent form) by Merlı́n and Salgado [16]. On the other hand, the system (28) for the
position of the geodesic and the redshift formula (35) are novel. In particular, (28) significantly
differs from previous 3+1 geodesic equations in the literature [12], as discussed in section 2.3.
The 3+1 equations have been implemented in the ray-tracing code GYOTO [10, 11], which has
enabled us to compute images of stationary and collapsing neutron star numerical spacetimes
generated by the LORENE/nrotstar [17, 18] and CoCoNuT [21] codes.

Future work will be devoted to the development of ray-tracing computations in numerical
spacetimes for astrophysically relevant problems. In particular, we shall try to carry on
computations of images and spectra of astrophysical phenomena in the vicinity of compact
objects, which can be alternative to black holes. This work is of particular interest in the
perspective of a direct test of the nature of the central compact object of the Galaxy, Sgr A∗

(see the review [26], and in particular the section devoted to the alternatives to the black hole
case).

The capability of GYOTO to integrate geodesics in numerical spacetimes will be very
interesting too, in order to visualize spacetimes, be it binary black holes spacetimes, binary
neutron stars spacetimes, black hole—neutron star binary spacetimes, or any other interesting
metric (see reviews on these topics by [27–30]) . GYOTO could be used to image a background
sky of stars, or a simple coordinate grid, putting in light the effect of strong gravity on these
background objects.
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Appendix A. Derivation for a single geodesic

Here, we consider a single (null or timelike) geodesic L and not a congruence as in section
2.2. In the context of the 3+1 formalism, a natural parameter along L is the time coordinate
t that labels the foliation (�t )t∈R. A priori, t is not an affine parameter along L; it is related
to the affine parameter associated with pα by (26). The vector tangent to L associated with
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the parametrization by t is qα := dxα/dt, with dxα being the infinitesimal displacement vector
along L corresponding to the infinitesimal parameter increment dt. The vector qα obeys
qμ∇μt = 1. Moreover, qα and pα being vectors both tangent to L, they must be collinear. We
deduce then from (8) that

qα = N(nα + V α ). (A.1)

Here, the fact that the proportionality coefficient in (A.1) is N comes from qμ∇μt = 1,
nμ∇μt = N−1 and V μ∇μt = 0. Taking into account (8), the geodesic equation (7) is equivalent
to

qμ∇μ

[
E(nα + V α )

] = 0. (A.2)

Expanding and using (4), as well as (A.1), we obtain

qμ∇μE (nα + V α ) + E
(
DαN − NKα

μV μ + qμ∇μV α
) = 0. (A.3)

Note that the only derivatives of E and V α that appear in this equation are derivatives along
L (through the operator qμ∇μ). Consequently, (A.3) is valid for a single geodesic, contrary to
(14) which holds only for a congruence.

The projection of (A.3) along nα yields

−qμ∇μE + Eqμnν∇μV ν = 0,

where we have used nνV ν = 0, nνDν ln N = 0 and nνKν
μ = 0. Now, since nνV ν = 0, we have

nν∇μV ν = −V ν∇μnν , i.e. thanks to (4), nν∇μV ν = V ν (Kμν + Dν ln N nμ). In addition, from
the very definition of the vector qα , qμ∇μE = dE/dt. We thus end with

dE

dt
= EV j

(
NKjkV

k − ∂ jN
)
, (A.4)

which is exactly (25).
The orthogonal projection of (A.3) onto �t is performed via the operator γ α

ν . Thanks to
the properties γ α

νnν = 0, γ α
νV ν = V α , γ α

νDνN = DαN and γ α
νKν

μ = Kα
μ, this yields

qμ∇μE V α + E
(
DαN − NKα

μV μ + γ α
νqμ∇μV ν

) = 0. (A.5)

To evaluate the last term, let us expand the velocity vector V α onto the coordinate basis
(eα ) := (∂/∂xα ) associated with the coordinates (xα ) = (t, xi). Since V α is tangent to �t it
has no component along e0 = ∂/∂t:

V α = V jeα
j . (A.6)

We then have, since γ α
νeν

j = eα
j (for e j is tangent to �t),

γ α
νqμ∇μV ν = qμ∇μV j eα

j + V jγ α
νqμ∇μeν

j

= qμ∇μV j eα
j + NV jγ α

ν (n
μ + V μ)∇μeν

j

= qμ∇μV j eα
j + NV j

(
γ α

νnμ∇μeν
j + V μDμeα

j

)
. (A.7)

Now, thanks to (10) with V α replaced by eα
j , we can write

γ α
νnμ∇μeν

j = γ α
ν

(
N−1£meν

j − Kν
μeμ

j + eμ
j Dμ ln N nν

)
= γ α

νN−1
(
£e0 eν

j − £βeν
j

) − Kα
μeμ

j

= N−1£e jβ
α − Kα

μeμ
j , (A.8)

where we have used (17), γ α
νKν

μ = Kα
μ, γ α

νnν = 0, £e0 e j = [e0, e j] = 0 (since e0 and e j are
vectors of a coordinate basis), £βeα

j = −£e jβ
α , and γ α

ν£e jβ
ν = £e jβ

α (since eα
j and βα are

both tangent to �t). Thanks to (A.8), (A.7) becomes

γ α
νqμ∇μV ν = qμ∇μV j eα

j + V j
[
£e jβ

α + N
(
V μDμeα

j − Kα
μeμ

j

)]
. (A.9)
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Substituting this expression into (A.5) and setting α = i (for α = 0, the equation reduces to
0 = 0), we obtain

qμ∇μV j ei
j = −E−1qμ∇μE V iV j

[
N

(
Ki

kek
j − V kDkei

j

) − £e jβ
i
] − DiN + NKi

jV
j.

Let us consider the components of this vector equation in the coordinate basis (e j). We then
have ei

j = δi
j, Dkei

j = 3�i
jk, DiN = γ i j∂ jN and, by the definition of a Lie derivative,

£e jβ
i = ∂ jβ

i. Since in addition, qμ∇μV j = dV i/dt and qμ∇μE = dE/dt, we obtain

dV i

dt
= − 1

E

dE

dt
V i + NV j

(
2Ki

j − 3�i
jkV

k
) − γ i j∂ jN − V j∂ jβ

i. (A.10)

Substituting (A.4) for dE/dt, we recover (28).

Appendix B. Second order form of the 3+1 geodesic equation

The standard (four-dimensional) geodesic equation is

d2Xα

dλ2
+ 4�α

μν

dXμ

dλ

dXν

dλ
= 0, (B.1)

where (i) X0 := t, in addition to the Xis defined by (20), (ii) the 4�α
μνs are the Christoffel

symbols of the spacetime metric gαβ and (iii) λ is an affine parameter along the particle’s
worldline L. If L is timelike, λ is equal to a constant times the particle’s proper time τ . More
specifically, if λ is the affine parameter associated with the particle’s 4-momentum and m is the
particle’s mass, we deduce from the relations pα = dxα/dλ and pα = m dxα/dτ that λ = τ/m.

Let us check that (B.1) can be recovered from the system (28). Extracting V i from (28),
substituting it in (28) and expanding, we obtain a second-order differential equation for Xi(t):

Ẍ i + 1

N

[
Kjk(Ẋ

j + β j)(Ẋ k + βk) − (2Ẋ j + β j)∂ jN − ∂N

∂t

]
Ẋ i

+ 2

[
Djβ

i − NKi
j + β i

N
(Kjkβ

k − ∂ jN)

]
Ẋ j +

(
3�i

jk + β i

N
Kjk

)
Ẋ jẊ k

+ Nγ i j∂ jN − 2NKi
jβ

j + β i

N

(
Kjkβ

jβk − ∂N

∂t
− β j∂ jN

)

+ ∂β i

∂t
+ β jD jβ

i = 0. (B.2)

On the other hand, the 4�α
μνs appearing in (B.1) can be expressed in terms of the 3+1 quantities

as follows (cf appendix B of [8]):

4�0
00 = 1

N

(
∂N

∂t
+ β j∂ jN − Kjkβ

jβk

)
(B.3)

4�0
0 j = 1

N

(
∂ jN − Kjkβ

k
)

(B.4)

4�0
jk = − 1

N
Kjk (B.5)

4�i
00 = Nγ i j∂ jN − 2NKi

jβ
j + β i

N

(
Kjkβ

jβk − ∂N

∂t
− β j∂ jN

)
+ ∂β i

∂t
+ β jD jβ

i (B.6)

4�i
0 j = Djβ

i − NKi
j + β i

N

(
Kjkβ

k − ∂ jN
)

(B.7)
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4�i
jk = 3�i

jk + β i

N
Kjk. (B.8)

In addition, we have
dXα

dλ
= Ẋα dt

dλ
(B.9)

d2Xα

dλ2
= Ẍα

(
dt

dλ

)2

+ Ẋα d2t

dλ2
. (B.10)

Accordingly, for α = 0, (B.1) becomes (note that Ẋ0 = 1 and Ẍ0 = 0):

d2t

dλ2
+

(
dt

dλ

)2 (
4�0

00 + 24�0
0 jẊ

j + 4�0
jkẊ jẊ k

) = 0.

In view of (B.3)–(B.5), we obtain(
dt

dλ

)−2 d2t

dλ2
= 1

N

[
Kjk(Ẋ

j + β j)(Ẋ k + βk) − (2Ẋ j + β j)∂ jN − ∂N

∂t

]
. (B.11)

For α = i, (B.1) becomes, thanks to (B.9)–(B.10),

Ẍ i +
(

dt

dλ

)−2 d2t

dλ2
Ẋ i + 4�i

00 + 24�i
0 jẊ

j + 4�i
jkẊ jẊ k = 0.

In view of (B.11) and (B.6)–(B.8), we recover (B.2).
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