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ABSTRACT

Aims. We calculate energy release associated with a first order phase transition at the center of a rotating neutron star. This quantity
is equal to the difference in mass-energies between the initial normal phase configuration and the final configuration containing a su-
perdense matter core, with total baryon number and angular momentum kept constant.
Methods. The calculations of the energy release are based on precise numerical 2D calculations, in which both the polytropic equa-
tions of state (EOS) as well as realistic EOS of the normal phase are used. Presented results are obtained for a broad range of
metastability of initial configuration and size of the new superdense phase core in the final configuration. When the equatorial radius
of the dense core of the superdense phase is much smaller than the stellar equatorial radius, analytical expressions for the energy
release are obtained.
Results. For a fixed “overpressure”, δP, defined as the relative excess of central pressure of a collapsing metastable star over the
pressure of the equilibrium first-order phase transition, the energy release ∆E remarkably does not depend on the stellar angular
momentum and coincides with that for nonrotating stars with the same δP. The energy release is proportional to (δP)2.5 for small δP,
when sufficiently precise brute force 2D numerical calculations are not possible. At higher δP, results of 1D calculations of ∆E(δP)
for non-rotating stars are shown to reproduce, with very high precision, the exact 2D results for rotating stars.
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1. Introduction

One of the intriguing predictions of some theories of dense mat-
ter in neutron-star cores is a phase transition into an “exotic”
state (i.e., not observed in the laboratory). Theoretical predic-
tions include boson condensation of pions and kaons, and decon-
finement of quarks (see, e.g., Glendenning 2000; Weber 1999).

First-order phase transitions accompanied by discontinuities
in the thermodynamical potential densities, are the most inter-
esting as far as the structure and dynamics of neutron stars are
concerned. In the simplest case, one considers states consisting
of one pure phase. Because of the high degeneracy of matter
constituents, effects of temperature are neglected. In thermody-
namic equilibrium, the phase transition occurs at a well defined
pressure P0, and is accompanied by a density jump at the phase
interface.

A first-order phase transition allows for a metastability of the
pure “normal” (lower density) phase at P > P0. Consequently,
a metastable core could form during neutron-star evolution in
which central pressure increases, due to accretion or spin-down.
Then, nucleation of the exotic (higher density) phase implies for-
mation of a core of the exotic phase and is accompanied by a
core-quake and energy release. A theory that enables one to cal-
culate the changes in stellar parameters implied by a first-order
phase transition in a non-rotating neutron star was developed
by Haensel et al. (1986) and Zdunik et al. (1987) (an earlier
Newtonian theory was presented by Schaeffer et al. 1983, see
also Diaz Alonso 1983). The energy released in a corequake was

shown to depend strongly on the size of the dense phase core, the
leading term being proportional to the fifth power of this core ra-
dius.

In the present paper we calculate the energy release due to
a phase transition in a rotating neutron star. Our theory is based
on 2D simulations and is much closer to reality than the 1D the-
ory developed in Haensel et al. (1986) and Zdunik et al. (1987).
In the real world, evolutionary processes that lead to the in-
crease of the central density in neutron star (accretion, slowing-
down), as well as the collapse itself, all occur in a rotating star.
Of course, the 2D calculations are incomparably more difficult
than the 1D ones. However, as we show in the present paper,
when suitably parametrized, the energy released during a core-
quake depends only on the excess of the central pressure of the
metastable configuration over P0, being to a good approximation
independent of the angular momentum of the collapsing star.

In the present paper we restrict ourselves to the case when
the radius of the core of the new phase is much smaller than the
stellar radius, and the typical energy release will be ∼1050 erg.
This is to be contrasted with a strong phase transition, considered
in relation to long gamma-ray bursts at cosmological distances,
where the core radius is a sizable fraction of the stellar radius
and energy release ∼1052−1053 erg (see, e.g., Berezhiani et al.
2003).

The paper is organized in the following way. In Sect. 2 we
introduce notations and describe general properties of the first-
order phase transitions in the stellar core with particular em-
phasis on the metastability and instability of neutron star cores.
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Analytic considerations, concerning the response of a star to
a first-order phase transition at its center, and in particular, the
calculation within the linear response approximation of the en-
ergy release associated with such a transition, are presented in
Sect. 4. Analytic models of the EOSs with first-order phase tran-
sitions, allowing for very precise 2D calculations, are considered
in Sect. 3.1, where we derive generic properties of the energy
release due to a first order phase transition at the center of a ro-
tating star. In Sect. 3.2 we present our results obtained for a real-
istic EOS of normal phase, and we confirm remarkable proper-
ties of the energy-overpressure relation, obtained in the previous
section. In Sect. 5 we present practical formulae suitable for the
calculation of energy release associated with a first order phase
transition at the center of a rotating neutron star. Finally, Sect. 6
contains discussion of our results and several examples of the
application of our formula for the energy release.

2. EOS with a first order phase transition

Let us consider a general case of a first-order phase transition be-
tween the N (normal) and S (superdense) phases of dense matter.
At densities under consideration, all constituents of matter are
strongly degenerate, and the temperature dependence of pressure
and energy density can be neglected. At a given baryon density,
nb, the energy density of the N-phase of matter (including rest
energies of particles that are matter constituents) is EN(nb) and
pressure PN(nb). The baryon chemical potential = enthalpy per
baryon in the N phase is µN = (PN + EN)/nb. Similarly, one can
calculate thermodynamic quantities for the S-phase.

The local pressure P is a proper thermodynamic variable,
continuous and monotonous in the stellar interior. The equilib-
rium state of the matter at a given P is realized at the minimum
of enthalpy per baryon. For P < P0, this minimum is realized by
the N phase, and for P > P0 – by the S one. The value of P0 is
obtained from the crossing condition µN(P) = µS(P), which also
yields the values of the matter densities, ρN and ρS, and the cor-
responding baryon densities, nN and nS, at the N-S phase coex-
istence interface. These parameters are obtained assuming ther-
modynamic equilibrium. A schematic plot of the EOS of matter
with a first order phase transition N-S, in the vicinity of the phase
transition point, is plotted in Fig. 1.

The solid segment of the N-phase curve, in Fig. 1, corre-
sponds to the stable N-phase state. For pressure above P0, the
N phase becomes metastable with respect to the conversion into
the S phase. The S phase can appear through the nucleation pro-
cess – a spontaneous formation of S-phase droplets. However,
an energy barrier resulting from the surface tension at the N-S in-
terface delays the nucleation for a time identified with a lifetime
of the metastable state τnucl. The value of τnucl decreases sharply
with P > P0, and drops to zero at some Pcrit, where the en-
ergy barrier separating the S-state from the N-state vanishes. For
P > Pcrit the N phase is simply unstable and converts with no
delay into the S phase.

Consider a neutron star built of matter in the N phase. Its
central pressure Pc increases during spin-down or accretion.
A quasistatic compression of the N-phase core moves matter into
a metastable state with P > P0. A metastable core of the N phase
is bounded by a surface with P = P0. As soon as the central com-
pression timescale of metastable core τcomp = Pc/Ṗc becomes
equal to τnucl, droplets of the S phase appear at the star center.
This happens at central pressure P = Pnucl < Pcrit. The S-phase
droplets introduce a pressure deficit, destabilize the metastable
core and consequently, the whole star. The S-phase core grows,
and the process of the N −→ S phase transition proceeds until the
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Fig. 1. A schematic representation, in the ρ − P plane, of an EOS with
a first order phase transition. Solid segments: stable N and S phase (in
thermodynamic equilibrium). Dash-dot segment: metastable N phase.
The S phase nucleates at Pnucl, which depends on the temperature and
the compression rate. At Pcrit nucleation of the S phase is instantaneous,
because the energy barrier, separating the N phase from the S phase,
vanishes.

final hydrostatic equilibrium state is reached. In the final state,
a central core of the S-phase is bounded by an N-S coexistence
surface of constant pressure P0 on which the matter density un-
dergoes a jump from ρN on the outer N-phase side to ρS on the
inner S-phase side.

In the present paper we restrict ourselves to the case of the
density jump satisfying ρS <

3
2 (ρN + P0/c2). Therefore, stellar

configurations with a core of the S phase of arbitrarily small
radius are stable (Seidov 1971; see also Kaempfer 1981; and
Zdunik et al. 1987). The case of a strong first order phase transi-
tion with ρS >

3
2 (ρN + P0/c2), when configurations with a small

S phase core are unstable and collapse into those with a large
S phase core, will be presented in a separate paper.

The metastable stellar state of the N phase can be described
by central overcompression – the fractional excess of density rel-
ative to ρN ,

δρ ≡ ρc − ρN

ρN

· (1)

Equivalently, we define a dimensionless central overpressure,

δP ≡ Pc − P0

P0
· (2)

Let us now consider the timescales and their interplay. First,
there is a microscopic nucleation timescale τnucl(δP). The time
dependence δP(t) results from a global evolution of the neutron
star and depends on the astrophysical scenario of central com-

pression; it will be characterized by τcomp = P0/Ṗc = 1/δ̇P. The
time needed to compress matter in the center of the star from P0

to Pc is, in a linear approximation, equal to τcomp · δP. During
this time the system remains in a metastable state. In contrast,
the functional dependence τnucl(δP) is given by the local dense
matter microphysics and is a very sensitive function of P, being
very large for P close to P0 and dropping abruptly above some
pressure (see for example, Iida & Sato 1997). As a result, the
condition for the time t = tquake at which the metastable stellar
configuration collapses can be estimated by solving the equation:

τnucl

[
δP(t)

]
= q · τcomp · δP (3)

where a small dimensionless coefficient q reflects the very steep
character of the function τnucl(δP) and is of the order 10−2−10−3

(details will be presented in a forthcoming paper).
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Fig. 2. Transition from a one-phase configuration C with a meta-stable
core of radius rN to a two-phase configuration C� with S-phase core
with a radius rS. By “radius” we mean an equatorial circumferential
radius. These two configurations have the same baryon number A = A�

and total angular momentum J = J�.

3. Calculation of the energy release

We restrict ourselves to axially symmetric, rigidly rotating neu-
tron stars in hydrostatic equilibrium. In what follows, by “ra-
dius” we mean a circumferential radius in an equatorial plane.

We assume that at a central pressure Pc = Pnucl the nucle-
ation of the S phase in an overcompressed core, of radius rN , of
configuration C, initiates the phase transition and formation of
an S-phase core of radius rS in a new configuration C∗, as pre-
sented in Fig. 2. Transition to an S phase at the core boundary,
occurring at rS , is associated with a density jump characterized
by λρ = ρS/ρN . Because we are interested in relatively small S-
phase cores, we will approximate its EOS by a polytrope with
the exponent γS , equal to the adiabatic index of the S phase at
ρ = ρS . Of course, in reality the adiabatic index of the S phase
does depend on the density. However, for small cores the poly-
tropic EOS is an excellent approximation, and in the limit when
only leading terms in the rS -expansion are kept, this approxima-
tion becomes exact (Bejger et al. 2005).

Having a pair of EOSs, one with and one without a soften-
ing by phase transition, the next step is to compare the hydro-
static equilibria of neutron stars corresponding to each of these
EOSs. The models that we calculate are rigidly rotating, axisym-
metric solutions of Einstein’s equations. The numerical compu-
tations have been performed by means of a code built on the
Lorene library (http://www.lorene.obspm.fr), with an ac-
curacy of 10−6 or better measured using general relativistic virial
theorems. The neutron-star models can be labeled by the central
density ρc and rotational frequency f = Ω/2π. These param-
eters are natural from the point of view of numerical calcula-
tions (ρc and f are input parameters in the numerical code). But
we can imagine another parametrization, more useful for other
purposes. For example, to study the stability of rotating stars, the
better choice is central density, ρc, and total angular momentum
of the star, J.

Below ρN , the EOS for two cases (with and without phase
transition) is the same. For the problem of non-rotating stars,
considered two decades ago (Haensel et al. 1986; Zdunik et al.
1987), the configuration with ρc = ρN was denoted by C0, and
treated as a “reference configuration”. Configurations C0, C,
and C� are depicted in the A − Pc plane in Fig. 3. The radius,

CC

A

P
c

PP
0 nucl

A

A

nucl

0 C
0

*

P
c
*Pcrit

crit

Fig. 3. Total baryon number A of the hydrostatic stellar configuration
versus central pressure Pc, at fixed stellar angular momentum J, for the
EOS depicted in Fig. 1. The solid line denotes stable states, dash-dot
line – the states that are meta-stable with respect to the N −→ S tran-
sition. For a central pressure Pnucl the S-phase nucleates in the super-
compressed core of configuration C, and this results in a transition
C −→ C∗ into a stable configuration with a S-phase core and cen-
tral pressure P∗c. Both configurations C and C∗ have the same baryon
number A.

gravitational mass, and the total baryon number of C0 will be
denoted by R0, M0, and A0. For rotating stars we do not have
one “reference configuration” but a set of “reference configu-
rations” which depend on rotation rate {C0( f )} or total angular
momentum {C0(J)} of the initial metastable configuration. As
discussed in Sect. 2, there also exists a set of configurations re-
sulting from the metastability of the matter in N phase. The max-
imum central pressure which can be reached in the N-phase star
is defined by the value Pc = Pnucl. For Pc > Pnucl, the phase
transition in the center of the star takes place on a timescale
much shorter than time of the stellar evolution (accretion or
spin down). Thus the “critical line” defined by the condition
Pc = Pnucl corresponds to the configurations for which nucle-
ation in the center triggers a collapse of the whole star and
a corequake. From the astrophysical point of view, the phase
transition in the center followed by a corequake takes place at
a point on a “critical line”. Consequently, “normalization” of
results with respect to parameters of the “reference configura-
tion” is more complicated than in the case of non-rotating stars.
There are many possibilities to define the “reference configura-
tion” for a star with a metastable core (Pc > P0), rotating with
frequency f and possessing a total angular momentum J and to-
tal baryon number A. Such a “reference configuration” should
be defined as the configuration with the central pressure equal
to P0, as shown in Fig. 3. However, we can choose either a ref-
erence configuration star with the same J or the same f as that
of the collapsing metastable configuration C. In fact, to reach
the metastable configuration with Pc > P0, we have to cross
the “reference line” at the point defined by the evolutionary pro-
cess leading to the instability. Properties of the “critical line” and
“reference line” in the space of rotating configurations of slow-
ing down or accreting neutron stars will be analyzed in more
detail in a forthcoming paper.

We additionally assume that the transition of the star from
a one-phase configuration to the configuration with a small dense
core of S phase, takes place at fixed baryon number A (no matter
ejection) and fixed total angular momentum of the star J (radia-
tion loss of J neglected).
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Fig. 4. The energy release due to the corequake of rotating neutron
star as a function of the dimensionless equatorial radius of the new
phase core, rS . Different curves correspond to the different values of
total angular momentum of rotating star, fixed along each curve, J =
(0, 0.1, . . . , 0.9) ×GM2

�/c, from the bottom curve to the top curve.

The energy release during transition C(A, f ) −→ C�(A, f �)
is calculated from the change of the stellar mass-energy during
this process,

∆E =
[
M(C) − M(C�)

]
A,J

c2. (4)

3.1. Energy release for polytropic EOSs

In the present section we simplify the analysis, removing prob-
lems connected with numerical precision. To this aim, we will
use the polytropic EOSs for the N and S phases. The poly-
tropic EOSs not only guarantee a high precision of numerical
calculation, but also open the possibility of the exploration of
a wide region of the parameter space. A description of the poly-
tropic EOSs and their application to relativistic stars with phase
transitions was presented in detail in our previous publications
in this series (Bejger et al. 2005; Zdunik et al. 2006).

In Fig. 4 we presented the energy release as a function of
rS = rS/R(C), for several values of the angular momentum of the
metastable configurations C(J). The reference configuration is
C – the initial configuration of the corequake with a metastable
core in the center and central pressure Pc = Pnucl. As we see in
Fig. 4, the energy release corresponding to a given value of rS

depends rather strongly on the rotation rate (here presented for
the fixed values of total angular momentum).

In Fig. 5 we presented the energy release as a function of
the overpressure of the metastable N phase in the center of the
metastable starC(A, J), δP = Pnucl/P0−1, for several values of J.
As we already stressed, the value of Pnucl (or δP) can be deter-
mined from microscopic considerations, combined with physical
conditions prevailing at the star center as well as with their time
evolution rate. Having determined Pnucl, we can determine the
energy release, ∆E, due to the corequake C(A, J) −→ C�(A, J),
where the metastable one-phase configuration, and the final
two-phase configuration, have the same values of the baryon

Fig. 5. The energy release due to the mini-collapse of a rotating neutron
star as a function of the overpressure δP of the N phase of the matter
in the center of the star, for the polytropic EOS (γ = 2) with a first or-
der phase transition located at three different points (pressures P0) for
which the mass of the reference nonrotating configuration is equal to
0.7, 1.0, 1.2 M�. For each value of P0 two models of S phase EOS are
considered (one of the examples of the EOS depicted in Fig. 7). They
correspond to the S phase described by the polytropes with γS = 2.5
(upper curve) and γS = 3 (lower curve). The points of different color
correspond to the different values of total angular momentum of the ro-
tating star, J = (0, 0.1, . . . , 0.9) ×GM2

�/c. For a given EOS, results for
all rotating configurations can be very well approximated by a single
curve, independent of J. (This figure is available in color in the elec-
tronic form.)

number A and total angular momentum J, which are conserved
during the transition.

As we see in Fig. 5, the energy release in a (mini)collapse
of a rotating star is independent of the rotation rate of the col-
lapsing configuration, and depends exclusively on the degree of
metastability of the N phase at the stellar center (departure of
matter from chemical equilibrium), measured by the overpres-
sure δP. In particular, to calculate the energy release associated
with a corequake of a rotating neutron star, it is sufficient to
know the value of ∆E for a non-rotating star of the same central
overpressure, which can be deduced from expressions derived in
Zdunik et al. (1987).

The configurations C(A, J) and C�(A, J), considered in this
section, are really fast rotating ones, not so far from the
Keplerian limit. This is visualized in Fig. 6, where we plotted
the oblateness of the star and the kinetic to potential energy ra-
tio. And still, in spite of fast rotation and large oblateness, the
energy release is the same as in a non-rotating star of the same
initial central overpressure.

3.2. Energy release for realistic EOS

In the present section we consider a realistic EOS of the N phase.
In order to explore how a realistic rotating neutron star will re-
spond to the appearance of a core of S phase core, we used a
recent SLy EOS of Douchin & Haensel (2001). The SLy EOS
describes in a unified way (i.e., starting from a single effective
nuclear Hamiltonian) both the crust and the core of a neutron
star. In its original version, the SLy EOS assumes that the neu-
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Fig. 6. Top panel: the ratio of polar radial coordinate to the equatorial
radial coordinate radius versus frequency of rotation. Bottom panel: the
ratio of the kinetic energy, T and the absolute value of the potential
energy, W versus stellar angular momentum. Calculations performed
for stellar configurations consisting of the N phase of dense matter, de-
scribed by the polytropic EOS. Large dots correspond to the values of
the total stellar angular momentum, J = (0.1, . . . , 0.9) ×GM2

�/c, which
were used in Figs. 4, 5.

Fig. 7. The EOSs with first order phase transitions, used in the present
paper. Upper panel: the SLy EOS for the N phase, with a phase transi-
tion to the dense S phase. We assume nN = 0.54 fm−3 and λn = nS/nN =
1.25, which results in λρ = ρS/ρN = 1.28987. For a further descrip-
tion of the EOS, see the text. Lower panel: polytropic models of the
EOS with a first order phase transition. We assume nN = 0.25 fm−3 and
λn = nS/nN = 1.25, which results in λρ = ρS/ρN = 1.2647.

tron star core is composed of neutrons, protons, electrons and
muons. We introduced a softening by a first order phase transi-
tion at nN, as shown in Fig. 7.

We considered two EOSs of the S phase. Both were of poly-
tropic form P(nb) = KS n

γS

b , with γS = 2.5 and γS = 3, respec-

Fig. 8. The energy release due to the mini-collapse of rotating neutron
star as a function of the metastability of the normal phase of the matter
in the center of the star for the SLy EOS with first order phase transi-
tion located at two different points (pressures P0) for which the mass
of the reference nonrotating configuration is equal to 1.0, 1.4 M�. For
each value of P0 two models of the dense core EOS are presented –
polytropes with γ = 2.5 (upper curve) and γ = 3. The points of differ-
ent color correspond to the different values of total angular momentum
of rotating star. The results for all rotating configurations can be very
well approximated by one curve. (This figure is available in color in the
electronic form.)

tively. We assume the values of nN and nS = λnnN . The values
of nN and λn determine then P0. Equality of baryon chemical po-
tentials at P = P0 fixes the other constant of the S-phase EOS,
which is the value of energy per baryon (including rest energy)
at zero pressure. In this way, the values of nN and λn, together
with γS , fully determine the EOS of the S phase.

In Fig. 8 we show the energy release due to the C(A, J) −→
C�(A, J) transition versus overpressure, for two selected values
of γS . As in the case of the polytropic models of the N phase,
all color points lie along the same line. For a given overpres-
sure δP, the energy release does not depend on J of the col-
lapsing metastable configuration, confirming in this way re-
sults obtained for the polytropic EOSs. This property is fulfilled
very well for a broad range of of stellar angular momentum,
J = (0.1, . . . , 0.7) ×GM2�/c.

Our numerical results for different equations of state and
models of phase transitions presented in Figs. 5 and 8 show that
the energy release associated with a phase transition in the core
does not depend on the stellar rotation rate for a fixed overpres-
sure at which the phase transition takes place. To estimate the
“accuracy” of this conclusion we can calculate the departures
of the energy release for the rotating stars from the curve de-
termined for nonrotating configurations. The relative differences
are of the order of 1–2% for δP > 0.1 (except for the small-
est masses in Figs. 5, 8 (M = 0.7 M� and M = 1 M� respec-
tively) where they can be as large as 5%). For δP < 0.1 the
relative differences are larger because the absolute value of ∆E
is very small and the differences are comparable to the numerical
accuracy.
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4. Calculation of the energy release using linear
response theory

Below ρN , the EOS for two cases (with and without phase tran-
sition) is the same. The ambiguity of the definition of C0 for
rotating stars was discussed in Sect. 3. We can choose a refer-
ence configuration star with the same J or the same f as that of
collapsing metastable one. To reach the metastable configuration
with Pc > P0, we have to cross the “reference line” at the point
defined by the evolutionary process leading to the instability.

We assume that transition of the star from a one-phase con-
figuration to the configuration with a small dense core built of
S phase takes place at fixed baryon number A (no matter ejec-
tion) and fixed total angular momentum of the star J (radia-
tion loss of J neglected). Thus for a fixed baryon number A and
fixed J, we will calculate the mass-energy difference between C
and C�.

We assume that the mass of the S-phase core is much smaller
than the total stellar mass. Therefore, from now on we will be
able to restrict ourselves to a linear response of neutron star to
the appearance of the new dense S-phase core. The calculation
is based on expressing the change in the density profile, due to
the presence to a small core, as the combination of two inde-
pendent solutions of the linearly perturbed equations of stellar
structure (Haensel et al. 1986; Zdunik et al. 1987). The presence
of a denser phase in the core changes the boundary condition
at the phase transition pressure P0 and allows us to determine
the numerical coefficients in the expression for the density pro-
file change. The leading term in the perturbation of the boundary
condition at the edge of the new phase results from the mass ex-
cess due to the higher density of the new S phase as compared to
the N one in the supercompressed core.

4.1. Non-rotating neutron stars

We use expressions obtained for static case by Haensel et al.
(1986), and Zdunik et al. (1987). For a non-rotating configura-
tion of hydrostatic equilibrium, the density jump ρN → ρS leads
to the lowest-order expression for the core-mass excess (with re-
spect to the pure N-phase configuration),

δmcore =
4
3
π(ρS − ρN )r3

S
+ O(r5

S
). (5)

The radius of the overcompressed N-phase core, rN , is connected
to the overpressure that can be achieved by the N phase of mat-
ter by

δP =
2π
3

GxN ρN (1 + xN )(1 + 3xN )r2
N
, (6)

where xN = P0/ρN c2.
The conservation of the stellar baryon number during the

C −→ C� transition implies a relation between rN and rS in which
neglecting terms r4

N
and higher, reads

(1 + 3xN )r2
N
= (3 − 2λρ + 3xN )r2

S
− (1 − λρ) aN r3

S
(7)

where aN is a numerical coefficient depending on C0.
Using then Eqs. (6) and (7), the leading term for the energy

release expression∝r5
S

contains a prefactor (λρ−1)(3−2λρ+3xN),
while the next order term ∝r6

S
contains a prefactor (λρ − 1)2. The

final expression for a normalized energy release reads

∆E ≡ M − M∗

M0
� (λρ − 1)(3 − 2λρ + 3xN)α1 rS

5

+(λρ − 1)2 α2 rS

6, (8)

where rS ≡ rS/R0. The coefficients α1 and α2 are functionals of
the static reference configuration, C0(J = 0). Expressing now rS

in terms of overpressure, we obtain the energy release in terms
of the overpressure,

∆E50 � (λρ − 1)

(3 − 2λρ + 3xN)1.5
β1 (δP)2.5, (9)

where we use standard notation E50 ≡ E/1050 erg. The coef-
ficient β1 depends only on the EOS of the N phase. More pre-
cisely, this coefficient is a functional of the nonrotating reference
configuration C0 and depends rather weakly on the mass M0
of the reference configuration C0 for a rather broad range of
masses, between 1 M� and 0.8 Mmax. For EOSs considered in
the present paper, numerical calculations give to a good approx-
imation β1 � 0.016.

4.2. Rotating neutron stars

The numerical results of Sect. 3 clearly show that for for a given
central overpressure of collapsing configuration, δP, the energy
release does not depend on J and coincides with that of non-
rotating stars. Therefore, the formula (9) of Sect. 4.1 is valid also
in the rotating case, provided δP is sufficiently small. Our calcu-
lations show that this formula is quite precise for δP <∼ 0.05.
The prefactor in front of β1, involving λρ and xN , is identical to
those obtained for the J = 0 transition in Haensel et al. (1986)
and Zdunik et al. (1987). The coefficient β1 depends only on the
EOS of the N phase. More precisely, this coefficient is a func-
tional of the nonrotating reference configuration C0.

5. Numerical estimates of the energy release

For practical application, and for small overpressures, δP < 0.1,
it is convenient to summarize results obtained in Sects. 3.1–3.2
in a formula

∆E50 = a1

(
δP
)2.5
. (10)

The only dependence of coefficient a1 on the phase transition
parameter λρ is via prefactors,

a1 =
(λρ − 1)

(3 − 2λρ + 3xN )1.5
β1, (11)

which allows for a rapid re-calculation of a1 when one changes
the value of the density jump.

For the phase transition model considered in Sects. 3.2, the
energy accompanying phase transition in a metastable star with
central overpressure δP = 0.1 is about 2 × 1050 erg, and becomes
one order of magnitude smaller for δP = 0.05.

6. Discussion and conclusions

The most important result of the present paper is that the total
energy release associated with a first order phase transition at
the center of a rotating neutron star depends only on the over-
pressure at the center of the metastable configuration and is in-
dependent of the star rotation rate. This result holds even for
fast stellar rotation, when the star shape deviates significantly
from sphericity, and J � 0.9GM2�/c, and for overpressures as
high as 10–20%. This property is of great practical importance
because it implies that the calculation of the energy release for
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a given overpressure, requiring very high precision to guarantee
A = A�, can be reduced to the case of non-rotating spherically
symmetric stars.

To illustrate the practical importance of our result, let us con-
sider the case of overpressure δP = 0.03, when the energy re-
lease is 2 × 1049 erg. For a 1.4 M� star this constitutes about 10−5

of the stellar mass-energy. Therefore, to arrive at a meaningful
result for the energy of this magnitude, conservation of the to-
tal baryon number has to be satisfied at the level of one part in
a million, which is next to impossible for a 2D calculation with
a realistic EOS. However, such a precision can be easily reached
for spherical stars, provided the EOS is used in a thermodynam-
ically consistent way (see, e.g., Haensel & Proszynski 1982).

Moreover, we have shown that for overpressures smaller
than 5%, the energy release is proportional to power 2.5 of the
overpressure, with the coefficient weakly dependent on the mass
of collapsing configuration, for stellar masses in the range from
1 M� to about 0.8 Mmax.

The energy release ∆E that we calculated is an absolute up-
per bound on the energies that can be released as a result of
a phase transition at the star center. The available channels may
include, for example, stellar pulsations, gravitational radiation,
heating of stellar interior, and X-ray emission from the neutron
star surface. Moreover, the phase transition in a rotating star im-
plies shrinking of stellar radius, decrease of the moment of in-
ertia, and spin-up of rotation. These topics will be considered in
our next paper.

The present paper refers to the case of a small core of the
superdense phase. Therefore, as the energy release scales as the

fifth power of the core radius, the energy release is two-three or-
ders of magnitude smaller than that obtained by, e.g., Berezhiani
et al. (2003). The case of phase transitions in rotating neutron
stars leading to large cores and energy release ∼1052 erg is now
being studied.
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