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Chapter 7

PROSPECTS

7.1. Scale Relativity and Cosmology.

Introduction.

We have shown in the preceding chapter how the principle of scale
relativity, even in its “special” version (i.e. linear in logarithm form), was
able to shed new light on questions such as the charges and masses of
elementary particles and the origin and values of some of the fundamental
scales of microphysics. Scale invariance alone (as expressed in the standard
renormalization group approach or in empirical models based on “scaling”)
does not permit one to derive the existence of universal characteristic scales
in Nature: on the contrary such scales break the naive scale invariance, and
they have to be postulated on the ground of observations. We have
demonstrated with scale relativity that going from scale invariance to scale
covariance provides us with fundamental scales: the GUT scale emerges
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from the splitting  of the Planck scale (since the Planck length scale and the
Planck mass scale become different in the new theory) and the electroweak
scale emerges from the postulated value 1/2π of the charge at infinite
energy.

There is however an important question, which we already considered
briefly in the previous section and which we want to address here more
thoroughly: is it possible that every fundamental scale in Nature emerges
from constraints which are set at the smallest scales ? We shall adopt a more
general view: namely that the fundamental scales in Nature are determined
by constraints which are set at both the small and the large scales. This
will lead us to considering the largest scales in Nature, i.e., to study the
relations of scale relativity with cosmology.

What are the arguments in favour of our conjecture ? One may first
recall that, from a methodological point of view, the fractal approach allows
one to do that naturally. As remarked above, the standard renormalization
group is only a semi-group since one always integrates from the small
(length) scale to the large scale. Conversely, fractals are built in the opposite
way: a generator is defined at the large scale and used to define the
structures at smaller scales. Thus fractals provide us with an opportunity to
change the usual reductionist approach of science. We have already
encountered some clues for the existence of constraints set at both the small
and the large scales:
*Two semi-empirical formulae for the masses of the Z and W bosons have
been given in Sec. 6.11 (Eqs. 6.11.7, 6.11.8): one equation relates
(2/3)mZ +(1/3)mW  to the Planck scale, but the other relates (4/9)mZ +(5/9)mW

to the electron scale;1

*We have suggested an equation for the fine structure constant (6.11.15)
where it is determined by a constraint written at the electron and Bohr
scales, rather than integrated from the high energy bare charge.2

1 Subsequent works have not supported the validity of these relations, which have therefore been given
up.

2 This approach has not been followed up in subsequent works.
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*A fractal model has been given (Sec. 5.10) suggesting that the muon and
tau  masses may be connected with the electron mass.1

All these arguments lead to the same grand question: how is the scale
of the electron, which owns the smallest mass for an elementary charged
particle, determined? It has already been suggested that the mass scale of
elementary particles is, in the end, determined by the global mass of the
Universe: one of the strongest and most mysterious argument in favour of
this thesis is the well-known large number coincidence:

(h
_2 H0 / Gc)1/3   ≈  me α-1 ,

where H0 is the present value of the Hubble constant (≈ 3 x 10−18 s-1),
which measures the expansion rate of the Universe. One could consider this
coincidence as pure numerology, but, as remarked by Weinberg,1 such a
good agreement with this combination of constants is very improbable.  The
hope that this relation contains “a fundamental though as yet unexplained
truth” led several physicists, in particular Dirac,2 to proposing alternative
cosmologies with varying constants (because H varies with time). We now
know that such variations of constants are ruled out by observations (see
Sec. 6.7), but the fundamental underlying questions remain to be asked. We
shall see afterwards that scale relativity allows us to express these questions
in a new way and to reactualize the Mach-Einstein principle.

That scale relativity must have things to say about cosmology is also
apparent in the huge number of problems which remain open in today's
cosmology and in the fact that most of these problems are related to scale
and scaling laws. Let us list them (in a certainly non-exhaustive way):
*What is the value of the Hubble constant ? This is a fundamental scale
problem, since the inverse of the Hubble constant gives the age of the
Universe (to some multiplicative factor of order unity which is a function of
the deceleration parameter q0 and the cosmological constant Λ).
*What is the value of the cosmological constant ? There has been attempts
at understanding the cosmological constant in terms of various physical
phenomena, in particular as a vacuum energy density (see e.g. Weinberg3).

1 A possible justification of this relation, according to which the mu and tau lepton masses scale to
lowest order as mµ/me =   3 x 4.13 and mτ/me = 3 x 4.15, has been given in the reference: Nottale L.,
2004, American Institute of Physics Conference Proceedings  718, 68-95.
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There is however a trivial remark which is seldom made (except in the
frame of the static Einstein model of the Universe) on this fundamental,
universal and absolute constant: that its dimensional equation is the inverse
of the square of a length:

Λ  =  
1
L2  .

The small value of the cosmological constant is connected with the fact that
L is at the cosmological scale. A vanishing cosmological constant, as
suggested by quantum gravity arguments,4,5 corresponds to L infinite. But
if the cosmological constant is finite, this means that there exists an
invariant length of the order of the radius of the universe, while the
universe and any length at the cosmological scale is subject to expansion
(compare this paradox to the Planck scale paradox which we have
presented in Sec. 6.7). It has already been remarked that there is a relation
between scale invariance (and its breaking) and the value of the
cosmological constant.6

*What determines the characteristic scales of galaxies, clusters and
superclusters of galaxies,  and large scale structures in the Universe such as
the recently discovered Great Wall7 and the possible 128 h -1 M p c
periodicity8 ? (here h stands for the ratio of the Hubble constant over
100 km/s.Mpc and 1 Mpc= 3.08 x 1024 cm). The current (very active)
attempts at understanding such questions are once again “reductive”: the
hope is to get the present structures from a theory of formation and
evolution of structures which makes them start from the Big Bang (i.e. at
small scale and remote time) and evolve to the present densities and radii.
*Scaling laws, apparently with a high level of universality, have been
discovered in the hierarchical distribution of matter in the Universe. In
particular the two-point correlation functions for galaxies, groups, clusters
and superclusters of galaxies are all characterized by a power law
ξ(r)∝(ro/r)γ  with γ ≈ 1.8 for every type of objects. Note that one of the
most popular models for the distribution of galaxies is precisely the fractal
and multifractal ones,9-11 and this leads us back to the main theme of this
book.
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Among the reasons for applying scale relativity to cosmology, there is
also the straigthforward argument that high energy particle physics
describes the first instants of the Universe, and that the changes we have
brought to this domain are expected to change the Big Bang theory. We
shall briefly consider this case, but we shall see that scale relativity is also
able to bring new insights into the domain of observational cosmology. The
theory of scale relativity appears as a key, which, constructed to open the
door of microphysics, proves capable also of opening another door, that of
cosmology.

However we warn the reader that we shall only summarize the main
lines of our arguments and results: this theme would need another full book,
while the present essay is mainly devoted to the microphysical problem. In
particular we shall assume that the reader is aware of the basics of
theoretical and observational relativistic cosmology, as described, e.g., in the
books of Weinberg1 and  Peebles.9

Moreover, this section should be considered as a preliminary model
rather than a full theory at the present time. Indeed today's cosmology is
described by an extremely coherent theory, Einstein's general (motion)
relativity, while we are far from a self-consistent scale relativistic cosmology.
We nevertheless hope that the construction we propose hereafter will be
correct in its main lines thanks to the fact that scale relativity, as any theory
of relativity, yields universal constraints (existence of a limiting velocity in
motion relativity, of a limiting space-time scale in scale relativity), the
consequences of which must apply to every domain of physics.

Reactualization of Mach's principle.

The principle known as Mach's principle, since Einstein's insistance on
its importance for the understanding of inertia, actually contains several
statements corresponding to different levels of relations between local
properties (inertia) and global properties (the Universe).

The first level is the definition of inertial systems. Mach's main
contribution was his insistence on the relativity of any motion. As a
consequence, the motion of reference systems in which inertial forces are
experienced (e.g., a mass in rotation, more generally accelerated systems)
can be defined only relatively to other masses. General relativity and the
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principle of equivalence practically solve the problem: inertial systems are
systems which are in free fall in the gravitational field determined, through
Einstein's equations, by the whole distribution of masses in the Universe.
Inertial systems are so defined only locally, because of the locality of the
principle of equivalence. In general relativity, the definition of a global
inertial system no longer has any physical meaning. There are two
drawbacks in this solution.

The first is spin: a particle of vanishing radius may rotate around any
axis passing through it, while it will always be considered in free fall
according to general relativity.

The second is the apparent contradiction of the purely local nature of
the solution brought by general relativity with what is actually observed.
Observations seem to point towards the need for a global definition of
inertial systems: this is the basis of Mach's proposed solution, that inertial
forces must result from gravitational attraction of “distant stars” (Mach's
principle), i.e., of distant matter in the Universe. Indeed a kind of
“coherence” of inertial systems is observed on very different scales: the
system in which we feel no centrifugal force on earth is nearly the same as
that in which the sky is seen not to rotate;1 the axis of the earth, up to
precession, is always directed towards the same direction in spite of its
motion around the Sun and of the displacement of the Sun in the galaxy.

This problem is solved by the observed hierarchical distribution of
matter in the universe, but not solved in principle. In fact, as recalled in a
previous section, inertia is experimentally found to be isotropic to a very
high precision1 (δm/m = 0 ± 10−20, but more recent experiments may reach
10−24). Hence the contribution to inertial forces of masses and scales as large
as our Galaxy or even the local supercluster must be dominated by
contributions of far more distant masses. If Mach's principle is to be
implemented in accordance with the principle of equivalence and of its
experimental verification, the only acceptable solution is an effect of the
Universe as a whole.

This leads us to the second level of “Mach's principle”. It was
Einstein's initial hope that, if distant masses do determine the inertial
systems, they must also determine the amplitude of inertial forces: more
precisely, inertial forces being hopefully reduced to gravitational forces due
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to the Universe as a whole, the ratio of gravitational over inertial
acceleration, i.e., the constant of gravitation G  may be related to global
parameters of the universe. It is well known that this hope was dashed:
already in Schwarzschild's solution, there is a central gravitational (therefore
inertial) mass in the absence of masses at infinity. In cosmology also, general
relativity does not solve the problem in principle, since not all Friedmann-
Lemaître (or more generally Robertson-Walker) models of the universe are
“Machian”. Some models are devoid of mass; some others, even massive,
do not verify the relation between some characteristic mass and length of
the Universe which is needed to implement Mach's principle. Let us look at
the form expected for such a relation.

Mach's principle may be achieved by requiring that the gravitational
energy of interaction of a body with the universe (described to first order
approximation as a total mass M situated at an average distance R) cancels
its self-energy of inertial origin, E = m c2:

GmM
R    ≈  m c2   ⇒     

G M
c2R

    ≈  1  .  (7.1.1)

The relation obtained is, except for a factor 2, the relation between a mass
and its Schwarzschild (blackhole) radius. Hence Mach's (second level)
principle is equivalent to the requirement that the Universe as a whole be a
black hole.

One of the most detailed Machian model of the Universe was
proposed by Sciama.12,13 He adds to Einsteinian cosmology the requirement
that “the gravitational field of the Universe as a whole cancels the
gravitational field of local matter, so that bodies are free” and obtains
Eq. (7.1.1). In his approach, it becomes very clear that Mach's principle
could not be achieved in a scalar theory of gravitation like Newton's theory
(indeed the force of the “left” part of the Universe cancels that of the
“right” part at any point). Inertial forces may arise as an effect of the
Universe only in a vectorial or tensorial theory: as shown by Sciama, inertia
is an effect of induction of distant matter (in a sense similar to inductive
force or current in electromagnetism). The inertial force which appears
when we move in a non-inertial frame comes from the gravitational force
which arises from the acceleration of the whole universe with respect to us.
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Let us see what Eq. (7.1.1) does imply from the point of view of
cosmological models. Only two solutions are possible: either M and R are
constant, and one gets Einstein's model, the only possible static model
among Robertson-Walkers' models (with Λ ≠ 0), or the universe is non-
static, as indicated by observations, so that R varies with time and Mach's
principle can be achieved only in models where the characteristic mass M
varies with time as the cosmological scale factor varies. This immediately
excludes (in today's standard cosmology) spherical models, which are closed
and in which the total mass of the Universe is constant.

In order to characterize ‘Machian’ models, let us define a
characteristic mass M  = 4πρr3/3 in terms of the length r = c/H ; this
combined with Eq. (7.1.1) written as a Schwarzschild relation 2GM/c2r = 1
yields a density parameter:

Ω  =   
8πGρ
3H2    =   1  . (7.1.2)

Hence the Einstein-de Sitter model (with k = 0) is Machian. It is  the only
one in which  Ω  does not vary with time. This may also be seen in the
expression for the mass which is observed inside the horizon (z→∞) of such
a model

MH  =  
4 c3

G Ho
  .

Equation (7.1.2) explains why the problem set by Mach's principle is
still with us. One might have been contented with general relativity and
considered that the implementation of Mach's principle (second level) is not
necessary. But observations tell us that Eq. (7.1.2) is true or nearly true: the
measured values of Ω   fall between 0.2 and 1, the value Ω  = 1 being
preferred by its last large scale (~> 100 Mpc) determination using IRAS
galaxies and large scale motions.14 So it seems legitimate to wonder why the
observed universe is so close to achieving (or actually achieves) Mach's
“second level” principle. Such an agreement reactualizes the impression
that implementation of Mach's principle through exact equations in
agreement with the principle of equivalence is needed indeed.
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The third level of “Mach's principle” (the idea of which may be
attributed to Einstein) is the conjecture that the mass of elementary particles
is related to the whole mass of the Universe. Let us make more specific the
meaning of this proposal. The units of mass are arbitrary. In the same way
as Mach insisted on the relativity of all motions, he insisted also on the
relativity of all masses: for him, a mass cannot be defined alone. One must
consider two masses, which are then nothing but the inverse acceleration
which they transmit to each other: m1 γ1 = m2 γ2 ⇒ m1/m2 = γ2/γ1. However
special relativity obliges one to make such a viewpoint evolve. Mass is also
energy, which may itself take a lot of forms (heat, radiation, kinetic
energy...). The evolution must be still more radical when accounting for
quantum mechanics. From the constants G, h

_
 and c, one may introduce the

Planck mass mP as a natural unit and write Newton's law (according to the
relation GmP

2 =  h
_
 c) as

F  =   h
_
 c   

(m/mP) (m'/mP)
r2   . (7.1.3)

Three situations may have occurred: (i) that no preferential scale of mass
exists in Nature: the “third level Mach's principle” would have no meaning;
(ii) that a preferential scale exists (“elementary particle”), but that this
characteristic mass must precisely be the Planck mass: Eq. (7.1.3) would
have accounted for such a situation; (iii) that preferential, universal and
elementary masses exist in Nature, with a scale totally different from mP:
this is the case “chosen” by Nature, since mP/me = 2.38952(15) x 1022. The
origin of this ratio is one of the great mysteries of physics;  its huge size
suggests comparing it with the only universal mass ratio of an equivalent
size, the ratio of the mass of the universe over the Planck mass, M/mP ≈
1061.

Let us show how scale relativity allows one to set these problems in a
completely renewed way.

Scale relativity and  primeval Universe.

It is clear that the new structure of space-time implied by our
reinterpretation of the physical meaning of the Planck scale radically
changes our view of the primeval Universe. The first new physical law of
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cosmological importance is the disappearance of the zero instant from
meaningful physical concepts. The evolution of the Universe does not begin
any more at the instant "t = 0" (i.e. log(t/t0) = -∞),  but at the Planck time
"t = Λ/c". However this new structure should not be misinterpreted: in the
new theory, the Planck scale owns all the properties of the previous zero
instant. This means that temperature, redshift, energy, density and all the
quantities Q which were previously diverging as t−k are now diverging
when t tends to  Λ/c  as

log Q
Q0

  =   
k  log (t0/t) 

√(1 -  
log2(t0/t)

log2(ct0/Λ)
)

      .

The scale factor of expansion of the Universe is also submitted to a new
constraint: it can no longer become smaller than the Planck length Λ. This
would be achieved if it initially evolves as R = Λ1/2(ct)1/2.

In the scale relativistic approach, Lorentz-like δ-factors are
introduced, which are identified with variable anomalous dimensions. If one
refers oneself to the present epoch to ≈ 5 1017 s, one gets C0 = log(ct0/Λ) ≈
61. Then z ≈ 5, the redshift of the most distant presently observed objects
corresponds to V= log(t0/t) ≈ 1, so that V/C0 ≈ 1/60: this corresponds to a
negligible correction δ ≈ 1+10−4. The redshift of the isotropic Microwave
Background Radiation, z ≈ 1000, corresponds to log(t0/t) ≈ 12, i.e. to V/C0 ≈
1/5 and δ ≈ 1+1/50.  This is an interesting result that the “scale relativistic
domain” (i.e. here meaning the domain where the consequences of the
existence of a lower limit to all scales are not negligible) actually begins at
about z ≈ 1000, and then nearly coincides with the radiation dominated era
of the Universe in standard cosmology.

The main result of scale relativity concerning the primeval Universe is
its ability to solve the causality/horizon problem. Let us recall the nature of
this problem. When looking at two directions separated by a large angle, e.g.
two opposite directions, we observe regions of the Universe which, for a
large enough redshift, may have never been connected in the past. The
problem is particularly strong concerning the microwave background
radiation, due to its high isotropy16 (δT/T ~< 2 10−5) and its early origin (z ≈
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1000): at least twenty such independent regions would be observed in the
framework of standard cosmology.

Such causally disconnected regions should behave as completely
independent universes, and it becomes very strange that no large fluctuation
of the microwave background temperature is observed. The solution to this
problem is usually searched for in the framework of inflationary
cosmology.17-19 However one may remark that inflation is to some extent
an ad hoc solution, in particular as concerns its cause (scalar field now
unobservable, primordial black holes...), that must be postulated additionally
to the presently known content of the Universe. Moreover it does not solve
the problem in principle: in its framework the presently observed regions of
the universe would have been causally connected in the past, but this does
not remain true in the distant future.

Scale relativity naturally solves the problem because of the new
behaviour it implies for light cones. Though there is no inflation in the usual
sense, since the scale factor time dependence is unchanged with respect to
standard  cosmology, there is an inflation of the light cone as t→Λ/c.

    

Figure 7.1. Schematic representation of the scale-relativistic flare of light cones in the
primeval Universe. Two distant regions of the universe seen in opposite directions are
causally disconnected in standard cosmology without inflation, since their past light
cones (dotted lines) do not cross. In scale relativity, all points of the Universe become
causally connected at the Planck time T.
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This may be understood by an analysis of the new properties of
space-time at scale Λ implied by Eq. (6.8.1) . The fact that Λ is invariant
under dilatations means that when observed at resolution Λ, the distance
between any two points reduces to Λ itself. Indeed, following our analysis of
Chapter 2,  the numerical result of a distance measurement is given by a
dilatation ρ  applied to the basic unit that cannot be taken smaller than the
resolution. This means that there is a complete degeneration of space-time
when looked at resolution Λ (compare with the partial degeneration of null
geodesics on light cones). This property was already possessed by the
previous primeval singularity (R=0) but this singularity was actually
excluded from the evolution of the Universe in the previous theory: for
example an open infinite Universe would have been infinite at any arbitrarily
small time t ≠ 0, while reduced to the singularity at t = 0. Here we have a
continuous evolution from the particular scale Λ to larger ones. The new
light cone evolution is illustrated in Fig. 7.1, where it may be seen how the
various light cones flare when t→Λ/c and cross themselves, allowing causal
connection between any two points of the Universe. This definitely solves
the causality problem.

Scale dependence in present cosmology.

As in microphysics, there is in cosmology a fundamental dependence
of physical laws on scale. At scales for which the cosmological principle of
homogeneity and isotropy is fulfilled, the Universe is found to be in
expansion. Indeed all solutions (except one) of Einstein's equations based on
the cosmological principle are non-static. The observation of the universal
redshift of galaxies and the redshift-distance relation (Hubble law) indicates
that this non-staticity is presently an expansion. This means that, at large
scales, all physical variables (distances, time, density, temperature...) vary in
terms of a universal scale factor R, which characterizes the Robertson-
Walker metric:

ds2  =  c2 dt2  − R2(t)  dl2  ,

where we recall that dl2 is a spatial element which may take only three
forms corresponding to constant curvature spaces (hyperbolic, flat or
spherical). For example, one has T ∝  R−1, ρ ∝  R−3 in dust universes,
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t ∝ R3/2 in flat models, etc... (see e.g. Ref. 1). Fortunately, this scale factor
(the so-called “Universe radius”) is directly observable, since it is related to
redshift z by the relation

R
R0

  =  (1 + z)−1    ,

where R0 is its value at the present instant. Thus this scale dependence is
both observed and predicted by theory (general relativity).

The distribution of matter in the Universe is also found to be scale
dependent. There is at present no satisfactory theoretical explanation of this
“scaling”. It is often described in terms of a two-point correlation
function,9,20 ξ(r), which measures the deviation of the observed distribution
of galaxies with respect to an uniform (Poissonian) one. Namely, one writes
that the probability that one object lies between r and r+dr from another
object is given by

P(r) dr  =  4π r2  [1 + ξ(r)] dr  .

It is observationally found that, for most classes of objects of cosmological
importance (galaxies, groups and clusters of galaxies, superclusters of
galaxies), ξ(r) is well represented by a power law:

ξ(r)  =  ( 
ro
r  )γ    ,

 where the correlation length ro depends on the type of object considered
(about 5 Mpc for giant galaxies, 20 Mpc for clusters), but where γ ≈ 1.8
whatever the type of object.

A popular approach to the question of the distribution of galaxies is a
fractal and multifractal one.9-11   The correlation function is related to
another measure of correlation21, the correlation integral C (r).  It measures
the probability of finding another point in a sphere of radius r centred on a
point of the distribution, so that

dC(r)
dr    =  4π r2  [1 + ξ(r)]    .
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 Then the hereabove form observed for ξ(r) means that, for small r, C (r)
varies with scale as

C (r)  ∝  ( 
r
ro

 )D

           with          D = 3 − γ    .

D is the correlation dimension and is equal to a fractal dimension in the
simplest case. Such a form may be obtained from a renormalization group
equation:

dC(r)
dlnr    =   a  +  D  C (r)  ,

where the correlation and fractal dimension D is now interpreted as an
anomalous dimension (here D = δ since this is the dimension of a set of
points, i.e., a “dust” of topological dimension DT = 0).

 So the value γ = 1.8 is translated to the fractal and anomalous
dimension  D = 1.2 for the distribution of galaxies. Several models of the
formation of a hierarchical distribution of matter, e.g., by fragmentation,
naturally yield10,11 D = 1. The unsolved question is why D = 1.2, rather
than D = 1.

However, even the simple fractal model is problematic: it predicts that
1 + ξ(r) is a power law, rather than the ξ(r) observed, and it has a constant
fractal dimension, while at very large scales one expects to find D = 3
(uniformity).

The value D = 1 is also encountered for the local distribution of
matter observed around the various objects. Hence the observation of flat
rotation curves in the outer parts of spiral galaxies22 leads to the conclusion
that they are embedded in supermassive halos of dark matter having a
density ρ ∝ r−2, i.e. a mass distribution  M(r) ∝ rD with D = 1 . In the same
way, the observed halos of clusters of galaxies show a similar distribution
M(r) ∝ r  in the mean.23

The static non-static relative transition.

There is a fundamental question concerning the expansion of the
Universe which is seldom explicitly asked: where does the expansion stop?
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It is clear from several arguments that a static non-static transition must
exist.

First, if the cosmological scale factor R  was to be applied to any
length in Nature, then it would become a trivial scale factor that would
disappear from the equations. It was already remarked by Laplace that
Newton's theory of gravitation is scale invariant: “One of the remarkable
properties [of Newtonian attraction] is that if the dimensions of all the
bodies in the universe, their mutual distances, and their velocities were to
increase or diminish proportionately, they would describe curves entirely
similar to those which they at present describe; so that the universe reduced
to the smallest imaginable space would always present the same appearance
to observers. The laws of nature therefore only permit us to observe relative
dimension”.24,10 If Laplace had added the fact that the size of objects is
determined either by fields different from the gravitational one, or by the
local gravitational field rather than the global, he would have predicted a
relation of proportionality between distance and velocity, i.e. the Hubble
law.

The expansion of the Universe can indeed be interpreted as a
variation with time of the cosmological units relatively to local (atomic)
units. Note also that the Friedmann-Lemaître and Robertson-Walker
solutions to Einstein's equation are based on a description of the material
content of the Universe as a perfect fluid. When applied to the present
Universe where the basic constituents are galaxies (provided that some
smoothly distributed dark matter should not be the dominant component),
this means that galaxies are identified with the basic particles of a gas, so
that, as in thermodynamics, the theory is not expected to apply at scales of
the order of the particle size.

It is indeed known that a typical giant galaxy like ours (of radius
≈10 kpc), even if it is entailed in differential rotation, is globally static. The
velocity field of clusters of galaxies shows an external halo which links up to
expansion, while there is an inner static region of size of about its core
radius (100-200 kpc). This indicates that transition from staticity to non-
staticity, i.e. from scale independence to scale dependence, is a relative
transition.
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The staticity of objects under their own gravitational field amounts to
writing their equilibrium, i.e., to writing the virial theorem. This leads to a
well-known general relation between mass, velocity dispersion and radius
(see Ref. 1, p. 477):

l   ≈   
G m
<v2>

 . (7.1.4)

We suggest that this relation plays the same role in cosmology as the de
Broglie length λ = h

_
/mv in microphysics. Note indeed that both relations

give a length in terms of mass, velocity and a fundamental constant, h
_
 at

small scale and G at large scale. Also remarkable is the fact that, if one looks
for a situation where they would be equal, one gets m = (h

_
v/G)1/2 =

mP√(v/c), which is nothing but the Planck mass mP when v = c. So for
possible cosmological constituents of mass smaller than the Planck mass (in
particular elementary particles), the two scale dependent microphysical and
cosmological domains connect, without being separated by a classical scale
independent domain (see Fig. 7.2).

The comparison with the fundamental transition lengths of
microphysics goes on with the Compton length λ = h

_
/mc. Making v = c in

(7.1.4) yields, up to a factor of 2, another fundamental length of general
relativity, namely the Schwarzschild radius corresponding to mass m. (For
cosmological constituents as small as elementary particles, for example the
isotropic microwave background, the hereabove formula may not apply:
anyway in this case, one expects the transition length to be at the
microphysical scale).

Up to now it has been assumed that the size of objects were of no
direct cosmological importance. We propose rather that the largest static
sizes of objects are an essential element for understanding cosmology, since
they define a “phase” transition from staticity to non-staticity, or, in other
words, a scale of symmetry breaking for scale covariance. We think that it is
not by chance that the supermassive dark matter halos or galaxy clusters
halos  both correspond to fractal dimension D=1  (i.e., as the topological
dimension is zero, to anomalous dimension δ = 1) and to the transition
region from scale independence to scale dependence. It is remarkable in this
respect that the two-point correlation function, when calculated at “small”
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scale (10 kpc-100 kpc) for, e.g., dwarf galaxies close to giant ones yields γ ≈
2 rather than 1.8.20,25

Let us apply a scale transformation ρ = r'/r to the correlation integral
and write it in logarithm form:

log 
C'
C0

  =  log 
C
C0

   +  δ  log ρ  , (7.1.5)

δ' =  δ  = 1         (r > l,  r' > l)  .

It is certainly clear to the reader that we are now once more in exactly the
same situation as in microphysics (but with an inversion between the
smallest scales and largest scales). The hereabove scale transformation is a
Galilean group transformation which holds for scales larger than the “virial
length” l, while the anomalous dimension δ jumps from δ = 1 to δ = 0
below this length, which plays the role of a  static / non-static transition.

The nature of the cosmological constant.

As in microphysics, we are tempted to conclude that the right
structure imposed by the principle of scale relativity is the Lorentz group
rather than the Galileo group. Then the whole mathematical development of
Chapter 6 is applicable to the cosmological problem, and we arrive at the
conclusion that there should exist in Nature an upper scale, unpassable,
universal, invariant under dilatations (thus in particular invariant under the
expansion of the Universe), which would hold all the previous properties of
infinity. Let us name L this new length scale.

As in microphysics, we are led to asking ourselves whether a length
which already exists in present physics could be identified with this new
structure. Remark that the microphysical solution, the Planck length Λ =
(h
_
G/c3)1/2, is the only solution that can be constructed with the three basic

fundamental constants. Then we can already say that L should be the
product of Λ by a constant, absolute, and pure number K:

L
Λ    =   K    .
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 The present theory has already introduced an universal, absolute, and
unvarying constant with is defined at the cosmological scale: this is the
cosmological constant Λ, which is defined as the inverse of the square of a
length. As recalled above, this length must be both at the scale of the
Universe (>1028 cm) and not subjected to its expansion, for general
relativity to remain self-consistent. Recall also that the general equations
satisfying general covariance are Einstein's equation including a
cosmological constant term.

So we propose to reinterpret the cosmological constant as resulting
from  the existence of the new upper scale L:

L  =  
1
√Λ .

With this interpretation for L, we get a first estimate for the pure number
K ≈ 1061: we shall attempt at estimating more precisely its value afterwards.
Note in this respect that this interpretation is consistent with the analysis of
Ref. 6 and the recent results by Hawking4 and Coleman5, who obtained a
vanishing cosmological constant from quantum gravity arguments. Indeed
the Hawking-Coleman approach remains in the frame of the Galileo group
of dilatations, while in our frame the Galileo group corresponds in
cosmology to the limit  L → ∞, i.e. Λ→0.

Let us briefly consider the possible implications of this proposal for
our understanding of large scale structures and of Mach's principle. A more
extensive account is outside the scope of the present book and will be given
elsewhere.

*Vacuum energy density.
There have been attempts to reinterpret the cosmological constant as

vacuum energy density, ρV ≈ Λc2/G (see Ref. 3 and references therein), i.e.,
with our notations,

ρV  =  c2/GL2  .

 The problem encountered with this interpretation is that a calculation
of the vacuum energy density in standard quantum theory gives a divergent
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result. Assuming a cutoff at the Planck scale, we get the “Planck energy
density”

ρP  =  
c5

h
_
G2

  .

With the current lower limit on the possible values of the cosmological
constant, Λ < 3 10−56 cm-2, the two estimations differ3 by a ratio of ≈10120.

We suggest the following solution to this problem. We assume that
the vacuum energy density is an explicitly scale dependent quantity for
every possible scales in the Universe. The vacuum is clearly one of the
cosmological constituents for which scale covariance is unbroken (there is
no classical domain). Then it is solution of a renormalization group equation

dρV

dlnr   =  k ρV  ,

so that it varies between two scales r1 and r2 as (r1/r2)k. We may now admit
that both the above values of the vacuum energy density are correct, one
defined at the Planck scale and the other at the cosmological scale. Their
ratio is

ρP

ρV
   =   ( 

L
Λ  )

2

  =  K2  ,

and we get a self-consistent scheme by taking k = −2.1 This approach is not
fully scale-relativistic. Including the scale Lorentz-factors (Chapter 6) yields a
vacuum energy density which becomes infinite at r = Λ and null at r = L. In
this case the hereabove values correspond to two fundamental length scales,
one (microphysical) we have identified with the Grand Unification scale, and
a new one (cosmological) we shall come back to hereafter.

1 This solution is, however, partially unphysical since it cannot be claimed to be valid between the
extreme (Planck and cosmic) scales. Indeed, this would correspond to an energy varying as r (in order to
obtain a vacuum energy density varying as r-2), which is the Schwarzschild mass-radius relation. Now
this relation is indeed valid at the Planck scale (since the Planck length is half the Schwarzschild radius of
a Planck mass) and, as suggested here, at the cosmic scale (which would imply that the universe is in its
own black hole horizon, see what follows). A more general solution including a breaking of strict scaling
(i.e., the combination of a geometric cosmological constant and of varying vacumm energy density) has
been later proposed (see what follows and L. Nottale, 1996, Chaos, Solitons & Fractals 7, 877).
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*The Universe at its own resolution.
Before going on, the nature of L must be specified. Indeed we cannot

be satisfied with the definition of L as a “length”, since the concept of
distance in general relativity, and in particular cosmology, depends on the
method of measurement. Recall that one defines luminosity distance,
angular-diameter distance, proper-motion distance, etc..,  which all have
different expressions in terms of redshift (see e.g. Ref. 1). So the new upper
scale must be characterized, not only by a simple number, but also by a
global description of the Universe when seen at that scale. The length L is
actually defined as the “radius” of a Universe which, when seen at its own
resolution, becomes invariant under dilatations. Only one cosmological
solution of Einstein's equations is unaffected by expansion: the Einstein
static spherical model. So we suggest that, at resolution L, the Universe is
described by the Einstein spherical model. But the interpretation is different
from that of standard cosmology. Recall that in scale relativity we have
changed the law of composition of dilatations, so that the structure of the
Universe at the upper scale L does not impose anything on its structure at
any other smaller scale. At resolution L, there is a degeneration of space-
time (as at resolution Λ and at velocity c). The whole set of various possible
models (hyperbolic, flat, spherical) are retrieved at smaller scales, owing to
the fact that their properties are defined in a purely local way. We claim
that, while an integration of these local properties is approximately correct
on ‘small’ scales, this may no longer be the case when pushing the
integration to scales of the size of the Universe itself.

*Mach's principle and large numbers.
The existence of the universal scale L allows one to consider Mach's

principle in a new way. The main difficulty encountered in previous
attempts of implementation of the various levels of Mach's principle was
that a time varying scale, c/H0, was used as the fundamental cosmological
scale in the equations. We now have a horizon for the Universe which,
although it owns all the properties of infinity, is given by a finite, constant
and universal measure.

We have seen hereabove that the 'second level' of Mach's principle
may be translated by the requirement that the Universe be a black hole.
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Applying this requirement to the Universe at resolution L, described by
Einstein's model, we find that the maximal separation between any two
points is πL. Then we expect that the Universe be characterized by an
effective mass M such that

2
π  

G
c2  

M
L

   =   1 .

This result is self-consistent, since this is exactly the expression for the total
mass of Einstein's model. It yields an interpretation for one of the large
number coincidences

M
mP

   =   
π
2  K .

The value K ≈ 1061 would yield a characteristic mass ≈ 1056 g ≈ 1023 solar
masses, in agreement with observations (≈ 1011 galaxies of 1012 solar
masses).

The ‘third level’ of Mach's principle has still more radical implications.
Its achievement would imply a connection between the mass of elementary
particles and the mass of the Universe. Let us suggest a (still very rough)
solution to this problem. We start from the fact that the electron is the
lightest elementary charged particle. The appearance of the upper scale L
implies the existence of a characteristic minimal energy Emin = h

_
c/L. Now,

(i) assume that the mass of the electron is of pure electromagnetic origin.
This defines a scale r0 such that

e2

r0
  =  me c2 .

That is,  r0 = α λc is Lorentz's classical radius of the electron. Then, (ii)
assume that the gravitational self-energy of the electron at scale r0 precisely
equals the smallest possible energy h

_
c/L. We obtain the equation

G m2(r0)
r0

  =  
h
_
c

L
  ,
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where m(r0) is the effective mass at scale r0, i.e., α−1me , except for the small
scale dependence of α (<1%). This reasoning finally yields

α  
mP

me
  =  K

1/3
 . (7.1.6)

This is a possible road toward an explanation for Dirac's large number
coincidence. The fact that L, instead of c/H, appears there is the key point,
since it allows us to have an absolute relation rather than a time-dependent
one. The agreement is indeed remarkable: with K ≈ 1061, one gets K

1/3
≈

2 x 1020, while α mP/me = 1.7437(1) x 1020. Conversely, if we admit this
formula to be correct, we find a precise estimate for the fundamental scale
factor K:

K =  5.3018(10) x  1060 .1 (7.1.7)

By using, in (7.1.6), the value of the inverse fine structure constant at scale
ro , α−1(r0) = 136.3 (see Chapter 6), instead of its low energy value, one finds
K = 5.388 x 1060. If our scheme is globally correct, one important problem
for physics will be the origin of this pure number. We shall not answer this
question here, but only indicate a possible road towards its solution.
Equation (7.1.6) may be written in terms of the scale relativistic constants C.
We have a universal constant CU = lnK, which is related to the electron
constant Ce = ln(mP/me) and to the constant C0 at scale r0 by the relations

CU  =  3 (Ce + lnα)  = 3 C0  .

If we admit the above estimates for K, we get CU = 139.83 ± 0.01,2 which is
2% off the low energy fine structure constant. This opens the hope that, in a
way similar to our conjecture for the determination of the electroweak scale
from the ‘bare’ charge, Cv = α1

−1(Λ) = 4π2, the universal constant CU can
be ultimately determined by the value of the electric charge at scale L.3

1 Using the 2006 recommended values of the constants, we find K = 5.3000(12) x 1060.

2 Using the 2006 recommended values of the constants, we find CU   = 139.82281(22).
3 Suggestions of variation of the electric charge (i.e., equivalently, of the fine structure constant) at
cosmological scales have been made these last years, but they have not been confirmed.  On the other
hand, subsequent works in the framework of the scale relativity theory have led to the proposal of a
relation between the mass of the electron (considered as mainly of electromagnetic origin) and its charge,
that reads to lowest order Ce = (3/8)α−1(L. Nottale, 1994, in "Relativity in General", (1993 Spanish
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Figure 7.2. The three, quantum, classical and cosmological, domains, from the
smallest scale Λ to the largest scale in Nature, L (according to scale relativity). The two
transitions between these domains are not absolute, but relative to the system considered
(its mass and velocity or velocity dispersion). We have plotted in this diagram the
variation of the anomalous dimension δ: in the classical domain, its null value
corresponds to scale independence. Also shown is the variation in terms of length scale
of the fundamental mass scales given by the generalized Schwarzschild (mG) and
Compton (mH) formulae. The Planck mass mP plays the role of a zero point for mass
scales.

From the above estimate, one can deduce the maximal length in the
Universe, πL = 8.97 Gpc (i.e., 29.2 x 109 light years), and the value of the
cosmological constant:

Λ  =  
1
L2  =  1.36 10−56  cm-2 .1

Relativity Meeting), Salas, Ed. J. Diaz Alonso and M. Lorente Paramo (Frontières), p.121). In this case
CU  can be expressed in terms of the mere fine structure constant, namely, CU  = (9/8)α−1+3 lnα
(+small corrections).

1 Using the 2006 recommended values of the constants, we find Λ = 1/L2 = 1.36281(41) 10−56 cm-2.
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This corresponds to the reduced cosmological constant λ0 = Λc2/3H0
2 =

0.36 h−2.1

*Slope of correlation function.
Let us come back to the question of the distribution of structures in

the Universe. In scale relativity the fractal/anomalous dimension now varies
with scale. What is the upper distance to be used for the scale δ-factors for
this case? We deal with volumic effects, and the volume of the Einstein
universe is 2π2L3, instead of the Euclidean (4/3) π (πL)3. So the limiting
volume-distance is expected to be LV = (3/2π2)1/3L ≈ 0.534 L. Choosing C =
C0 for the correlation integral, we get a new relation  (see Fig. 7.2):

δ (r)  =  
1

√( 1 −  
log2(r / l )
log2(LV / l )

 )
    ,

where l is the static-expansion transition, and r the distance between two
galaxies (that indeed plays the role of a resolution). Then the exponent of
the two-point correlation function is given by γ = 3−δ.

Consider galaxies. Their typical radius is  l = 10 kpc. Combined with
the above determination of LV, this yields C = 5.18 (in logarithm base 10).
Then, while γ = 2 at a scale of 10 kpc, we  predict γ = 1.8 at a scale of
10 Mpc, in good agreement with observations.20 It is expected to
subsequently fall farther  (γ = 1.65 at  30 Mpc, γ = 1.43 at  100 Mpc).

Consider clusters of galaxies. Their core radius is l ≈ 100 kpc. This
yields C = 4.18 (in logarithm base 10). We predict γ  = 1.86 at 10 Mpc, 1.75
at 30 Mpc and 1.56 at 100 Mpc, also in good agreement with what are
observed.26 In such an interpretation, the apparently universal value γ ≈ 1.8
would come from the fact that the distances at which the correlation
function is well measured is not an absolute scale but depends on the objects
themselves (radius and mean interdistance) in such a way that it roughly
corresponds to a given relative scale ( V/C ≈ 0.55).

1 Using the 2006 recommended values of the fundamental constants and recent precise determinations of

the Hubble parameter, H0 = 73 ± 3 km/s.Mpc, we find ΩΛ= Λc2/3H0
2 = 0.38874(12) h−2, which is

fairly well supported by the 2006 observational determinations including the WMAP 3 years results,

ΩΛ(obs)= (0.384 ± 0.047) h−2 (Spergel et al., 2006).
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*New fundamental scales.
One of the problems with the simple fractal model is its inability to

reconcile the locally fractal distribution with a globally uniform one. In the
scale-relativistic approach, δ and γ  vary with scale, so that uniformity is
reached for δ = 3, i.e., V/C=2√(2)/3. This corresponds to a scale of
transition to uniformity of about 750 Mpc.

In microphysics, we have seen that the separation between the scale
of length-time and the scale of energy-momentum led to the emergence of a
new scale which we identified as the Grand Unification scale. The same is
true in cosmology: we expect the largest structured scale l to be given by
log( l / l ) = C/√(2). Being concerned with linear structures, one must take
Ll = πL  in the computation of C . For giant galaxies, assuming l
= 10 ± 2 kpc, this yields l = 160 ± 8 Mpc. This result is remarkable, owing
to the recent discovery of a periodicity at 128 h−1 Mpc in deep redshift
narrow-cone surveys.8 Identifying the observed and predicted wavelengths
provides us with a new precise determination of the Hubble constant:

H0  =  80 ± 4 km/s.Mpc  ,

in excellent agreement with recent determinations27,28 from precise
indicators, H0  =  82 ± 7 km/s.Mpc and 72 ± 5 km/s.Mpc. Combined with
our estimate of Λ , this would yield a reduced cosmological constant
λ0 = 0.56: such a high value may help solve the problem of the age of the
Universe.1

 For clusters of galaxies, l ≈ 100 kpc yields l = 315 Mpc. This result,
twice the periodicity of galaxies, is consistent with the fact that galaxies are
themselves members of clusters with a high rate. Conversely, one may use
the constraint that the ratios of the periodicities of various levels of the
observed hierarchy must be an integer to derive this hierarchy: we find that
the length-scale ratio of one level to the following one must be k2+√2, i.e.,
10.7 for k=2, 42.5 for k=3, 114 for k=4, which compare well with the
observed hierarchy.29

1 This expectation has been totally confirmed in the following years, in particular from 1998 with the
first precise observational measurements of the cosmological constant (using type I SNe, COBE and
WMAP, gravitational lensing, etc.). With the 2006 value of H0 (see preceding note), we predict a reduced
cosmological constant ΩΛ = 0.729 ± 0.060, to be compared with the experimental value 0.72 ± 0.03. A
precise value of the Hubble parameter may therefore be derived, h = 0.735 ± 0.015.
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We conclude this section by once more stressing the fact that the
above results should be considered as tentative. A coherent scheme appears
to emerge, but it remains to be demonstrated that the application of our
approach to cosmology can be made consistent with the firmly established
constraints of general relativity.

7  References

1. Weinberg, S., Gravitation and Cosmology  (John Wiley and Sons, New York, 1972).

2. Dirac, P.A.M., 1937, Nature 139, 323.

3. Weinberg, S., 1989, Rev. Mod. Phys. 61, 1.

4. Hawking, S.W., 1984, Phys. Lett. 134B, 403.

5. Coleman, S., 1988, Nucl. Phys. B310, 643.

6. Coughlan G.D., Kani, I., Ross, G.G., & Segré, G.,  1989, Nucl. Phys. B316, 469.

7. Geller, M.J., & Huchra, J.P., 1989, Science 246, 897.

8. Broadhurst, T.J., Ellis, R.S., Koo, D.C., & Szalay, A.S., 1990, Nature 343, 726.

9. Peebles, P.J.E., The Large Scale Structure of the Universe (Princeton Univ. Press,

1980).

10. Mandelbrot, B., The Fractal Geometry of Nature (Freeman, San Francisco, 1982),

Sec.9.

11. Heck, A., & Perdang, J.M. (Eds.), Applying Fractals in Astronomy (Springer-

Verlag, 1991), pp. 97, 119, 135

12. Sciama, D.W., 1953, Mon. Not. Roy. Astron. Soc. 113, 34.

13. Sciama, D.W., The Unity of the Universe (Doubleday & Co., New York, 1959).

14. Heavens, A.F., 1991, Mon. Not. Roy. Astron. Soc. 113, 34.

15. Schneider, D.P., Schmidt, M., & Gunn, J.E., 1991, Astron. J. 102, 837.

16. Mather, J., et al., 1990, Astrophys. J. Lett. 354, L37.

17. Guth, A.H., 1981, Phys. Rev. D23, 347.

18. Linde, A.D., 1982, Phys. Lett. 114B, 431.

19. Starobinski, A.A., 1980, Phys. Lett. 91B, 99.

20. Davis, M., & Peebles, P.J.E., 1983, Astrophys. J. 267, 465.

21. Grassberger, P., & Procaccia, I., 1983, Phys. Rev. Lett. 50, 346.

22. Trimble, V., 1987, Ann. Rev. Astron. Astrophys. 25, 425.

23. Fuchs, B., & Materne, J., 1982, Astron. Astrophys. 113, 85.



7  PROSPECTS 309

24. Laplace, P.S. de, Oeuvres Complètes (Gauthier-Villars, Paris, 1878).

25. Vader, J.P., & Sandage, A., 1991, Astrophys. J. Lett. 379, L1.

26. Bahcall, N.A., 1988, Ann. Rev. Astron. Astrophys. 26, 631.

27. Tonry, J.L., 1991, Ap. J. Lett., 373, L1.

28. Bottinelli, L., Fouqué, P., Gougenheim, L., Paturel, G., & Teerikorpi, P., 1987,

Astron. Astrophys. 181, 1.

29. Vaucouleurs, G. de, 1971, Publ. Astron. Soc. Pac. 83, 113.


