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Abstract. The scale relativity theory, by giving up the differen-
tiability of space-time coordinates at very large time-scales, de-
scribes the solar system in terms of fractal trajectories governed
by a Schrödinger-like equation. The predictions of the theory
are expressed in terms of probability densities, that we interpret
as a tendency for the system to make structures. Planets can no
longer orbit at any distance from the Sun, but instead at pref-
erential distances given at lowest order by: an = (GM/w2

0)n2.
In this formula, M is the mass of the Sun and w0 ≈ 145 km/s
is a fundamental constant which is observed from the planetary
scales to the extragalactic scales. Our theoretical predictions
agree very well with the observed values of the actual planetary
orbital parameters, including those of the asteroid belts. In ad-
dition, since Mercury ranks n = 3 in the above formula, there
is good reason to anticipate a small planet or two between the
Sun and Mercury. We propose to check the theory by searching
for such an object, on the second orbit which has a semi major
axis of ≈ 0.18 AU.

Key words: chaos – diffusion – gravitation – planets and satel-
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1. Introduction

Recently Nottale (1993a,b; 1995a,b) has developed a new model
of the solar system structuring, on the basis of the “scale rela-
tivistic” approach. The theory is based on an extension of Ein-
stein’s principle of relativity to scale laws. Up to now, relativity
had only been applied to motion laws. Scale relativity consists
of two points:
(i) reinterpreting the Space-Time resolutions as essential vari-
ables that define the “state of scale” of reference systems
(ii) setting a “principle of scale relativity”, according to which
the laws of physics apply to any coordinate system, whatever
its state. In other words, the equations of physics must undergo
“scale covariance” under resolution transformations.

Send offprint requests to: G. Schumacher

The scale relativity theory allows to recover standard quan-
tum mechanics and can be applied to cosmology (Nottale
1989,1993a). The theory applies also to strongly chaotic sys-
tems, i.e. systems with very large time-scales relative to their
inverse Lyapunov exponent. The scale relativity theory oper-
ates on the basis that the differentiability of Space-Time is
abandoned. Nottale (1993a, 1994) demonstrated that a non-
differentiable Space-Time continuum is equivalent to a fractal,
i.e., that it shows structures at all scales and it is explicitly reso-
lution dependent. An important property of chaotic trajectories
is precisely that they appear as non-differentiable for large time-
scales. This suggests that the scale relativity methods should be
applied to chaotic systems. In this way, we expect to investigate
beyond the horizon of predictability, where classical methods
fail.

The importance of chaos in understanding the solar system
has been stressed by several authors: for the formation of the so-
lar system (Hills 1970; Brahic 1982), and for the evolution of the
solar system (Hénon & Heiles 1964; Petit & Hénon 1986; Wis-
dom 1987; Sussman & Wisdom 1988, 1991; Conway & Elsner
1988; Laskar 1989, 1990; Sussman & Wisdom 1992). We as-
sume that, at the end of the solar system formation, the motion of
all bodies was highly chaotic. The distribution of matter we find
by applying our model, satisfies a law which has the same form
as the solutions of the Schrödinger equation for the hydrogen
atom. The orbits of the planets are then equivalent to the Bohr
orbits characterized by two quantum numbers n and l. The new
theory is much more relevant than the Titius-Bode law because
it has a theoretical background, its predictions agree perfectly
well with observations, and it includes the orbits of Pluto, Nep-
tune and the asteroids (Nottale 1993a). Moreover, the predicted
structures depend on a unique free parameter w0, which has re-
cently been shown to be universal (Nottale 1996a,b). Once this
parameter is set e.g. from extragalactic data (Tifft 1977), the
theory is totally constrained.

The aim of the present study is to point out that, in addition
to its successes, the theory is able to make new predictions. It
has already been demonstrated (Nottale 1996a,b) that it applies
to the recently discovered extra-solar planetary systems. In our
own solar system, Mercury has the quantum number n = 3,
which means that there is space for two other orbits between



L. Nottale et al.: Scale relativity and quantization of the solar system 1019

Fig. 1. Possible values of the eccentricity in terms of the principal
quantum numbern (recall thatan ∝ n2). The lines of constantk = n−l
are shown. k = 1 corresponds to circular orbits. For small values of n,
the first non circular orbit (k = 2), is already highly eccentric.

Fig. 2. Histogram of the observed values of δl = l− (n−1) for planets
in the solar system, showing the angular momentum quantization.

the Sun and Mercury (Fig. 3). We analyze the possibility of
existence of such new planets, and we describe an observational
strategy for searching the corresponding objects.

2. Theoretical background

Our method consists in first giving up the concept of well de-
fined trajectory on large time scales. Then we introduce families
of virtual trajectories which, being continuous but nondifferen-
tiable when seen with large time-resolution, own fractal prop-
erties. The “real” trajectory is now only one random realization
among the infinite number of trajectories of the family. Since we
are at very large time resolutions (say, ∆t >> 20τ , where 1/τ is
a Lyapunov exponent) the information on the initial conditions
becomes completely lost and the individual increments on the
trajectory become Markovian. We can describe them in terms
of a mean dxi, and a fluctuation dξi, i.e., dXi = dxi + dξi. We
expect the dξi(t) to be Gaussian with mean zero, mutually inde-
pendent and such that,< dξidξj >= 2D δijdt, where D can be
interpreted as a diffusion coefficient. Such a law corresponds to
a fractal dimensionD = 2 (see, e.g., Mandelbrot 1982), and can
be shown as the simplest law satisfying the principle of scale

relativity. Its main consequence is the appearance of new second
order terms in differential equations, since < dξidξj > /dt is
now finite rather than being an infinitesimal.

The second fundamental consequence of nondifferentiabil-
ity is the breaking of time reversibility at the level of the indi-
vidual space increments. This means that the reversed process
(dt −→ −dt) is a priori different from the direct one, while it
must be equally valid for the description of the temporal evo-
lution, since the “future” and the “past” are not defined at this
level of the description. Up to now, all fundamental equations
of physics are locally reversible, i.e., unchanged in the reflec-
tion dt −→ −dt. In our approach, we consider both direct and
reverse processes in parallel. That leads to the introduction of a
twin Wiener (backward and forward) process, that we describe
in terms of a single complex process (Nottale 1993a). Then, in
terms of this new global tool, reversibility is recovered.

Following Nelson (1966), we introduce mean forward and
backward derivatives:

d±
dt
y(t) = ±lim∆t−→0±〈y(t + ∆t)− y(t)

∆t
〉 (1)

From these quantities we introduce a complex derivative oper-
ator (Nottale 1993a):

d
dt

=
d+ + d−

2dt
− i

d+ − d−
2dt

(2)

When applied to the position vector, it yields a complex velocity:

V =
d x

dt
(3)

From the properties of our “double-Wiener” process, the com-
plex derivative writes (Nottale 1993a):

d
dt

=
∂

∂t
+ V .5−iD ∆ (4)

This operator plays the role of a scale-covariant derivative in
the framework of the scale relativity theory.

Consider now a particle moving in a gravitational field and
subjected to strong chaos. For large time-scales, we can write
its equation of motion in terms of a complex generalization of
Newton’s equation:

m
d 2x

dt2
+5Φ = 0, (5)

where Φ is the Newtonian potential, such that ∆Φ = −4πGρ.
Now Eq. (5) may also be derived from a generalization

of the principle of stationary action. Indeed, we can imple-

ment scale covariance simply by replacing d
dt

by d
dt

in the
whole of classical mechanics. Therefore, we introduce a com-
plex Lagrange function L (x,V , t), then a complex action,
$ =

∫
L (x,V , t)dt. If we write now δ$ = 0, we obtain Euler-

Lagrange equations that are precisely Eq. (5) in the Newtonian
case, L = 1

2mV 2 − Φ.
Another well-known result of classical mechanics is also

easily generalized. A complex momentum P = ∂L
∂V can be
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Fig. 3. Comparison of the observed average distances of planets from the Sun with our theoretical values. On the inner system, one has Mercury
(m), Venus (V), the Earth (E), Mars (M), and the main mass peaks of the asteroids belt: Hungarias (Hun), Ceres (C), Hygeia (Hyg) and Hildas
(Hil). Two additional possible intra-mercurial small planets (open circles) are predicted at n = 1 (0.05 AU) and n = 2 (0.18 AU). On the outer
system, one has Jupiter (J), Saturn (S), Uranus (U), Neptune (N), Pluto (P), and the inner system as a whole on orbital n = 1 (ISS). The outer
solar system as a whole (OSS), itself stands out as the fundamental orbital of a larger system. Neptune, which ranks n = 5 in the outer system,
would also rank n = 2 of this new system, which may explain its mass excess (see Fig. 7). Farther than Pluto, one finds a new probability peak
at ≈ 60 AU, which ranks both n = 7 of the outer system and n = 3 of the larger system (open circles). We then expect that the Kuyper belt be
also quantized.

defined, such that P = mV in the Newtonian case. Now when
considering the action as a function of the upper limit of inte-
gration, we recover the relation P = 5$. Let us now define the
“wave function” Ψ. It is nothing but a re-expression in log form
of the complex action:

Ψ = e
i$

2mD ⇒ V = −2iD 5 (lnΨ) (6)

Accounting for Eqs. (4) and (6), and being aware that d and5
do not commute, Eq. (5) can be integrated after a short calcula-
tion (Nottale 1993a) as:

D 2∆Ψ + iD
∂

∂t
Ψ =

Φ
2m

Ψ (7)

The meaning of Ψ can be finally understood by setting
ρ = ΨΨ∗. In terms of this new variable, the imaginary part of Eq.

(7) writes ∂ρ
dt

+ div(ρV ) = 0. One recognizes here the equation
of continuity: this leads to a statistical interpretation of Eq. (7) in
which ρ is the probability density of finding the particle at some

given position. In the case of D = h̄
2m , and when assuming

strict nondifferentiability, Eq. (7) is Schrödinger’s equation and
we get a new interpretation and generalization of quantum me-
chanics (Nottale 1992, 1993a, 1996c). Applied to chaotic sys-
tems observed on very large time scales, this method provides
us with equations that imply the occurrence of preferential po-
sitions (given by the peaks of the probability density), that one
may interpret as a tendency for the system to make structures.

3. Application to the solar system

Let us apply these methods to the problem of the formation
and evolution of the solar planetary system, knowing that we
concentrate on the prediction of new possible orbits. In this
case we write Eq. (7) with the potential being the Keplerian

gravitational potential Φ = −GmM
r , where M is the mass of

the Sun, and m the mass of the planet under consideration.
In the case of stationary motion with conservative energy

E = 2iD m ∂
∂t

, Eq. (7) becomes:

2D 2∆Ψ +

[
E

m
+
GM

r

]
Ψ = 0 (8)

Eq. (8) is similar to the Schrödinger equation for the hydrogen

atom, up to the substitution: h̄
2m −→ D and e2 −→ GmM so

that the natural unit of length, which corresponds to the Bohr
radius is:

a0 =
4D 2

GM
(9)

Let us be more specific about the value of our unique free pa-
rameter D (i.e., of the fundamental length-scale a0). In mi-
crophysics, it must be inversely proportional to the mass of
the particle (Nottale 1993a, 1996c). In order to derive its form
in the macroscopic gravitational case considered here, recall
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that the scale-covariant derivative has been constructed from
two contributions, that of the fractal fluctuation and that of the
breaking of local time reversibility described in terms of com-
plex numbers. If we now include only this last contribution, we

can define an incomplete covariant derivative, d
dt

= ∂
∂t

+ V 5
where V is the complex velocity. The equation of fractal ”free”
motion now takes the form of Newton’s equation of dynamics,
dV
dt

= iD ∆V . In this equation, the effect of the fractal fluc-
tuation is now expressed in terms of a complex ”fractal force”:

F = imD ∆V . (10)

The principle of equivalence must still hold for our quantized
Newton equation. This means that the inertial mass of the test-
particle must disappear from Eq. (8), as it does in its classical
counterpart (Hamilton-Jacobi equation). Therefore D must be
independent of m. Moreover, in the situation that is considered
here, the fluctuations remain of pure gravitational origin, so that
the force in Eq. (10) must be proportional to the product mM .
Then D is proportional to M and it can be written in terms of
a universal constant w0 having the dimension of a velocity:

D =
GM

2w0
(11)

We can now use the well-known quantum mechanics results for
the Coulomb potential to obtain the solutions of Eq. (8). We
are interested in the solutions with well determined values of
E, l2 and lz , since their classical counterpart are expected to
have kept a well-defined angular momentum perpendicular to
the initial disk. These solutions are the spherical wave functions
Ψnl (the “magnetic” quantum number plays no role here). We

thus find that theE/m ratios of planets are “quantized” as En
mn

=

− G2M 2

8D 2n2 where n = 1, 2, 3...We also expect angular momenta

to scale as Lz = 2mnD l with l = 0, 1, 2..., n− 1. The average
distance to the Sun and the eccentricity e are given, in terms of
the two quantum numbers numbers n and l, by the following
relations:

anl =

{
3
2
n2 − 1

2
l(l + 1)

}
a0 (12)

e2 = 1− l(l + 1)
n(n− 1)

. (13)

Let us briefly compare these predictions to the observed struc-
tures in the solar system. The difference of physical and chem-
ical composition of the inner and outer solar systems suggests
that they can be treated as two different systems, i.e., that we
expect two different diffusion coefficients for them. The main
results are summarized hereafter (see Nottale 1993a, 1995a for
more details).

3.1. Circularity of the orbits

Our first result is that we expect nearly circular orbits for the
planets. Indeed, Eq. (13) implies that, after the purely circular

state l = n − 1, the first non circular state l = n − 2 yields ec-
centricities larger than 0.58 for n ≤ 6 (see Fig. 1). Precisely, n
remains smaller than 6 in the solar system, except for the asteroid
belts (see below). Such a large value of the eccentricity would
imply strong chaos and orbit crossing, and cannot correspond
to a stable configuration on large time scales. Then only the
quasi-circular orbits remain acceptable solutions. Observations
confirm this prediction (Fig. 2), since even the largest eccen-
tricities correspond to small values of e2 (Pluto, e2 = 0.065;
Mercury, e2 = 0.042).

Recall also that the ratio Lz
m is quantized rather thanLz . This

solves the well-known and difficult problem of the distribution
of angular momentum in the solar system. Indeed, the angular
momentum is mainly carried on by the large planets (Jupiter
60%, Saturn 25%), rather than decreasing from the Sun out-
ward as required by most formation models. Since the principal
”quantum” number n remains small (n ≤ 6), the distribution of
angular momentum is expected to mainly mirror the distribution
of mass, as observed.

3.2. Distribution of the distances of planets

For circular orbits (l = n− 1), the predicted mean distance (Eq.
12) takes the simple form:

√
a = n

(
1 +

1
2n

) 1
2 √

a0 ≈
(
n +

1
4

) √
GM

w0
(14)

while the peak of probability density identifies with the lowest
order formula:

√
a = n

√
GM

w0
(15)

The velocities of planets are also expected to be quantized, from
Kepler’s third law, as

vn =
w0

n
(16)

The observed semi-major axes of the planets compare very well
with these formulae for the inner and the outer systems respec-
tively (Nottale 1993a and Figs. 3 and 4). Jupiter, Saturn, Uranus,
Neptune and Pluto rank n = 2, 3, 4, 5, 6 in the outer system. The
average distance of the inner solar system is in very good agree-
ment with n = 1 of the outer system (this may be the result
of a process of successive fragmentation, see below). Note also
the agreement of Neptune and especially Pluto with the outer
relation: recall that they did not fit the original Titius-Bode law,
and very rarely other empirical laws (Nieto 1972; Neuhäuser &
Feitzinger 1986).

Mercury, Venus, Earth and Mars take respectively ranks n =
3, 4, 5, 6 in the inner system. The central peak of the asteroid
belt (Ceres ”group”, 2.64 AU) agrees also remarkably well with
n = 8 of the inner system, and the main peak (Hygeia ”group”,
3.16 AU) with n = 9. Despite resonances with Jupiter, small
secondary peaks agree with n = 7 (Hungarias, 1.94 AU) and 10
(Hildas, 3.96 AU).
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Fig. 4. Observed distribution of δn = w0

√
an
GM −n for planets in the

solar system (best fit). The distribution is peaked at zero rather than
uniform in the interval [-0.5, 0.5], which shows that our distance law
is a genuine quantization.

The value of the constantw0 can now be calculated. We find
w0 = 144.3±1.2 km/s in the inner system from the lowest order
formula. As we shall see below, the inner and outer systems are
related since the whole inner system corresponds to the orbital
n = 1 of the outer system (Nottale 1995a). We therefore expect
the outer constant to be wout = w0/5, since the mass distribu-
tion of the inner system is found to peak at the Earth, which
ranks n = 5. This prediction is well verified by the data. We
find w0 = 5wout = 140 ± 3 km/s. The agreement is still better
accounting for the second order correction in Eq. 14. We find
w0 = 144.8±2.6 km/s. This result agrees remarkably well with
the quantization in units of 145 km/s (and its multiples and sub-
multiples) observed by Tifft (1977a) in the velocity differences
of galaxy pairs. This effect has been subsequently confirmed by
different authors in several other gravitational systems (galaxy
pairs: Sulentic 1984; Schneider & Salpeter 1992; Cocke 1992;
galaxy groups and clusters: Tifft 1980; Arp 1986; large scale
galaxy distribution: Tifft 1978; Tifft & Cocke 1984; Guthrie &
Napier 1991, 1996; galactic dynamics: Tifft 1977b; double stars
and stars radii: Nottale et al. 1996). The scale relativity theory
has been successfully applied to these various gravitational sys-
tems (Nottale 1996b,c). It has also been recently demonstrated
by Nottale (1996a,b) that the same quantization applies, in terms
of the same constant, to the recently discovered extra-solar plan-
etary systems. Therefore the constantw0 seems to stand out as a
universal constant of nature which is already observed for scales
ranging from 106 km to 30 Mpc i.e. on 15 decades.

3.3. Distribution of the masses

Our theoretical approach provides a model for the mass distribu-
tion of matter in the solar system. Indeed, as well the observed
distribution of the whole system as that of the inner system
(which stands globally as the first orbital of the outer one) are
in agreement with the law of probability density derived from

Fig. 5. Schematic representation of the hierarchy process. The orbital
n0 = 1 is divided into sub-orbitals n1 = 1 (inner system), n1 = 2
(Jupiter), n1 = 3 (Saturn).... The same is true for the inner system that
fragments itself into orbitals n2 = 1, 2, 3 (Mercury), 4 (Venus).... This
implies that the inner and outer systems are similar, as observed.

Eq. (8). It writes for the various values of n (circular orbits,
l = n− 1, and

∫
P (r)dr = 1):

P (r) =
1

2n!

(
2
na

)2n + 1
r2ne

−2r
na . (17)

This suggests a hierarchic mechanism for the distribution of
planetesimals and their final accretion into planets (Nottale
1995a and Fig. 5): the density of the whole initial disk is first
given by the orbital (Eq. 15) with n0 = 1, corresponding to a
coefficient D0. Then the disk is fragmented in terms of sev-
eral new orbitals n1 = 1, 2, 3...6, with a new coefficient D1.
While n1 = 2, 3... give single planets (Jupiter, Saturn etc...), the
first orbital n1 = 1 is once again fragmented into new orbitals
n2 = 1, 2, 3 (Mercury), 4 (Venus) etc..., with a new coefficient
D2.

Note that, the peak of the n1 = 1 orbital being the Earth at
n2 = 5, our distance law can therefore be expressed in a unique
form using the numeration 3, 4, 5 ,6 (inner system), and 10, 15,
20, 25, 30 (outer system, only multiple of 5).

This mechanism allows one to construct a model for the
resulting mass distribution. At the first level of this process,
the matter density is proportional to the probability distribu-

tion P1(a1) ∝ r2e
−r
a1 . At the second level, the new probabil-

ity density will act on this density distribution, yielding a new
distribution P1(a1).P1(a2), etc... Finally, the planets will result
from the fragmentation of the final mass distribution into in-
tervals lying at distances r ∝ n2, of width δr ∝ 2n + 1 ∝
r

1
2 . Then we expect the mass of planets to be distributed as

M (r) ∝ r
1
2
∏p

i=1 P1(ai) ∝ rke−br with k = 2p + 1
2 . This can

also be expressed introducing the distance rmax of the peak of
this mass distribution:

M (r) ∝ (re
−( r

rmax
)
)k (18)
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Fig. 6. Comparison of the predicted and observed masses of planets for
the inner solar system. C and H stand for the mass peaks in the asteroid
belt (Ceres and Hygeia). The possible additional planet (open circle)
is expected to have a mass of about 10−4m⊕.

Fig. 7. Comparison of the predicted and observed masses of planets
for the outer solar system. IS stand for the inner system as a whole.
Only Neptune is discrepant, which could be the signature of another
hierarchic structure at larger scale.

The observed distributions of the mass of planets in the inner and
outer solar systems are in good agreement with such a model,
as can be seen in Figs. 6 and 7. Only the mass of Neptune
is much higher than expected. A possible explanation for this
discrepancy could be the existence of a larger system in which
Neptune ranks n = 2 (see Fig. 3).

Note however that the above model remains very rough,
since it is constructed in the framework of the two-body equa-
tion. A more correct treatment, that we shall consider in future
works, would be to apply the theory to a disk potential, or, even
better, to solve directly for the coupled Poisson and Newton
complex equations (Nottale 1996c).

Remark finally that our theory will certainly help solving
another problem encountered by models of planetary formation.
The accretion time of planetesimals, though correct for tellurian
planets, becomes too large for giant planets. For only the cores
of Jupiter and Saturn, it is already > 1 Gyr, and even far larger
for Uranus and Neptune (Lissauer 1993). In our framework, the
initial distribution of planetesimals is no longer flat, but already
peaked at the final value of the planet positions, a mechanism
which should decrease the accretion time.

4. Possible existence of an intramercurial small planet

As we can see in Fig. 3, Mercury has the quantum number n = 3
in the inner system. The quantum numbers n = 1 and 2 are not
occupied in our solar system, and we suggest that there could be
small planets on the corresponding orbits. The radius of the first
orbit (n = 1), if its eccentricity is assumed to be zero, is 0.05 AU.
The surface temperature of a body at this distance from the Sun
is about 1700 K. The second orbit (n = 2) has a calculated radius
of 0.18 AU and the corresponding surface temperature is about
900 K. Concerning the mass of such expected objects, there is
an upper limit given by the error bar of the observed advance of
the perihelion of Mercury (43.11 arcsec/cy ± 0.45, Weinberg
1972), compared with Einstein’s prediction (43.03 arcsec/cy).
If the mass of the objects exceeds a certain value, the error bar
of the observed values will no more surround the prediction.
We have calculated, based on this principle (see Appendix A),
that for the orbit n = 2, the mass of the object cannot exceed
10−3m⊕, so that its diameter is smaller than 1700 km assuming a
density of 3 g/cm3, or 1400 km with 5 g/cm3. The last parameter
we can calculate from Kepler’s law is the synodical period of
those objects. For the second orbit (n = 2), with a = 0.18 AU,
we find a period of 31.6 days.

Last century, Le Verrier (1849) had suggested the existence
of a planet lying between Mercury and the Sun, to explain the
advance of the Mercury perihelion he had measured. From Le
Verrier’s calculations, such a planet on the orbit we consider
here (0.18 AU) should have about the mass of Mercury. How-
ever, the existence of such a massive planet is excluded since the
advance of Mercury’s perihelion is now satisfactorily explained
by Einstein’s general relativity (see e.g. discussion in Weinberg
1972). Nevertheless we have shown (Appendix A) that there is
still place for a body of about 1500 km in diameter, because
of the uncertainty of the observed value of the perihelion ad-
vance. Le Verrier has also reported 24 observations of small
objects crossing in front of the Sun between 1761 and 1876,
and especially the observation of Lescarbault in 1845.

During the 20th century, the search of intramercurial bodies
has been carried on, and the theoretical limits of their possible
orbits have been specified. Campins et al. (1996) have found
that dynamical (Mercury perturbations) and thermodynamical
(evaporation) constraints restrict the search area in the range of
0.1 to 0.25 AU from the Sun. These arguments rule out the orbit
n = 1 at 0.05 AU but put the orbit n = 2 at 0.18 UA just in the
middle of the survival zone. Two types of observations have been
performed: photographic searches during total solar eclipses
(see references in Leake et al. 1987, and Campins 1996), and
more recently IR observations have been carried on by Leake et
al. The incomplete character of all these observations (a single
image only in the photographic eclipse search, and a very small
area covered in the the IR search) does not allow a definitive
conclusion. Leake et al. conclude that there is no appreciable
population of large bodies (d > 100 km) orbiting interior to
Mercury. The possibility that either a belt of smaller bodies or
a single larger object do exist remains open.
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Before concluding, let us be more specific about the nature
of our prediction. At the level of description in this paper, the
theory does not strictly predict that there must be a planet or-
biting the Sun at 0.18 AU. Indeed, it gives a description of the
orbiting average properties of the beam of all virtual trajectories
of a test particle, moving in the gravitational field of the Sun,
considered at very large time scale. We rather predict that, if
bodies orbit the Sun closer than Mercury, they must, with high-
est probability, lie at 0.05 and 0.18 AU. But one can also remark
that the general shape of the probability distribution (Eq. 18),
agrees with the observed mass distribution in the inner solar
system, namely, mass increases from r = 0 to the probabil-
ity peak achieved by the Earth at n = 5, then decreases and
becomes very low at the asteroid belt distances (Fig. 6). This
suggests that this probability distribution constrains the shape
of the initial distribution of planetesimals. Fitting Eq. (18) to
the observed masses in the inner system, we find, provided no
other physical effects has pushed out matter from these orbitals,
that the masses of the small planets on n = 1 and n = 2 must
be m1 = 10−10 and m2 = 10−4 terrestrial mass, corresponding
respectively to 10 km and 500 km in diameter. Such predicted
masses agree with the upper limit given by the uncertainty of
the measurement of Mercury’s perihelion advance. However,
the existence of the n = 1 planet is definitively ruled out by the
evaporation constraint (Campins et al. 1996), while the mass
and distance of the n = 2 planet allows its survival.

5. Conclusion

We are currently considering two possible ways for the search of
a small object located on orbit n = 2. The first way is a ground
based experiment in the infrared at 2.2µm. This wavelength
corresponds to a window between the thermal background and
the light diffused by the aerosols of the atmosphere, taking into
account the expected temperature of the searched body (900 K).
The second way consists of analyzing the data of SOHO. The
coronagraphic instrument LASCO has a mode (C3) whose field
is about 16 deg, compatible with the size of the searched orbit.
The sensibility of the camera allows to detect objects up to the
magnitude 9 in the visible, corresponding to a diameter of 30
km.

Concerning our theoretical law, it has already been remarked
(e.g. Pecker & Schatzman 1959) that distance laws in n2 give a
far better fit to the solar planetary system than other proposed
empirical laws (which are most of the time scale laws, see Graner
& Dubrulle 1994). One can also recall the early attempt of Jehle
(1938), who proposed to apply the newly constructed quan-
tum mechanics to the solar system, and that of Blanchard et al.
(1984), who used Nelson’s stochastic mechanics as a diffusion
description of the initial disk.

Our prediction of a new planet holds only provided no other
physical effects has pushed out matter from its orbital. Never-
theless, the theory has already been confirmed (Nottale 1996a)
by the recent discovery at 0.05 AU from their star of three extra-
solar planets, including 51 Peg B (Mayor & Queloz 1995). This
distance corresponds to the orbit n = 1. Two more planets have

been found on n = 2. Moreover, the agreement, with very high
accuracy, between the theory (including second order terms)
and the observed position of the three planets orbiting the pul-
sar PSR B1257+12 (Nottale 1996a,b), gives clearly substance
to our theory.

The discovery of a new small planet on the orbitn = 2 would
be of high interest for the solar system knowledge. It could also
yield a new test of general relativity, the expected perihelion
advance of this planet being 273′′/cy. Such a discovery would
reinforce the validity of the scale relativity theory, and give a
fresh boost to the study of its consequences to the whole uni-
verse. It would be the revelation that since Galileo and Kepler,
since more than four centuries, we have before our very eyes a
genuine macroscopic quantum system: our own solar system.
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Appendix A: upper limit of the mass due to the uncertainty
of Mercury perihelion’s advance

The orbit of a planet moving in a central field is given by the
Binet formula:

d2

dΘ2

(
1
r

)
+

1
r

= − r2

C2
U ′(r) (A1)

where (r,Θ) are the polar coordinates.U is the potential function
and C = r2Θ̇ the area constant. For a potential of the form:

U (r) =
GM

r

(
1 +

(ε
r

)2
)

(A2)

where ε is a distance small compared to r, the solution is a
precessing elliptic orbit given by:

1
r

=
GM

C2
(1 + e cosαΘ) (A3)

with C2 = Gma(1− e2). α, close to unity, is given by:

α = 1− 3e2

(
GM

C2

)2

(A4)

The angular shift of the perihelion by period is then:

δΘ =
6πe2

α2(1− e2)2
(A5)

Consider, dispersing the intra-mercurial planet on its orbit, that
the Sun-planet system is equivalent to an oblate object, the ε

term in Eq. A5 writes: ε2 = δA
2M where δA is the difference of

the polar and equatorial inertial moments of the oblate object.

Then we have δA = mD2

2 where m and D are the mass and
orbital radius of the planet, supposed moving on a circular orbit
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in the same plane as Mercury. Taking D = 0.19 AU, one finds
for the perihelion motion:

δΘ = (0.7′′/century)

(
ρ

3g/cm3

)(
R

1000km

)3

(A6)

where ρ and R are the planet’s density and radius. Consider-
ing that this perihelion motion is known with an accuracy of
0.45′′/cy from Clemence’s analysis (Clemence 1947; Weinberg
1972), and that a possible intra-mercurial object has no visible
effect on it, one finds that the diameter of the planet is neces-
sarily smaller than about 1700 km for a density of ∼ 3g/cm3.
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