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Abstract. In a recent study (Nottale 1996b), it was found that
the distribution of the semi-major axes of the firstly discovered
exoplanets was clustered around quantized values according to
the lawa/GM = (n/w0)2, in the same manner and in terms
of the same constantw0 = 144 km/s as in our own inner Solar
System. The ratioαg = w0/c actually stands out as a gravi-
tational coupling constant. The number of exoplanets has now
increased fivefold since this first study, including a full system
of three planets around Ups And. In the present paper, we apply
the same analysis to the new exoplanets and we find that their
distribution agrees with this structuration law in a statistically
significant way (probability≈ 10−4). Such an2 law is predicted
by the scale-relativity approach to planetary system formation,
in which the evolution of planetesimals is described in terms
of a generalized Schrödinger equation. In particular, one was
able to predict from this model (Nottale 1993) the occurrence
of preferential distances of planets at≈ 0.043 AU/M� and
≈ 0.17 AU/M� from their parent stars. The observational data
supports this theoretical prediction, since the semimajor axes of
≈ 50% of the presently known exoplanets cluster around these
values (51 Peg-type planets).

Key words: relativity – gravitation – solar system – planets and
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1. Introduction

Scale relativity, when combined with the laws of gravitation,
provides us with a general theory of the structuring of gravita-
tional systems (Nottale 1996a, 1997). In this new approach, we
do not any longer follow individual trajectories, but we jump to a
statistical description in terms of probability amplitudes. Indeed,
we have demonstrated that, under only three simple hypothe-
ses (large number of potential trajectories, fractal geometry of
each trajectory and local irreversibility), Newton’s equation of
dynamics can be transformed and integrated in terms of a gener-
alized Schr̈odinger equation. This result suggests, in accordance
with recent similar conclusions (Ord 1996; Ord & Deakin 1996;
El Naschie 1995), that the Schrödinger equation could be uni-
versal, i.e. that it may have a larger domain of application than
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previously thought, but with an interpretation different from that
of standard quantum mechanics.

It has been shown (Nottale 1993, 1994), that this approach
accounts for several structures observed in the Solar System,
including planet distances, eccentricities, and mass distribution
(Nottale et al. 1997), obliquities and inclinations of planets and
satellites (Nottale 1998a), giant planet satellite distances (Her-
mann et al. 1998), parabolic comet perihelions (Nottale & Schu-
macher in preparation). Moreover, it also allows one to predict
and understand structures observed on a large range of scales,
from binary stars (Nottale & Schumacher 1998), to binary galax-
ies (Nottale 1996a; Tricottet & Nottale in preparation) and the
distribution of galaxies at the scale of the local supercluster
(Nottale & Schumacher 1998). A similar kind of approach has
been applied by Perdang (1995) to a statistical description of
HR diagrams.

It has been also demonstrated that the first newly discovered
extra-solar planetary systems come under the same structures,
in terms of the same universal constant as in our own Solar
System (Nottale 1996b). The system of three planets discovered
around the pulsar PSR B1257+12 also agree with the theoretical
prediction with a very high precision of some10−4 (Nottale
1996b, 1998b).

The number of exoplanets discovered around solar-like stars
has now been multiplied by five since these first studies, so that it
seems worthwhile to check again whether the new observational
data continue to prove to be non-uniformly distributed.

We indeed find that the semi-major axes of the presently
known exoplanet orbits, (measured in terms of the natural grav-
itational unit for each system, given by the mass of their parent
star), are non-uniformly distributed. Namely, their distribution
show peaks of probability density that are consistent with the
law a/GM = n2/w0

2, where the constantw0 is a priori fixed
to the value 144 km/s as in our own inner Solar System and in
extragalactic data. Moreover, most of these exoplanets (51 Peg-
type objects) fall in the fundamental probability density peaks
(n = 1, a/M = 0.043 AU/M�) and in the second orbital
(n = 2, a/M = 0.17 AU/M�) predicted by the theory.

2. Theory: a short reminder

We have demonstrated (Nottale 1993, 1996a, 1997) that New-
ton’s fundamental equation of dynamics can be integrated in the



380 L. Nottale et al.: Scale-relativity and quantization of exoplanet orbital semi-major axes

form of a Schr̈odinger-like equation under the three following
hypotheses:

(i) The test-particles can follow an infinity of potential tra-
jectories: this leads us to use a fluid-like description,v =
v(x(t), t).

(ii) The geometry of each trajectory is fractal (of dimension
2). Each elementary displacement is then described in terms of
the sum,dX = dx+dξ, of a mean, classical displacementdx =
vdt and of a fractal fluctuationdξ whose behavior satisfies the
principle of scale relativity (in its simplest “Galilean” version).
It is such that〈dξ〉 = 0 and

〈
dξ2

〉
= 2Ddt. The existence of

this fluctuation implies introducing new second order terms in
the differential equations of motion.

(iii) The motion is assumed to be locally irreversible, i.e.,
the (dt ↔ −dt) reflection invariance is broken, leading to a
two-valuedness of the velocity vector that we represent in terms
of a complex velocity,V = (v+ + v−)/2 − i(v+ − v−)/2.

These three effects can be combined to construct a complex
time-derivative operator which writes

d́

dt
=

∂

∂t
+ V · ∇ − iD 4 (1)

where the mean velocityV = d́x/dt is now complex andD is
a parameter characterizing the fractal behavior of trajectories.

Since the mean velocity is complex, the same is true of
the Lagrange function, then of the generalized actionS. Set-
ting ψ = eiS/2mD, Newton’s equation of dynamics becomes
md́V/dt = −∇φ, and can be integrated in terms of a general-
ized Schr̈odinger equation (Nottale 1993):

2D2 4 ψ + iD ∂

∂t
ψ =

φ

2m
ψ. (2)

This equation becomes, for a Kepler potential and in the time-
independent case:

2D2 4 ψ + (
E

m
+
GM

r
)ψ = 0. (3)

Since the imaginary part of this equation is the equation of
continuity,ρ = ψψ† can be interpreted as giving the probability
density of the particle positions.

Even though it takes this Schrödinger-like form, this equa-
tion is still in essence an equation of gravitation, so that it must
keep the fundamental properties it owns in Newton’s and Ein-
stein’s theories. Namely, it must agree with the equivalence prin-
ciple (Nottale 1996b; Greenberger 1983; Agnese & Festa 1997),
i.e., it must be independant of the mass of the test-particle and
GM must provide the natural length-unit of the system under
consideration. As a consequence, the parameterD takes the
form:

D =
GM

2w
, (4)

wherew is a fundamental constant that has the dimension of a
velocity.

The solutions of Eq. (3) are given by generalized Laguerre
polynomials (see e.g. Nottale et al. 1997). We now assume that

such a description can be applied to the distribution of plan-
etesimals in the protoplanetary nebula. We expect them to fill
these “orbitals”, then to form a planet by accretion as in the stan-
dard models of planetary formation. But the new point here is
that only some particular orbitals are allowed, so that the semi-
major axes of the orbits of the resulting planets are quantized
according to the law:

an =
GMn2

w2 , (5)

wheren is an integer. In an equivalent way, using Kepler’s third
law that relates the semimajor axisa to the orbital periodP ,
(a/GM)3 = (P/2πGM)2, the average velocity of the planet,
v = 2πa/P = (GM/a)1/2, is expected to have a distribution
peaked atvn = w/n, i.e. in Solar System units (AU, year,M�
and Earth velocity):

(a/M)1/2 = (P/M)1/3 =
1
v

=
n

w
. (6)

3. On the nature of the fundamental ratioαg = w/c:
a gravitational coupling constant

It may be useful at that step to be more specific about the nature
of the new fundamental constant, even though a more detailed
analysis will be given in a forthcoming work (Nottale in prepa-
ration). The meaning ofw/c can be anticipated from a compar-
ison with the quantum hydrogen atom. Indeed, it is well known
that, on its fundamental level, the average orbital velocity of an
electron is given by〈v〉 /c = α, whereα is the fine structure
constant, i.e. the coupling constant of electromagnetism.

In the macroscopic case considered here the problem is
purely gravitational, butw still gives the average velocity of
the fundamental level. Let us demonstrate thatw/c plays the
role of a gravitational coupling constant. The fine structure con-
stant appears in the expression of the Coulomb force when the
square of the electric charge is expressed in terms of quantum
units, i.e.:

Fem =
e2

4πε0r2
= α

~c

r2
. (7)

Now the correspondence between the standard microscopic
quantum theory and the macroscopic quasi-quantum situation
described here is given by~ → 2mD, so that we are lead to
write:

Fg = αg
2mD c

r2
. (8)

Now, sinceD = GM/2w andFg = GMm/r2, the identifica-
tion of both expressions of the force implies:

αg =
w

c
. (9)

This establishesw/c as a macroscopic gravitational coupling
constant, in agreement with Agnese & Festa (1997), and Agop
et al. (1999).
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In Nottale 1996b, the value ofw was determined to be
w = 144.7 ± 0.5 km/s from several different quantization ef-
fects ranging from the scale of the solar system to extragalactic
scales, in agreement with Tifft & Cocke (1984) own precise de-
termination (144.9 km/s) from the Tifft effect of redshift quan-
tization. This value corresponds to an inverse coupling constant
α−1

g = 2072 ± 7.
The question of a theoretical prediction of the value of this

constant might reveal to be a difficult one, owing to the fact
that there is still no theoretical understanding, in the standard
model of elementary particles, of the value of the electromag-
netic coupling constant itself (however, see Nottale 1996a). A
full discussion of this problem will be considered elsewhere.

However, one can already remark here that its solution is
expected to involve connections between local and global scales,
i.e. it might be related with Mach’s principle. Recall that, in
other contributions, new dilation laws having a log-Lorentz form
have been introduced (Nottale 1992), that lead to re-interpret
the length-scale of the cosmological constantILU = Λ−1/2

and the Planck length-scaleILPl as impassable, respectively
maximal and minimal length-scales, invariant under dilations
of resolutions (see e.g. Nottale 1993, 1996a): i.e., they would
play for scale transformations of resolutions a role similar to
that of the velocity of light for motion transformations.

Their ratio defines a fundamental pure number,IK =
ILU/ILPl. The logarithm of this ratio has been found to have
the numerical valueCU = ln IK = 139.83 ± 0.01, i.e.
IK = 5.3 × 1060 from an analysis of the vacuum energy den-
sity problem (Nottale 1993, 1996a). This value corresponds
to ΩΛ = 0.36h−2(= 0.7 for a Hubble constantH0 = 70
km/s.Mpc) and it has been corroborated by recent indirect mea-
surements of the cosmological constant using SNe I (Garnavich
et al. 1998; Perlmutter et al. 1998; Riess et al. 1998).

Moreover, one is also lead, in the scale-relativistic frame-
work, to give a new interpretation of gauge invariance as being
invariance in the resolution space. The universal limit on pos-
sible scale ratios thus implies a quantization of coupling con-
stants (this amounts to defining a wave in scale space). This
allows one to set new fundamental relations between coupling
constants and Compton lengths over Planck length ratios, that
typically write (Nottale 1996a):

α ln(
λc

ILPl
) = cst. (10)

When it is applied to the electron structure, which is upper lim-
ited in scale by its Compton length and lower limited by the
Planck length-scale, this method yields a relation between the
electromagnetic coupling as it is defined in the electroweak the-
ory, 8

3α, and the electron mass in Planck mass unit:

8
3
α ln(

mPl

me
) = 1. (11)

This relation is satisfied within 0.3% by the experimental values
of the fine structure constant and of the electron mass. Recall that
this method also allows one to suggest a solution to the hierarchy
problem between the GUT and electroweak scale (WZ). Indeed

we have suggested, in the minimal standard model reformulated
in the special scale-relativity framework, that bare couplings
are given by the critical value1/4π2, so that one can define a
fundamental scale given by

ln(
mPl

mWZ
) = 4π2, (12)

which is nothing but the electroweak scale (≈ 90 GeV).
We can now apply the same reasoning to gravitation in

the new framework. Indeed, contrarily to what happens in
the classical theory, the equation of motion (Eq. 2) can be
shown to be gauge invariant. If the potentialφ is replaced by
φ + GMm∂χ(t)/c∂t, where the factorGMm ensures a cor-
rect dimensionality, then Eq. (2) remains invariant providedψ
is replaced byψ e−iαgχ, with αg related toD by:

αg × 2mD =
GMm

c
, (13)

which is the previously established relation forαg = w/c.
Therefore, gauge invariance allows one to demonstrate the form
of the coefficientD that we obtained from dimensional consider-
ations. The advantage of this result is that it will be generalizable
to gravitational potentials different from the Kepler one.

Finally, similarly to the electromagnetic case, we can in-
terpret the arbitrary gauge functionχ, up to some numerical
constant, as the logarithm of a scale factorlnρ in resolution
space. In the special scale-relativity framework, such a scale
factor is limited by the ratio of the maximal cosmic scale over
the Planck scale, i.e.lnρ < CU . This limitation ofχ in the phase
of the wave functionψ implies a quantization of its conjugate
quantityαg, following the relation:

k αg CU = 1. (14)

The numerical constantk remains to be determined. A possi-
ble suggestion is thatk = 3

2π
2, which yields a predicted value

of α−1
g = 2070.10 ± 0.15 andw0 = 144.82 ± 0.01 km/s, in

good agreement with it precise observational determinations.
Reversely, from such a relation, if it was confirmed, a precise
measurement ofw would provide one with a new way of deter-
mining the cosmological constant.

4. Comparison with observational data
and statistical analysis

Table 1 gives the periodsP of the newly observed exoplanets.
The massesM of the parent stars are taken from the compi-
lation of Marcy et al. (1999). Only planetary companions are
considered here, to the exclusion of brown dwarfs (but see also
Sect. 6), using the criterion that their mass be smaller than 13
Jupiter masses (see e.g. Schneider 2000).

The references for the observed orbital periods and for the
star masses are as follows: (1) Lang (1992); (2) Mayor & Queloz
(1995); (3) Butler et al. (1998); (4) Butler et al. (1997); (5)
Noyes et al. (1997); (6) Fischer et al. (1998); (7) Marcy et al.
(1999); (8) Cochran et al. (1997); (9) Marcy et al. (1998); (10)
Butler & Marcy (1996); (11) Queloz et al. (2000); (12) Marcy
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Fig. 1. Observed distribution of̃n = 4.83 (P/M)1/3 = 144/v where the orbital periodP and the star massM are taken in Solar System units
(AU andM�), for the recently discovered exoplanet candidates (black dots) and for the planets of our inner Solar System (white dots). The
planet around HR 7875, that remains unconfirmed, and the second planet around HD 114762, the existence of which is tentatively suggested
here, are plotted as grey dots. The grey zone stands for the theoretically predicted low probability of presence of planets and the white zones for
high probability. The error bars are typically of the order of0.03 ñ.

& Butler (1996); (13) Mazeh et al. (1996); (14) Mayor et al.
(1999); (15) Butler et al. (1999); (16) Santos et al. (2000); (17)
Udry et al. (2000); (18) Mayor et al. (1998), Marcy (2000); (19)
Charbonneau et al. (1999), Henry et al. (2000); (20) Vogt et al.
(2000); (21) Kurster et al. (1998); (22) Marcy (2000).

We define an effective “quantum number”

ñ = 4.83 (P/M)1/3 (15)

which is computed directly from the observational data, i.e., the
values of the orbital periodP and of the star massM for each
planet and its parent star. The number4.83 = 144/29.79 ex-
presses, in terms of Solar System units (AU andM�), the value
w0 = 144 km/s which characterizes galactic and extragalac-
tic systems (Tifft 1977) and also our own inner Solar System
(Nottale 1996b; Nottale et al. 1997). Indeed the average Earth
velocity is29.79 km/s.

Therefore, our theoretical prediction can be summarized by
the statement that the distribution of the values ofñ = 144/v
must cluster around integer numbers. These values are given in
column 5 of Table 1 and their distribution is plotted in Fig. 1.

Note that, since the main source of error is the uncertainty
on the star mass (usually≈ 10%), the relative uncertainty on
ñ is ≈ 0.03 %. Then our theoretical prediction according to
which ñ must be close to an integer becomes more difficult to
be checked beyondn > 6, since the error bar becomes too large
(> 20%).

The values of the masses of the parent stars have been taken
from the compilation of Marcy et al. (1999), and for more re-
cently discovered planets, from Mayor et al. (1999: HD 75289),
Charboneau et al. (1999: HD 209458), Vogt et al. (2000), Marcy
(2000). For two of these planets, HD 177830 and HD 10697,
the masses being badly determined and in contradiction with
the mass expected from their spectral type, we have taken an
average value (1.0 solar mass).

We have plotted in Fig. 2 the histogram of the differences
δn betweeñn and the nearest integer, for the data of Table 1. As
can be checked in this figure, as well as in Table 1 and Fig. 1,
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Fig. 2. Histogram of the values of|δn| = |144/v − n| for planets in
the inner solar system and exoplanets. The mean velocity is computed
from the original data using Kepler third law asv = (M/P )1/3, where
M is the parent star mass andP is the planet period (in solar system
units). Under the standard, no struturation, hypothesis, the distribution
should be uniform in the interval [0,0.5]. On the contrary, it is found
that 33 objects among 42 fall in the first half interval and only 9 in the
second. The probability to obtain such a result by chance (which is as
getting 9 heads while tossing a coin 42 times) is≈ 10−4.

we verify that the observed values ofñ indeed cluster around
integer values.

Let us make a statistical analysis of this result. We recall
that we have performed no fit of the data. Indeed, we look for
clustering around integer values of the ratio144/v, where the
valuew0 = 144 km/s is taken from independent results (e.g.,
extragalactic data on binary galaxies) and wherev is calcu-
lated from the observed star mass and planet orbital period. As
a consequence the zero hypothesis corresponds to a uniform
distribution ofδn values.

A Kolmogorov-Smirnov one-sample test yields a maximum
differenceD = 0.31 between the observed cumulative distri-
bution and that of a uniform distribution. For n=42 points, this
result has a probabilityp < 10−3 to be obtained by chance.
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values of the semi-major axes of the three planet orbits are compared
with the possible values predicted for the peaks of probability density,
a/GM = (n/w0)2 with w0 = 144 km/s. An excellent agreement is
found forn = 1, 4, 7. Note that the large eccentricities of the orbits of
planets c and d may explain the emptiness of the other “orbitals”.

We can also make an independent test by separating theδn
domain into two equal intervals respectively of high probability,
[-0.25,+0.25] and low probability, [0.25,0.75]. It can be seen in
Fig. 2 that among 42 points, 33 fall in the interval [-0.25,+0.25]
and only 9 in [0.25,0.75]. The probability that, for 42 trials, 9
events (or less) fall in a 1/2 large interval and 33 in the comple-
mentary one isp =

∑i=9
i=0(42, i) × 2−42 = 1.3 × 10−4, where

(42, i) denotes a binomial coefficient. Therefore we can exclude
at better than the3σ level of statistical significance that such a
result be obtained by chance.

Finally, we have performed the same analysis by taking star
masses deduced from their spectral type (from Allen 1973). One
finds essentially the same statistical result. Among 42 points, 33
fall in the interval [-0.25,+0.25] and 9 in [0.25,0.75].

5. The triple system around Upsilon Andromedae

After the submission of the present paper, the evidence that Ups
And has two additional planets was reported (Butler et al. 1999).
This report provides us with a new occasion to test for then2 law
in a relative way using a three planet system, as already done
for the three planets around the pulsar PSR B1257+12 (Nottale
1996b, 1998b). As can be seen in Fig. 3, the result obtained is
very precise. Indeed, we find that the observed periods of the
three planets Ups And b, c, d follow the above relation:

P
1/3
d − P

1/3
c

P
1/3
c − P

1/3
b

= 1.006. (16)

Table 1. Inner Solar System planets and extra-solar planets. The table
gives, for each new exoplanet, the parent star massM (in unit of M�)
and its uncertainty, the orbital periodP (in years), thea/M ratio (in
AU/M�), given by(P/M)2/3 from Kepler’s third law, and the effective
quantum number̃n = 4.83 (P/M)1/3 = 144/v. Herea is the semi-
major axis andv the average velocity, in km/s (see text).

Star Name Star mass P a/M ñ Ref.

Sun/Merc. 1.00± 0.00 0.241 0.387 3.01 (1)
Sun/Venus 1.00± 0.00 0.615 0.723 4.11 (1)
Sun/Earth 1.00± 0.00 1.000 1.000 4.83 (1)
Sun/Mars 1.00± 0.00 1.881 1.524 5.96 (1)
Sun/Hung. 1.00± 0.00 2.72 1.95 6.75 (1)
Sun/Ceres 1.00± 0.00 4.61 2.77 8.04 (1)
Sun/Cyb. 1.00± 0.00 6.35 3.43 8.95 (1)

51 Peg 0.98± 0.12 0.01158 0.052 1.10 (2)
47 UMa 1.03± 0.09 3.020 2.049 6.91 (10)
70 Vir 1.12± 0.03 0.3195 0.433 3.18 (12)
HD 114762 0.82± 0.10 0.230 0.428 3.16 (13)
55 Cnc 0.90± 0.08 0.0404 0.126 1.72 (4)
Tau Boo 1.20± 0.12 0.00907 0.039 0.95 (4)
Ups And b 1.10± 0.12 0.0126 0.051 1.09 (4)
Ups And c 1.10± 0.12 0.663 0.714 4.08 (15)
Ups And d 1.10± 0.12 3.474 2.153 7.09 (15)
16 Cyg 1.05± 0.10 2.201 1.638 6.18 (8)
Rho CrB 1.00± 0.10 0.1085 0.227 2.30 (5)
HR 7875? 1.20± 0.12 0.116 0.211 2.22 (21)
Iota Hor 1.03± 0.02 0.876 0.897 4.58 (21)
GJ 876 0.32± 0.03 0.167 0.648 3.89 (9)
HD 187123 1.00± 0.10 0.00848 0.042 0.98 (3)
HD 210277 0.92± 0.11 1.196 1.191 5.27 (7)
HD 217107 0.96± 0.06 0.0195 0.074 1.32 (6)
HD 195019 0.98± 0.06 0.0501 0.138 1.79 (6)
HD 168443 0.84± 0.09 0.159 0.330 2.78 (7)
GJ 86 0.79± 0.08 0.0433 0.144 1.84 (11)
HD 75289 1.05± 0.10 0.00961 0.044 1.01 (14)
HD 130322 0.79± 0.05 0.0294 0.111 1.61 (17)
14 Her 1.06± 0.11 4.65 2.680 7.91 (18)
HD 209458 1.10± 0.05 0.00965 0.043 1.00 (19)
HD 192263 0.75± 0.05 0.0654 0.197 2.14 (16)
HD 37124 0.91± 0.10 0.424 0.601 3.75 (20)
HD 177830 1.00± 0.15 1.070 1.046 4.94 (20)
HD 134987 1.05± 0.10 0.712 0.772 4.25 (20)
HD 222582 1.00± 0.10 1.577 1.355 5.63 (20)
HD 10697 1.00± 0.10 2.965 2.064 6.94 (20)
GJ 3021 0.90± 0.09 0.366 0.549 3.58 (22)
HD 89744 1.40± 0.10 0.701 0.631 3.84 (22)
HD 12661 1.07± 0.10 0.724 0.771 4.24 (22)
HD 16141 1.01± 0.10 0.208 0.349 2.85 (22)
HD 46375 1.00± 0.10 0.00828 0.041 0.98 (22)

This is a strong indication thatnd − nc = nc − nb, which can
be checked directly from the “absolute” analysis (see Table 1)
according to which the three planets rank respectivelyn =1, 4,
7 with a precision better than 10%.

Let us compute the probability to get such an agreement of
the observed orbital periods with the theoretical prediction for
this system. The differences between the observed values ofñ
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and the nearest integers for the three planets are respectively
0.09(b), 0.08(c) and 0.09(d). The probability to get such a result
by chance is onlyp ≈ (0.2)3 < 10−2. This is confirmed by a
Kolmogorov-Smirnov test: we obtainD = 0.82 for 3 points,
which corresponds to a 1% probability.

6. The planet around HD 209458
and other 51 Peg-like planets

More recently, a 51 Peg-like planet, initially found from a pre-
cision Doppler survey, has been detected in a more direct way
by its transit across its parent star, HD 209458 (Charbonneau
et al. 1999; Henry et al. 2000; Robichon & Arenou 2000).
This photometric detection allows one to determine the in-
clination of the orbit, then the exact mass (0.63 MJ) and to
confirm definitely the existence of a Jupiter-like planet. There-
fore this planet deserves a particular study. From Charbon-
neau et al. (1999) data,M = 1.1M� andP = 3.5245(3)
days, one obtains̃n = 144/v = 0.997, while Henry et al.
2000) data,M = 1.03M� and P = 3.524(5) days, give
ñ = 144/v = 1.018. This planet is then found to lie in a
precise way at the predicted peak of probability density of the
fundamental “orbital”n = 1. This argument is reinforced by
the recent probable spectral detection (Cameron et al. 1999),
from Doppler-shifted reflected starlight, of the planet orbiting
Tau Boo, which is also a fairn = 1 planet (̃n = 144/v = 0.95).

Eight 51 Peg like planets witha/M < 0.1 AU/M� have
now been discovered, and also two brown dwarfs (Mayor et
al. 1997), HD 98230 (̃n = 1.02) and HD 283750 (̃n = 0.91).
Except for one object at̃n = 1.32 (HD 217107), they are all
clustered betweeñn ≈ 0.9 and1.1 (see Fig. 4). The mean or-
bital velocity of these planets is〈v〉 = 143 ± 3 km/s, i.e., they
constitute a direct and precise achievement of the fundamental
constantw0.

Before concluding, note that the observed distribution of
small ñ values suggests that there exists a new hierarchy level
of structuration based onw = 432 km/s for 51 Peg types exo-
planets (which would imply the possibility of finding exoplan-
ets lying ata/M = 0.019 AU/M� from their star). This would
agree with our result (Nottale et al. 1997) that then = 1 orbital
of the outer solar system is actually sub-structured in terms of
the inner solar system itself. Moreover, the distribution of the
perihelions of intramercurial comets show peaks at predicted
positions corresponding to constantsw = 432 = 3 × 144 km/s
and1296 = 3 × 432 km/s (Nottale & Schumacher in prepara-
tion).

7. Discussion

7.1. Theory

Concerning the theory, we shall briefly discuss three points. A
more complete discussion will be published elsewhere (Nottale
in preparation).

(i) Let us first compare our approach with the standard the-
ory of gravitational structure formation and evolution. We write
instead of the Euler-Newton equation and of the continuity

0.7 0.8 0.9 1 1.1 1.2 1.3 1.40.6

n = 144 / v  = 4.834 (a / M)

a / M (AU / M  )

1/2

0.015 0.027 0.043 0.062 0.084

0.5 1.5

Fig. 4. Observed distribution of
√

a/M for exoplanets and brown
dwarfs with a/M < 0.1, wherea is the orbital semi-major axis
and M the parent star mass, compared with the theoretical predic-
tion (peak of probability density of the orbitaln = 1 expected at
a/M = 0.043AU/M�).

equation a unique, complex, generalized Euler-Newton equa-
tion that can be integrated in terms of a Schrödinger equation,
completed by the Poisson equation. The square of the modulus
of the Schr̈odinger equation then gives the probability density
ρ. Now, when the ‘orbitals’, which are solutions of the motion
equation, can be considered as filled with the particles (e.g.,
planetesimals in the case of planetary systems formation), their
mass density is proportional to the probability density. By sepa-
rating the real and imaginary parts of the Schrödinger equation
we get respectively a generalized Euler-Newton equation and
the continuity equation (which is therefore now part of the dy-
namics), so that our system becomes:

m (
∂

∂t
+ V · ∇)V = −∇(φ+Q), (17)

∂ρ

∂t
+ div(ρV ) = 0, (18)

∆φ = −4πGρ. (19)

Then this system of equations is equivalent to the classical
one, except for the introduction of an extra potential termQ that
writes:

Q = −2mD2 ∆
√
ρ√
ρ
. (20)

In this case the new potential term (the “Bohm potential”) is
a function of the density of matter, as the usual Newton potential.

We recover the standard theory in the limitD → 0. As a con-
sequence, from the viewpoint of the application of the present
approach to the formation and evolution of gravitational sys-
tems, the main question becomes to demonstrate from observa-
tional data that the parameterD does exist and is non vanishing,
then to determine its form and its values in the various physical
configurations. This is one of the goal of the present paper and
of forthcoming works.

Conversely, the existence of this additional term demon-
strates that there is indeed new physics here, i.e. that one cannot
obtain such a system of equations from a simple extrapolation
of the standard approach.

(ii) This remark leads us to briefly discuss other related ap-
proaches which also suggested the use of a quantum-like de-
scription for planetary systems and for other gravitational struc-
tures.
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The suggestion to use the formalism of quantum mechanics
for the treatment of macroscopic problems, in particular for un-
derstanding structures in the solar system, dates back to the be-
ginnings of the quantum theory (see e.g. Jehle 1938; Liebowitz
1944; and Reinisch 1998 for additional references). However
these early attempts suffered from the lack of a convincing justi-
fication of the use of a quantum-like formalism and were hardly
generalizable (e.g., the Schrödinger-like equation derived by
Liebowitz applied only to stationary states ofn particles and
allowed only for a real (non-complex) wave function). Anyway
these works clearly anticipated the recent understanding of the
universality of the Schr̈odinger equation.

More recently, several works attempted to develop a macro-
scopic quantum theory under the motivation of describing the
various Tifft effects of redshift quantization (Greenberger 1983;
Dersarkissian 1984; Carvalho 1985; Cocke 1985). The problem
with these attempts is that they did not allow an understanding
of the origin of the observed quantization and of its meaning.
Recall indeed that our interpretation of these effects is differ-
ent from theirs. They were interpreted by Tifft as an occurrence
of anomalous, precisely quantized non-Doppler redshifts, while
in the present approach we interpret them as peaks of the prob-
ability distribution of standard velocity redshifts. The present
result that the solar system planets and exoplanets (for which
we are certain that we deal with true velocities) show the same
structures supports our interpretation.

A third, better theoretically motivated, approach, has been
the suggestion to use Nelson’s stochastic mechanics (Nelson
1966) as a description of the diffusion process in the protoso-
lar nebula (Albeverio et al. 1983; Blanchard 1984). The prob-
lem with such a suggestion is that Nelson’s twin diffusion pro-
cess is not a standard diffusion process. Indeed, in standard
diffusion one can establish a forward Kolmogorov equation
(also called the Fokker-Planck equation), then a backward Kol-
mogorov equation in which the average velocity is the same as
in the forward one (see e.g. Welsh 1970). On the contrary, Nel-
son’s theory introduces, in addition to the forward Kolmogorov
equation (which he calls forward Fokker-Planck equation), a
“backward Fokker-Planck equation” in which the average back-
ward velocity is different from the forward one. This backward
Fokker-Planck equation is therefore incompatible with the back-
ward Kolmogorov equation of standard diffusion. Moreover, the
form of the mean acceleration in stochastics mechanics must be
arbitrarily postulated. Fianally, a justification is lacking for the
application of such a non standard diffusion process to macro-
scopic systems.

Recall that in our own present attempt, these problems are
overcome since (i) the two-valuedness of the mean velocity vec-
tor is explained as a consequence of thedt → −dt symme-
try breaking (local irreversibility); (ii) we use neither Fokker-
Planck equations nor a diffusion description; (iii) our basic equa-
tion, written in terms of the new “covariant” time derivative op-
erator, keeps the standard form of the equation of dynamics, and
it now includes the continuity equation.

(iii) A last point that we shall briefly discuss here is Reinisch
(1998)’s proposal according to which then = 1 mode should

correspond to purely radial motion and then be singular and
therefore forbidden. He suggests to use non linear modes that
give a distance lawa/aB = n[(n−1)+

√
(n− 1)/2]. These so-

lutions, when fitted to the inner solar system, yieldaB = 0.0422
AU, and then give probability peaks at 0.14, 0.38, 0.71, 1.14 and
1.67 AU. The agreement is bad for the Earth (1 UA) and Mars
(1.52 UA), but, more importantly, the theoretical prediction of
this model for extrasolar planets at intramercurial distances is
one unique peak ata/M = 0.14 AU/M�. This is clearly re-
jected by the observed distribution of exoplanets close to their
stars (see Table 1 and Figs. 1 and 4), in particular by the well-
defined peak at0.043 AU/M�. The problem raised by Reinisch
is that the fundamental mode is characterized by a secondary
quantum numberl = n−1 = 0 for n = 1, and should therefore
correspond to zero angular momentum. However, one should
not forget that this behaviour is obtained from a highly sim-
plified treatment of planetary formation, namely, pure Kepler
two-body problem with spherical symmetry. This is clearly an
oversimplication, since a more complete approach should also
account for flattening, self-gravitation of the disk and other ef-
fects. The work aiming at developing such a more realistic treat-
ment is now in progress. Anyway, the above question is already
simply solved by jumping to a 2-D Schrödinger equation, in
order to describe the high flattening of the initial dust disk: we
indeed find in this case that the radial modes are suppressed,
since the secondary quantum number now varies from 1/2 to
n− 1/2 (Nottale in preparation). Moreover, in all cases studied
up to now, then = 1 orbital happens to be sub-structured.

7.2. Error analysis

The number of exoplanets (≈ 35) now known allows one to
perform an analysis of the distribution of errors. As already
remarked, the main source of error is about the parent star mass.
The relative error is≈ ±10%, so that the uncertainty oñn, which
is proportional toM−1/3, is ≈ 0.033n.

Then we can compute the expected number of exoplanets
for which δn (the difference betweeñn = 4.83 (P/M)1/3 and
the nearest integer) fall outside the interval [-0.25, +025] due to
the error on mass alone. By using a Student law corresponding
to the observed number of exoplanets in each “orbital”, we find
a total number of 4.1 exoplanets expected to be discrepant, to be
compared with the observed number of 9 among 35 exoplanets.

This indicates that, as expected from our model, there is
an intrinsic dispersion around the “quantized” values(n/w0)2

of the semi-major axes. This dispersion is expected to be non
zero, but smaller than that of the calculated orbitals, given by
generalized Laguerre polynomials. Indeed, we interpret these
orbitals as describing the density distribution ofplanetesimals
in the initial disk. Then2 values give their density peaks, so
that, after the accretion process, the planet is expected to lie
with higher probability at about this distance from its star. A
theoretical estimate of the expected dispersion of the planet po-
sitions around the peak values remains to be done. It should
depend on the various conditions and perturbations that inter-
vene during the accretion process, as indicated, e.g., by the fact
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Table 2. Error analysis of the semi-major axis distribution of exo-
planets. The table gives: the quantum numbern; the observed num-
ber of exoplanets in each orbital; the expected total dispersion on
ñ obtained from a combination of the estimated intrinsic dispersion
σi = 0.125 and of the dispersion coming from the error on the
star mass,σm = 0.033 n; the value of the Studentt variable which
corresponds to the observed number of exoplanets, for a difference
δn = ±0.25; the corresponding expected rate of discrepant exoplan-
ets; the final number of expected discrepant exoplanets in each orbital.

n obs. dispersion Student rate number

1 8 0.13 1.92 0.11 0.90
2 7 0.14 1.79 0.12 0.85
3 4 0.16 1.56 0.20 0.80
4 6 0.18 1.39 0.20 1.20
5 4 0.21 1.19 0.30 1.20
6 2 0.24 1.04 0.40 0.80
7 3 0.26 0.96 0.40 1.20
8 1 0.29 0.86 0.55 0.55

that the observed dispersion for the three planets around the pul-
sar PSR B1257+12 (Nottale 1996b) is far smaller that for the
planets of our Solar System.

The inner Solar System, for which the planet positions are
known with precision, and the exoplanetn = 1 orbital, for
which the contribution of the error on the star mass remains
small, allow us to obtain an observational estimate of the intrin-
sic dispersion oñn. We get for the inner Solar Systemσ = 0.121
(7 objects), a value which is confirmed by then = 1 exoplan-
ets (7 objects), for whichσ = 0.124. We can now make again
the preceding analysis by combining the intrinsic dispersion,
assumed to beσ = 0.125, and the error from the mass star (see
Table 2). We find a total expected number of≈ 8 discrepant
exoplanets (outside the interval [-0.25,0.25]), which compares
well with the observed number of 9.

7.3. Consequences for exoplanets

We have shown that the new exoplanets discovered since three
years agree in a statistically significant way with the theoretical
prediction of the scale-relativity approach. This is a confirma-
tion of the result which was established with the firstly discov-
ered ones (51 Peg, ups And, tau Boo, 55 Cnc, HD114762, 47
UMa, see Nottale 1996b). The existence of a candidate planet
around Prox Cen, which was taken into account in (Nottale
1996b), has not been confirmed since and therefore it was ex-
cluded from the present analysis. The candidate planet around
HR 7875 also remains to be confirmed.

One of the possible consequences of our result is that the
quantization of planet interdistances to their stars may be used
as a filter to help discovering secondary planets. For example, in
the case of HD 114762, the power spectrum published by Mazeh
et al. (1996) shows, in addition to the main peak at 84 days, a
secondary smaller but isolated peak corresponding to a period
of 22.2 days. Such a peak in a power spectrum, though statisti-
cally unsignificant when there is no theoretical prediction, may

become significant provided its value was a priori predicted. In
the case of HD 114762, the secondary small peak is one of the
possible periods for this star predicted from then2 law. Indeed,
we find a/M = 0.154 AU/M� and ñ = 1.90. If confirmed
with future improved data, this would yield a new object on the
n = 2 orbital (see Fig. 1), in addition to the already discovered
n = 3 planet around this star.

Note also that our theoretical methods may help solving
some of the problems encountered in the standard models of
planetary formation. In the description of the protoplanetary
nebula based on the present approach, the 51 Peg-type planets
could be formed in situ, precisely at the distances close to their
stars where they are observed. But our generalized Schrödinger
equation could also be applied as a statistical description of
the chaotic motion of a planet formed at a Jupiter distance, and
which would spiral in the disk toward the inner planetary system.
In both cases, the same final position is predicted, in the first
case as a peak of planetesimal density and in the second as a
peak of probability of presence for the planet.

Anyway, it has already been remarked (e.g. Marcy et al.
1999) that in the standard paradigm of planetary formation, the
distribution of semi-major axes and eccentricities of giant plan-
ets presents an unsolved puzzle. Indeed, in the inward migra-
tion scenario, circular orbits are expected while most exoplan-
ets have non-circular orbits, and, moreover, no mechanism is
known to halt the migration. Our present result according to
which, when plotted in terms ofa/M instead ofa, this migra-
tion should be stopped in most cases at≈ 0.17 AU/M�, and
≈ 0.043 AU/M� is therefore still harder to understand in the
standard scheme, while these values are the theoretically pre-
dicted ones in our own model.

We conclude this discussion by noting that, in a recent pa-
per, Laskar (2000) developed a simplified model of planetary
accretion that also yields an2-like distance law (of the form√
a = bn + c) for a particular choice of the initial mass dis-

tribution. This is an interesting convergence of the standard ap-
proach with the generalized one considered here; however, the
standard methods will be confronted to the difficult problems
of explaining why, as well in the Solar system as for extrasolar
systems, the constantc is zero, the ratiob/

√
M is a universal

constant, and why thisn2 law holds even in the case of one
single planet.

8. Conclusion

We conclude that the distribution of the semi-major axes of
extrasolar planets around solar-like stars and of planets in our
own inner Solar System, is consistent with a clustering around
quantized values given bya/GM = (n/w0)2, wherew0 = 144
km/s, andn is integer.

Recall that comparing the planetary systems one with an-
other in terms ofa/M is required already in Newton’s theory of
gravitation (and in Einstein’s theory), since the star mass gives
the natural length unit of the whole system, as can be seen e.g.
in the expression of Kepler’s third law or of Newton’s law of
gravitation.
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Independently of our theoretical approach, one can therefore
verify in a purely empirical way that the exoplanet semi-major
axes are distributed, once related to their star mass, in the same
way as in our inner Solar System, so that, in opposition to the
standard claim, we conclude that all exoplanetary systems dis-
covered so far are similar to our own system.

We finally recall that the prediction that planets should be
found arounda/M = 0.043 AU/M� and0.17 AU/M� was
made in a “blind” way several years before the discovery of the
new exoplanets (Nottale 1993, 1994), and could have been used
to anticipate the possibility of this discovery.
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