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Abstract

The theory of scale relativity consists of developing the consequences
of the withdrawal of the hypothesis of space-time differentiability. Space-
time acquires a fractal geometry, namely, it becomes explicitly dependent
on the observation scale. The space-time resolutions are redefined as
characterizing the state of scale of the reference system, then we set the
principle of scale relativity, according to which the laws of nature should
be valid whatever this state. The structures that are described in the scale
space as coming under this principle induce a mechanics of the quantum
type in the standard space of positions and instants. Various levels of
the theory of scale relativity can be taken into account (Galilean, special
then general scale relativity, coupling between scales and motion, quan-
tum scale theory), and allow one to suggest possible generalizations of
presently existing theories. We shall focus the present contribution on
the detailed demonstration of the Schrödinger equation, then we consider
possible applications to the problem of formation and evolution of gravi-
tational structures.
Résumé: La théorie de la relativité d’échelle consiste à développer les
conséquences de l’abandon de l’hypothèse de différentiabilité de l’espace-
temps. Celui-ci acquiert un caractère fractal, c’est-à-dire explicitement
dépendant des résolutions. On redéfinit les résolutions spatio-temporelles
comme caractérisant l’état d’échelle du référentiel, puis on postule un
principe de relativité d’échelle, suivant lequel les lois de la nature doivent
être valides quel que soit cet état. Les structures décrites dans l’espace
des échelles comme satisfaisant à ce principe induisent une mécanique
de type quantique dans l’espace des positions et des instants. Plusieurs
niveaux de description de la théorie relativiste d’échelle (galiléenne, ein-
steinienne restreinte puis générale, couplage entre échelle et mouvement,
enfin elle-même quantique) peuvent être pris en compte et permettent de
proposer des généralisations des théories existantes. On se concentrera
dans la présente contribution sur la démonstration détaillée de l’équation
de Schrödinger, puis on évoquera des applications possibles au problème
de la formation et de l’évolution des structures gravitationnelles.
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1 Introduction

The theory of scale relativity of scale consists of applying the principle of rel-
ativity to transformations of scale (in particular to the transformations of the
spatiotemporal resolutions). In the formulation of Einstein [1], the principle of
relativity consists in requiring that the laws of nature are valid in any system of
coordinates, whatever is its state. Since Galileo, this principle had been applied
to the states of position (origin and orientation of axes) and of motion of the
system of coordinates (velocity, acceleration), states which have the property to
be never definable in a absolute way, but only in a relative way. The state of a
reference system can be defined only with regard to another system.

It is the same as regards the changes of scale. The scale of a system can
be defined only with regard to another system, and so owns the fundamental
property of relativity: only scale ratios do have a physical meaning, never an
absolute scale. In the new approach, one reinterprets the resolutions, not only
as a property of the measuring device and / or of the measured system, but
more generally as an intrinsic property of space-time, characterizing the state
of scale of the reference system in the same way as velocity characterizes its
state of movement. The principle of relativity of scale then consists in requiring
that the fundamental laws of nature apply whatever the state of scale of the
coordinate system.

What is the motivation to add such a first principle to fundamental physics?
It becomes imperative from the very moment one wants to generalize the cur-
rent description of space and time. The present description is usually reduced to
differentiable manifolds (even though singularities are possible at certain partic-
ular points). So a way of generalization of current physics consists in trying to
abandon the hypothesis of differentiability of spatiotemporal coordinates. The
main consequence of such a giving up is that space-time becomes fractal, namely,
in Mandelbrot’s definition [2, 3], it acquires an explicit scale dependence (more
precisely, it becomes scale-divergent) in terms of the spatiotemporal resolutions
[4, 5].

The introduction of non-differentiable trajectories in quantum mechanics
dates back to pioneering works by Feynman [6] and was also underlying the
various attempts of construction of a stochastic mechanics [7, 8] (which have
however now been shown to be in contradiction with quantum mechanics [9]).
The proposal that is developed here is different, since it is not based on a fractal
description of trajectories, but of space-time itself [10, 11, 12, 13, 14, 15, 16]. Our
aim is therefore to recover the trajectories as geodesics of the non-differentiable
space-time [4].

The theory of scale relativity is constructed by completing the standard laws
of classical physics (motion in space / displacement in space-time) by new scale
laws (in which the space-time resolutions are used as intrinsic variables). We
hope such a stage of the theory to be only provisional, and the motion and scale
laws to be treated on the same footing in the final theory. However, before
reaching such a goal, one must realize that the various possible combinations of
scale laws and motion laws lead to a large number of sub-sets of the theory to
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be developed. Indeed, three domains of the theory are first to be considered:
(i) pure scale-laws: description of the internal structures of a non-differential

space-time at a given point / event;
(ii) induced effects of scale laws on the equations of motion: generation of

the quantum mechanics as mechanics on a nondifferentiable space-time;
(iii) scale-motion coupling: effects of dilations induced by displacements, that

we tentatively interpret as gauge fields (only the case of the electromagnetic field
has been considered up to now) [17, 18].

Several levels of the description of scale laws (point i) can be considered.
These levels are quite parallel to that of the historical development of the theory
of motion:

(i1) Galilean scale-relativity: standard laws of dilation, that have the struc-
ture of a Galileo group (fractal power law with constant fractal dimension).
When the fractal dimension of trajectories is D = 2, the induced motion laws
are that of standard quantum mechanics [4, 18].

(i2) Special scale-relativity: generalization of the laws of dilation to a Lorentzian
form [15]. The fractal dimension becomes a variable, and plays the role of a fifth
dimension. An impassable length-time scale, invariant under dilations, appears
in the theory; it replaces the zero, owns all its physical properties (an infinite
energy-momentum would be needed to reach it), and plays for scale laws the
same role as played by the velocity of light for motion.

(i3) Scale-dynamics: while the first two cases correspond to “scale freedom”,
one can also consider distorsion from strict self-similary that would come from
the effect of a “scale-force” or “scale-field” [19, 20].

(i4) General scale-relativity: in analogy with the field of gravitation being
ultimately attributed to the geometry of space-time, a future more profound
description of the scale-field could be done in terms of Riemann geometry of the
fifth-dimensional scale space.

(i5) Quantum scale-relativity: the above cases assume differentiability of the
scale transformations. If one assumes them to be continuous but, as we have
assumed for space-time, non-differentiable, one is confronted for scale laws to
the same conditions that lead to quantum mechanics in space-time. One may
therefore conjecture that quantum mechanical scale laws could be constructed
in a future work.

The possible complication of the theory becomes apparent when one realizes
that these various levels of the description of scale laws will lead to different
levels of induced dynamics (point ii) and scale-motion coupling (iii), and that
other sublevels are to be considered, depending on the status of motion laws
(non-relativistic, special-relativistic, general-relativistic).

In the present contribution, we shall focus on point (i1), by giving a detailed
and improved demonstration of the Schrödinger equation.
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2 Schrödinger equation: detailed derivation from
non-differentiability

2.1 Scale invariance and Galilean scale relativity

Consider a non-differentiable (fractal) curvilinear coordinate L(x, ε), that de-
pends on some space-time variables x and on the resolution ε. Such a coor-
dinate generalizes to non-differentiable and fractal space-times the concept of
curvilinear coordinates introduced for curved Riemannian space-times in Ein-
stein’s general relativity [4]. L(x, ε), being differentiable when ε 6= 0, can be the
solution of differential equations involving the derivatives of L with respect to
both x and ε.

Let us apply an infinitesimal dilation ε → ε′ = ε(1 + dρ) to the resolution.
Being, at this stage, interested in pure scale laws, we omit the x dependence in
order to simplify the notation and we obtain, at first order,

L(ε′) = L(ε+ ε dρ) = L(ε) +
∂L(ε)

∂ε
ε dρ = (1 + D̃ dρ)L(ε), (1)

where D̃ is, by definition, the dilation operator. The identification of the two
last members of this equation yields

D̃ = ε
∂

∂ε
=

∂

∂ ln ε
. (2)

This well-known form of the infinitesimal dilation operator shows that the
“natural” variable for the resolution is ln ε, and that the expected new differen-
tial equations will indeed involve quantities as ∂L(x, ε)/∂ ln ε. The renormaliza-
tion group equations, in the multi-scale-of-length approach proposed by Wilson
[21, 22], already describe such a scale dependence. The scale-relativity approach
allows one to suggest more general forms for these scale groups.

The simplest renormalization group-like equation states that the variation
of L under an infinitesimal scale transformation d ln ε depends only on L itself.
We thus write

∂L(x, ε)

∂ ln ε
= β(L). (3)

Still looking for the simplest form of such an equation, we expand β(L) in
powers of L. We obtain, to the first order, the linear equation

∂L(x, ε)

∂ ln ε
= a+ bL , (4)

of which the solution is

L(x, ε) = L0(x)

[

1 + ζ(x)(
λ

ε
)−b

]

, (5)

where λ−bζ(x) is an integration constant and L0 = −a/b.
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The scale dimension, δ = D−DT , where D is the fractal dimension and DT

the topological dimension, is defined, following Mandelbrot [2, 3], as

δ =
d lnL

d ln(λ/ε)
. (6)

When δ is constant, one obtains an asymptotic power law resolution depen-
dence

L(x, ε) = L0(x)

(

λ

ε

)δ

. (7)

Let us now check that such a simple self-similar scaling law does come under
the principle of relativity extended to scale transformations of the resolutions.
The involved quantities transform, under a scale transformation ε→ ε′, as

ln
L(ε′)

L0

= ln
L(ε)

L0

+ δ(ε) ln
ε

ε′
, (8)

δ(ε′) = δ(ε). (9)

These transformations have exactly the mathematical structure of the Galileo
group (applied here to scale rather than motion), as confirmed by the dilation
composition law, ε→ ε′ → ε′′, which writes

ln
ε′′

ε
= ln

ε′

ε
+ ln

ε′′

ε′
, (10)

and is therefore similar to the law of composition of velocities. It is worth
noting that Eq. (5) gives, in addition, a transition from a fractal to a non-
fractal behavior at scales larger than some transition scale λ. In other words,
contrarily to the case of motion laws, for which the invariance group is universal,
the scale group symmetry is broken beyond some (relative) transition scale.

2.2 Lagrangian approach to scale laws

The Lagrangian approach can be used in the scale space in order to obtain
physically relevant generalizations of the above simplest (scale-invariant) laws.
In this aim, we are led to reverse the definition and meaning of the variables.
Namely, the scale dimension δ becomes a primary variable that plays, for scale
laws, the same role as played by time in motion laws.

The resolution, ε, can therefore be defined as a derived quantity in terms of
the fractal coordinate L and of the scale dimension δ

Ṽ = ln(
λ

ε
) =

d lnL
dδ

. (11)

A scale Lagrange function L̃(lnL, Ṽ , δ) is introduced, from which a scale
action is constructed

S̃ =

∫ δ2

δ1

L̃(lnL, Ṽ , δ) dδ. (12)
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The application of the action principle yields a scale Euler-Lagrange equation
that writes

d

dδ

∂L̃

∂Ṽ
=

∂L̃

∂ lnL . (13)

In analogy with the physics of motion, the simplest possible form for the
Lagrange function is a quadratic dependence on the “scale velocity”, Ṽ , (i.e.,
L̃ ∝ Ṽ 2) and the absence of any “scale force” (i.e., ∂L̃/∂ lnL = 0), which is the
equivalent for scale of what inertia is for motion. The Euler-Lagrange equation
becomes in this case

dṼ

dδ
= 0⇒ Ṽ = const. (14)

The constancy of Ṽ = ln(λ/ε) means that it is independent of the “scale
time” δ. Equation (11) can therefore be integrated to give the usual power law
behavior, L = L0(λ/ε)

δ. This reversed viewpoint has several advantages which
allow a full implementation of the principle of scale relativity:
(i) The scale dimension δ is given its actual status of “scale time” and the log-
arithm of the resolution, Ṽ , its status of “scale velocity” (see Eq. (11)). This
is in accordance with its scale-relativistic definition, in which it characterizes
the “state of scale” of the reference system, in the same way as the velocity
v = dx/dt characterizes its state of motion.
(ii) This leaves open the possibility of generalizing our formalism to the case of
four independent space-time resolutions, Ṽ µ = ln(λµ/εµ) = d lnLµ/dδ. (Let us
however remark from now, to be more specific, that the genuine nature of res-
olutions is tensorial, εν

µ = εµε
ν = ρµλε

νελ and involves correlation coefficients,
as in a variance-covariance matrix).
(iii) Scale laws more general than the simplest self-similar ones can be derived
from more general scale Lagrangians [19].

2.3 Transition from non-differentiability (small scales) to
differentiability (large scales)

Strictly, the non-differentiability of the coordinates means that the velocity

V =
dX

dt
= lim

dt→0

X(t+ dt)−X(t)

dt
(15)

is undefined. Namely, when dt tends to zero, either the ratio dX/dt tends
to infinity, or it fluctuates without reaching any limit. However, as recalled
in the introduction, continuity and non-differentiability imply an explicit scale
dependence of the various physical quantities, and therefore of the velocity,
V . We therefore apply to the velocity and to the differential element, now
interpreted as a resolution, the reasoning applied to the fractal function L in
Sec. 2.1. We obtain the solution

V = v + w = v

[

1 + ζ
( τ

dt

)1−1/D
]

. (16)
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This means that the velocity is now the sum of two independent terms of differ-
ent orders, since their ratio v/w is, from the standard viewpoint, infinitesimal.
In analogy with the real and imaginary parts of a complex number, we suggest
[23] to call v the “classical part” of the velocity, v = C`〈V 〉, (see below the
definition of the classical part operator C`〈 〉). The new component w is an
explicitely scale-dependent fractal fluctuation (which would be infinite from the
standard point of view where one makes dt → ∞ and τ and ζ are chosen such
that C`〈ζ〉 = 0 and C`〈ζ2〉 = 1.

We recognize here the combination of a typical fractal behavior, with a frac-
tal dimension D, and of a breaking of the scale symmetry at the scale transition
τ . As we shall see, in what follows, τ will be identified with the de Broglie scale
of the system (τ = h̄/E), since V ≈ v, when dt � τ (classical behavior), and
V ≈ w, when dt � τ (fractal behavior). Recalling that D = 2 plays the role
of a critical dimension [4], we stress that, in the asymptotic scaling domain,
w ∝ (dt/τ)−1/2, in agreement with Ref. [6] for quantum paths, which allows to
identify the fractal domain with the quantum one.

The above description strictly applies to an individual fractal trajectory.
Now, one of the geometric consequences of the non-differentiability and of the
subsequent fractal character of space/space-time itself (not only of the trajecto-
ries) is that there is an infinity of fractal geodesics relating any couple of points
of this fractal space. It has therefore been suggested [12] that the description
of a quantum mechanical particle, including its property of wave-particle dual-
ity, could be reduced to the geometric properties of the set of fractal geodesics
that corresponds to a given state of this “particle”. In such an interpretation,
we do not have to endow the “particle” with internal properties such as mass,
spin or charge, since the “particle” is not identified with a point mass which
would follow the geodesics, but its internal properties can simply be defined as
geometric properties of the fractal geodesics themselves. As a consequence, any
measurement is interpreted as a sorting out (or selection) of the geodesics of
which the properties correspond to the resolution scale of the measuring device
(as an example, if the “particle” has been observed at a given position with a
given resolution, this means that the geodesics which pass through this domain
have been selected) [4, 12].

The transition scale appearing in Eq. (16) yields two distinct behaviors of
the system (particle) depending on the resolution at which it is considered.
Equation (16) multiplied by dt gives the elementary displacement, dX , of the
system as a sum of two infinitesimal terms of different orders

dX = dx+ dξ. (17)

Here dξ represents the fractal fluctuations and dx = C`〈dX〉 is the “classical”
or “large-scale” value. They are defined as

dx = v dt, (18)

dξ = η
√

2D(dt2)1/2D , (19)
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which becomes, for D = 2,

dξ = η
√

2Ddt1/2, (20)

with 2D = τ0 = τv2, C`〈η〉 = 0 and C`〈η2〉 = 1. Owing to Eq. (16), we identify
τ with the Einstein transition scale, h̄/E = h̄/ 1

2
mv2. Therefore, as we shall

see further on, 2D = τ0 is a scalar quantity which can be identified with the
Compton scale, h̄/mc, i.e., it gives the mass of the particle up to fundamental
constants.

Now, the Schrödinger, Klein-Gordon and Dirac equations give results apply-
ing to measurements performed on quantum objects, but achieved with classical
devices, in the differentiable “large-scale” domain. The microphysical scale at
which the physical systems under study are considered induces the selection of
a bundle of geodesics, corresponding to the scale of the systems (see above),
while the measurement process implies a smoothing out of the geodesic bundle
coupled to a transition from the non-differentiable “small-scale” to the differen-
tiable “large-scale” domain. We are therefore led to define an operator C`〈 〉,
which we apply to the fractal variables or functions each time we are drawn to
the classical domain where the dt behavior dominates.

Please note the improvement of the new definition in terms of the large-scale
part [23] with respect to the previous interpretation in terms of an averaging
process [4].

2.4 Differential-time symmetry breaking

Another consequence of the non-differentiable nature of space (space-time) is the
breaking of local differential (proper) time reflection invariance. The derivative
with respect to the time t of a differentiable function f can be written twofold

df

dt
= lim

dt→0

f(t+ dt)− f(t)

dt
= lim

dt→0

f(t)− f(t− dt)

dt
. (21)

The two definitions are equivalent in the differentiable case. One passes from
one to the other by the transformation dt ↔ −dt ( differential time reflection
invariance), which is therefore an implicit discrete symmetry of differentiable
physics. In the non-differentiable situation, both definitions fail, since the limits
are no longer defined. In the new framework of scale relativity, the physics is
related to the behavior of the function during the “zoom” operation on the time
resolution δt, identified with the differential element dt. Two functions f ′+ and
f ′− are therefore defined as explicit functions of t and dt

f ′+(t, dt) =
f(t+ dt, dt)− f(t, dt)

dt
, (22)

f ′−(t, dt) =
f(t, dt)− f(t− dt, dt)

dt
. (23)

When applied to the space coordinates, these definitions yield, in the non-
differentiable domain, two velocities that are fractal functions of the resolution,
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V+[x(t), t, dt] and V−[x(t), t, dt]. In order to go back to the classical domain and
derive the classical velocities appearing in Eq. (18), we smooth out each fractal
geodesic in the bundles selected by the zooming process with balls of radius
larger than τ . This amounts to carry out a transition from the non-differentiable
to the differentiable domain and leads to define two classical velocity fields now
resolution-independent: V+[x(t), t, dt > τ ] = C`〈V+[x(t), t, dt]〉 = v+[x(t), t] and
V−[x(t), t, dt > τ ] = C`〈V−[x(t), t, dt]〉 = v−[x(t), t]. The important new fact
appearing here is that, after the transition, there is no longer any reason for these
two velocities to be equal. While, in standard mechanics, the concept of velocity
was one-valued, we must introduce, for the case of a non-differentiable space,
two velocities instead of one, even when going back to the classical domain.

A simple and natural way to account for this doubling consists in using
complex numbers and the complex product. As we recall hereafter, this is the
origin of the complex nature of the wave function of quantum mechanics, since
this wave function can be identified with the exponential of the complex action
that is naturally introduced in this framework. We shall now demonstrate that
the choice of complex numbers to represent the two-valuedness of the velocity
is a simplifying and “covariant” choice.

2.5 Covariant derivative operator

We are now lead to describe the elementary displacements for both processes,
dX±, as the sum of a C` part, dx± = v± dt, and a fluctuation about this C`
part, dξ±, which is, by definition, of zero classical part, C`〈dξ±〉 = 0

dX+(t) = v+ dt+ dξ+(t),

dX−(t) = v− dt+ dξ−(t). (24)

Considering first the large-scale displacements, large-scale forward and back-
ward derivatives, d/dt+ and d/dt−, are defined, using the C` part extraction pro-
cedure. Applied to the position vector, x, they yield the forward and backward
large-scale velocities

d

dt+
x(t) = v+ ,

d

dt−
x(t) = v− . (25)

As regards the fluctuations, the generalization to three dimensions of the
fractal behavior of Eq. (19) writes (for D = 2)

C`〈dξ±i dξ±j〉 = ±2 D δij dt i, j = x, y, z, (26)

as the dξ(t)’s are of null C` part and mutually independent. The Krönecker
symbol, δij , in Eq. (26), implies indeed that the C` part of every crossed product
C`〈dξ±i dξ±j〉, with i 6= j, is null.

2.5.1 Origin of complex numbers in quantum mechanics

We now know that each component of the velocity takes two values instead of
one. This means that each component of the velocity becomes a vector in a two-
dimensional space, or, in other words, that the velocity becomes a two-index

9



tensor. The generalization of the sum of these quantities is straighforward, but
one also needs to define a generalized product.

The problem can be put in a general way: it amounts to find a generalization
of the standard product that keeps its fundamental physical properties.

From the mathematical point of view, we are here exactly confronted to the
well-known problem of the doubling of algebra (see, e.g., Ref. [24]). Indeed,
the effect of the symmetry breaking dt ↔ −dt (or ds ↔ −ds) is to replace the
algebra A in which the classical physical quantities are defined, by a direct sum
of two exemplaries of A, i.e., the space of the pairs (a, b) where a and b belong
to A. The new vectorial space A2 must be supplied with a product in order to
become itself an algebra (of doubled dimension). The same problem is asked
again when one takes also into account the symmetry breakings dxµ ↔ −dxµ

and xµ ↔ −xµ (see [23]): this leads to new algebra doublings. The mathe-
matical solution to this problem is well-known: the standard algebra doubling
amounts to supply A2 with the complex product. Then the doubling IR2 of IR
is the algebra IC of complex numbers, the doubling IC2 of IC is the algebra IH of
quaternions, the doubling IH2 of quaternions is the algebra of Graves-Cayley
octonions. The problem with algebra doubling is that the iterative doubling
leads to a progressive deterioration of the algebraic properties. Namely, the
quaternion algebra is non-commutative, while the octonion algebra is also non-
associative. But an important positive result for physical applications is that
the doubling of a metric algebra is a metric algebra [24].

These mathematical theorems fully justify the use of complex numbers, then
of quaternions, in order to describe the successive doublings due to discrete
symmetry breakings at the infinitesimal level, which are themselves more and
more profound consequences of space-time non-differentiability.

However, we give in what follows complementary arguments of a physical
nature, which show that the use of the complex product in the first algebra
doubling have a simplifying and covariant effect (we use here the word “covari-
ant” in the original meaning given to it by Einstein [1], namely, the requirement
of the form invariance of fundamental equations).

In order to simplify the argument, let us consider the generalization of scalar
quantities, for which the product law is the standard product in IR.

The first constraint is that the new product must remain an internal com-
position law. We also make the simplifying assumption that it remains linear
in terms of each of the components of the two quantities to be multiplied.

The second physical constraint is that we recover the classical variables and
the classical product at the classical limit. The mathematical equivalent of this
constraint is the requirement that A still be a sub-algebra of A2. Therefore we
identify a0 ∈ A with (a0, 0) and we set (0, 1) = α. This allows us to write the
new two-dimensional vectors in the simplified form a = a0 + a1α, so that the
product now writes

c = (a0 + a1α) (b0 + b1α) = a0b0 + a1b1α
2 + (a0b1 + a1b0)α. (27)

The problem is now reduced to find α2, which is defined by only two coeffi-
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cients
α2 = ω0 + ω1α. (28)

Let us now come back to the beginning of our construction. We have in-
troduced two elementary displacements, a forward and a backward one, each of
them made of two terms, a C` part and a fluctuation (see Eq. (24))

dX+(t) = v+ dt+ dξ+(t),

dX−(t) = v− dt+ dξ−(t). (29)

Therefore, one can define velocity fluctuations w+ = dξ+/dt and w− =
dξ−/dt, then a complete velocity in the doubled algebra [25]

V +W =

(

v+ + v−
2

− α
v+ − v−

2

)

+

(

w+ + w−
2

− α
w+ − w−

2

)

. (30)

We shall see in what follows that a Lagrange function can be introduced
in terms of the new two-valued tool, that leads to a conserved form for the
Euler-Lagrange equations. In the end, the Schrödinger equation is obtained as
their integral. Now, from the covariance principle, the Lagrange function in the
Newtonian case should strictly be written:

L =
1

2
m C`〈(V +W)2〉 =

1

2
m

(

C`〈V2〉+ C`〈W2〉
)

(31)

We have C`〈W〉 = 0, by definition, and C`〈VW〉 = 0, because they are mu-
tually independent. But what about C`〈W2〉 ? The presence of this term would
greatly complicate all the subsequent developments toward the Schrödinger
equation, since it would imply a fundamental divergence of non-relativistic quan-
tum mechanics. Let us expand it:

4 C`〈W2〉 = C`〈[(w+ + w−)− α (w+ − w−)]2〉
= C`〈(w2

+ + w2
−)(1 + α2)− 2α(w2

+ − w2
−) + 2w+w−(1− α2)〉.(32)

Since C`〈w2
+〉 = C`〈w2

−〉 and C`〈w+w−〉 = 0 (they are mutually indepen-
dent), we finally find that C`〈W2〉 can only vanish provided

α2 = −1, (33)

namely, α = i, the imaginary. Therefore we have shown that the choice of the
complex product in the algebra doubling plays an essential physical role, since it
allows to suppress what would be additional infinite terms in the final equations
of motion.

2.5.2 Complex velocity

We now combine the forward and backward derivatives to obtain a complex
derivative operator, that allows us to recover local differential time reversibility
in terms of the new complex process [4]:

d́

dt
=

1

2

(

d

dt+
+

d

dt−

)

− i

2

(

d

dt+
− d

dt−

)

. (34)
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Applying this operator to the position vector yields a complex velocity

V =
d́

dt
x(t) = V − iU =

v+ + v−
2

− i
v+ − v−

2
. (35)

The minus sign in front of the imaginary term is chosen here in order to
obtain the Schrödinger equation in terms of ψ. The reverse choice would give
the Schrödinger equation for the complex conjugate of the wave function ψ†,
and would be therefore physically equivalent.

The real part, V , of the complex velocity, V , represents the standard classical
velocity, while its imaginary part, −U , is a new quantity arising from non-
differentiability. At the usual classical limit, v+ = v− = v, so that V = v and
U = 0.

2.5.3 Complex time derivative operator

Contrary to what happens in the differentiable case, the total derivative with re-
spect to time of a fractal function f(x(t), t) of integer fractal dimension contains
finite terms up to higher order [26]

df

dt
=
∂f

∂t
+
∂f

∂xi

dXi

dt
+

1

2

∂2f

∂xi∂xj

dXidXj

dt
+

1

6

∂3f

∂xi∂xj∂xk

dXidXjdXk

dt
+ ... (36)

Note that it has been shown by Kolwankar and Gangal [27] that, if the
fractal dimension is not an integer, a fractional Taylor expansion can also be
defined, using the local fractional derivative (however, see [28] about the physical
relevance of this tool).

In our case, a finite contribution only proceeds from terms of D-order, while
lesser-order terms yield an infinite contribution and higher-order ones are neg-
ligible. Therefore, in the special case of a fractal dimension D = 2, the total
derivative writes

df

dt
=
∂f

∂t
+∇f.dX

dt
+

1

2

∂2f

∂xi∂xj

dXidXj

dt
. (37)

Usually the term dXidXj/dt is infinitesimal, but here its C` part reduces to
C`〈dξi dξj〉/dt. Therefore, thanks to Eq. (26), the last term of the large-scale
part of Eq. (37) amounts to a Laplacian, and we can write

df

dt±
=

(

∂

∂t
+ v±.∇±D∆

)

f . (38)

Substituting Eqs. (38) into Eq. (34), we finally obtain the expression for the
complex time derivative operator [4]

d́

dt
=

∂

∂t
+ V .∇− iD∆ . (39)
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The passage from standard classical (almost everywhere differentiable) me-
chanics to the new non-differentiable theory can now be implemented by replac-
ing the standard time derivative d/dt by the new complex operator d́ /dt [4]. In
other words, this means that d́ /dt plays the role of a “covariant derivative oper-
ator” (in analogy with the covariant derivative DjA

k = ∂jA
k + Γk

jlA
l replacing

∂jA
k in Einstein’s general relativity).

2.6 Covariant mechanics induced by scale laws

Let us now summarize the main steps by which one may generalize the standard
classical mechanics using this covariance. We assume that the large-scale part of
any mechanical system can be characterized by a Lagrange function L(x,V , t),
from which an action S is defined

S =

∫ t2

t1

L(x,V , t)dt. (40)

In this expression, we have combined the forward and backward velocities
in terms of a unique complex velocity. We have already given arguments, in the
previous section, according to which this choice is a simplifying and covariant
choice. We shall now support this conclusion by demonstrating hereafter that it
indeed allows us to conserve the standard form of the Euler-Lagrange equations.

In a general way, the Lagrange function is expected to be a function of the
variables x and their time derivatives ẋ. We have found that the number of
velocity components ẋ is doubled, so that we are led to write

L = L(x, ẋ+, ẋ−, t). (41)

Instead, we have made the choice to write the Lagrange function as L =
L(x,V , t). We now justify this choice by the covariance principle. Re-expressed
in terms of ẋ+ and ẋ−, the Lagrange function writes

L = L

(

x,
1− i

2
ẋ+ +

1 + i

2
ẋ−, t

)

. (42)

Therefore we obtain

∂L

∂ẋ+

=
1− i

2

∂L

∂V ;
∂L

∂ẋ−
=

1 + i

2

∂L

∂V , (43)

while the new covariant time derivative operator writes

d́

dt
=

1− i

2

d

dt+
+

1 + i

2

d

dt−
. (44)

Let us write the stationary action principle in terms of the Lagrange function
of Eq. (41)

δS = δ

∫ t2

t1

L(x, ẋ+, ẋ−, t) dt = 0. (45)
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It becomes

∫ t2

t1

(

∂L

∂x
δx+

∂L

∂ẋ+

δẋ+ +
∂L

∂ẋ−
δẋ−

)

dt = 0. (46)

Since δẋ+ = d(δx)/dt+ and δẋ− = d(δx)/dt−, it takes the form

∫ t2

t1

(

∂L

∂x
δx+

∂L

∂V

[

1− i

2

d

dt+
+

1 + i

2

d

dt−

]

δx

)

dt = 0, (47)

i.e.,
∫ t2

t1

(

∂L

∂x
δx+

∂L

∂V
d́

dt
δx

)

dt = 0. (48)

The subsequent demonstration of the Lagrange equations relies on an integra-
tion by part. Now such an operation involves the Leibniz rule for the covariant
derivative operator d́ /dt. Since d́ /dt = ∂/dt + V .∇ − iD∆ is a linear com-
bination of first and second order derivatives, the same is true of its Leibniz
rule. This implies the appearance of an additional term in the expression for
the derivative of a product [31]:

d́

dt

[

∂L

∂V . δx
]

=
d́

dt

∂L

∂V . δx+
∂L

∂V .
d́

dt
δx− 2iD∇∂L

∂V .∇δx. (49)

Since δx(t) is not a function of x, the additional term vanishes. After having
defined a new integration as the inverse of the covariant derivation, i.e.

∫

d́ f =
f , the integral reduces to:

∫ t2

t1

(

∂L

∂x
− d́

dt

∂L

∂V

)

δx dt = 0. (50)

Finally the Euler-Lagrange equations write

d́

dt

∂L

∂V =
∂L

∂x
. (51)

Therefore, thanks to the transformation d/dt → d́ /dt, they take exactly
their standard classical form. This result reinforces the identification of our
tool with a “quantum-covariant” representation, since, as we have shown in
previous works and as we recall in what follows, this Euler-Lagrange equation
can be integrated in the form of a Schrödinger equation.

Assuming homogeneity of space in the mean leads to define a generalized
complex momentum given by

P =
∂L
∂V . (52)

If we now consider the action as a functional of the upper limit of integration
in Eq. (40), the variation of the action from a trajectory to another nearby
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trajectory yields a generalization of another well-known relation of standard
mechanics:

P = ∇S. (53)

As concerns the generalized energy, its expression involves an additional term
[31, 43]: namely it write for a Newtonian Lagrange function and in the absence
of exterior potential, E = (1/2)m(V2 − 2iD divV).

2.7 Generalized Newton-Schrödinger Equation

Let us now specialize our study, and consider Newtonian mechanics, i.e., the gen-
eral case when the structuring external scalar field is described by a potential
energy Φ. The Lagrange function of a closed system, L = 1

2
mv2−Φ, is general-

ized, in the large-scale domain, as L(x,V , t) = 1

2
mV2 −Φ. The Euler-Lagrange

equations keep the form of Newton’s fundamental equation of dynamics

m
d́

dt
V = −∇Φ, (54)

which is now written in terms of complex variables and complex operators.

In the case when there is no external field, the covariance is explicit, since
Eq. (54) takes the form of the equation of inertial motion

d́ V/dt = 0, (55)

in analogy with what happens in general relativity, where the equivalence prin-
ciple of gravitation and inertia leads to a strong covariance principle, expressed
by the fact that one may always find a coordinate system in which the metric
is locally Minkowskian. This means that, in this coordinate system, the covari-
ant equation of motion of a free particle is that of inertial motion Duµ = 0 in
terms of the general-relativistic covariant derivative D and four-vector uµ. The
expansion of the covariant derivative subsequently transforms this free-motion
equation in a local geodesic equation in a gravitational field.

The covariance induced by scale effects leads to an analogous transformation
of the equation of motions, which, as we show below, become the Schrödinger
equation, (then the Klein-Gordon and Dirac equations in the motion-relativistic
case), which we are therefore allowed to consider as local a geodesic equation.

In both cases, with or without external field, the complex momentum P
reads

P = mV , (56)

so that, from Eq. (53), the complex velocity V appears as a gradient, namely
the gradient of the complex action

V = ∇S/m. (57)

We now introduce a complex wave function ψ which is nothing but another
expression for the complex action S

ψ = eiS/S0 . (58)
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The factor S0 has the dimension of an action (i.e., an angular momentum)
and must be introduced for dimensional reasons. We show in what follows,
that, when this formalism is applied to microphysics, S0 is nothing but the
fundamental constant h̄. The function ψ is related to the complex velocity
appearing in Eq. (57) as follows

V = −i S0

m
∇(lnψ). (59)

We have now at our disposal all the mathematical tools needed to write the
fundamental equation of dynamics of Eq. (54) in terms of the new quantity ψ.
It takes the form

iS0

d́

dt
(∇ lnψ) = ∇Φ. (60)

Now one should be aware that d́ and ∇ do not commute. However, as we
shall see in the following, there is a particular choice of the arbitrary constant
S0 for which d́ (∇ lnψ)/dt is nevertheless a gradient.

Replacing d́ /dt by its expression, given by Eq. (39), yields

∇Φ = iS0

(

∂

∂t
+ V .∇− iD∆

)

(∇ lnψ), (61)

and replacing once again V by its expression in Eq. (59), we obtain

∇Φ = iS0

[

∂

∂t
∇ lnψ − i

{S0

m
(∇ lnψ.∇)(∇ lnψ) +D∆(∇ lnψ)

}]

. (62)

Consider now the remarkable identity

(∇ ln f)2 + ∆ ln f =
∆f

f
, (63)

which proceeds from the following tensorial derivation

∂µ∂
µ ln f + ∂µ ln f∂µ ln f = ∂µ

∂µf

f
+
∂µf

f

∂µf

f

=
f∂µ∂

µf − ∂µf∂
µf

f2
+
∂µf∂

µf

f2

=
∂µ∂

µf

f
. (64)

When we apply this identity to ψ and take its gradient, we obtain

∇
(

∆ψ

ψ

)

= ∇[(∇ lnψ)2 + ∆ lnψ]. (65)

The second term in the right-hand side of this expression can be transformed,
using the fact that ∇ and ∆ commute, i.e.,

∇∆ = ∆∇. (66)
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The first term can also be transformed thanks to another remarkable identity

∇(∇f)2 = 2(∇f.∇)(∇f), (67)

that we apply to f = lnψ. We finally obtain

∇
(

∆ψ

ψ

)

= 2(∇ lnψ.∇)(∇ lnψ) + ∆(∇ lnψ). (68)

We recognize, in the right-hand side of this equation, the two terms of
Eq. (62), which were respectively in factor of S0/m and D. Therefore, the
particular choice

S0 = 2mD (69)

allows us to simplify the right-hand side of Eq. (62). The simplification is
twofold: (i) several complicated terms are compacted into a simple one; (ii) the
final remaining term is a gradient, which means that the fundamental equation
of dynamics can now be integrated in a universal way. The wave function in
Eq. (58) is therefore defined as

ψ = eiS/2mD, (70)

and it is solution of the fundamental equation of dynamics, Eq. (54), which we
write

d́

dt
V = −2D∇

{

i
∂

∂t
lnψ +D∆ψ

ψ

}

= −∇Φ/m. (71)

Integrating this equation finally yields

D2∆ψ + iD ∂

∂t
ψ − Φ

2m
ψ = 0, (72)

up to an arbitrary phase factor which may be set to zero by a suitable choice of
the ψ phase.

In the case of standard quantum mechanics, as applied to microphysics,
the necessary choice S0 = 2mD means that there is a natural link between
the Compton relation and the Schrödinger equation. In this case, indeed, S0 is
nothing but the fundamental action constant h̄, while D defines the fractal/non-
fractal transition (i.e., the transition from explicit scale dependence to scale in-
dependence in the rest frame), λ = 2D/c. Therefore, the relation S0 = 2mD
becomes a relation between mass and the fractal to scale-independence transi-
tion, which writes

λc =
h̄

mc
. (73)

We recognize here the definition of the Compton length. Its profound mean-
ing - i.e., up to the fundamental constants h̄ and c, that of inertial mass itself -
is thus given, in our framework by the transition scale from explicit scale depen-
dence (at small scales) to scale-independence (at large scales). We note that this
length-scale is to be understood as a structure of scale space, not of standard
space.
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We recover, in this case, the standard form of Schrödinger’s equation

h̄2

2m
∆ψ + ih̄

∂

∂t
ψ = Φψ. (74)

The statistical meaning of the wave function (Born postulate) can now be
deduced from the very construction of the theory. Even in the case of only
one particle, the virtual geodesic family is infinite (this remains true even in
the zero particle case, i.e., for the vacuum field). The particle properties are
assimilated to those of a random subset of the geodesics in the family, and its
probability to be found at a given position must be proportional to the density
of the geodesic fluid. This density can easily be calculated in our formalism,
since the imaginary part of Eq. (72) writes in terms of ρ = ψψ†

∂ρ

∂t
+ div(ρV ) = 0, (75)

where V is the real part of the complex velocity, which is identified, at the
classical limit, with the classical velocity. This equation is recognized as the
equation of continuity, implying that ρ = ψψ† represents the fluid density which
is proportional to the probability density, thus ensuring the validity of Born’s
postulate. The remarkable new feature that allows us to obtain such a result is
that the continuity equation is not written as an additional a priori equation,
but is now a part of our generalized equation of dynamics.

The von Neumann postulate is also easily recovered in such a geometric in-
terpretation. Indeed, we may identify a measurement with a selection of the
sub-sample of the geodesics family that keeps only the geodesics having the
geometric properties corresponding to the measurement result. Therefore, just
after the measurement, the “particle” is in the state given by the measurement.

These results have been generalized to the Klein-Gordon equation [17, 18] in
the motion-relativistic case (by taking into account not only a fractal space, but
also fractal time), then to the Dirac equation [23]: in this last case, one takes into
account the symmetry breaking under the (dxµ ↔ −dxµ) reflexion, that leads
to introduce probability amplitudes described by complex quaternions, which
are equivalent to Dirac bi-spinors. The Klein-Gordon equation is demonstrated
to be valid also for these bi-quaternions, then to transform spontaneouly in the
Dirac equation.

3 Application to gravitation

3.1 Curved and fractal space-time

Applications of the scale relativity theory to the problem of the formation and
evolution of gravitational structures have been presented in several previous
works [4, 18, 19]. We shall only briefly sum up here the principles and methods
used in such an attempt, then quote some of the main results obtained.
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In its present acceptance, gravitation is understood as the various manifesta-
tions of the geometry of space-time at large scales. Up to now, in the framework
of Einstein’s theory, this geometry was considered to be Riemannian. However,
in the new framework of scale relativity, the geometry of space-time is assumed
to be characterized not only by curvature, but also by fractality on some ranges
of scale. As we shall see in what follows, fractality manifests itself, in the sim-
plest case, in terms of the appearance of a new scalar field. We have suggested
[41] that this new field is able to explain, without additional matter, the vari-
ous astrophysical effects which have been, up to now, tentatively attributed to
unseen “dark” matter.

Let us consider the motion of a free particle in a curved space-time whose
spatial part is also fractal. One can define a motion+scale covariant deriva-
tive that combine the general-relativistic covariant derivative (which describes
the effects of curvature) and the scale-relativistic covariant derivative (which
describes the effects of fractality), namely,

D̄Aµ

ds
= [

∂

∂s
+ Vν∂ν + iD∂ν∂ν ]Aµ + Γµ

ρνVρAν . (76)

The equation of motion of a free particle can now be written as a geodesics
equation by using this covariant derivative. However, one should take care that
the combination of the two covariant derivatives imply the appearance of a new
term in the geodesics equation [29, 19, 30]. This is easily established by starting
from Pissondes’s quadratic invariant, [31] VµVµ + 2iD∂µVµ = 1, which is a
re-expression of Eq. (64) and becomes in the general-relativistic case:

VµVµ + 2iD DµVµ = 1, (77)

where we now have VµVµ = gµνVµVν . The equations of motion are obtained
by differentiating this relation. One obtains [30]:

d́

ds
Vµ + Γµ

νρVνVρ − iD Rµ
νVν = 0. (78)

This equation can be integrated in terms of a generalized “Einstein-Klein-
Gordon” equation of motion that writes:

4D2

c2
[gµν ∂

µ∂νψ + ∂ν(ln
√−g) ∂νψ] = −1, (79)

where g is the metrics determinant. A detailed study of this equation, although
interesting, is outside the scope of the present contribution.

3.2 Gravitational Schrödinger equation

We shall consider in what follows only the Newtonian limit and situations where
the additional term is null or negligible (for example, the Kepler problem). In
this case the equation of motion is reduced to an equation that keeps the form
of Newton’s fundamental equation of dynamics in a gravitational field, namely,
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D̄V
dt

=
d́ V
dt

+∇
(

φ

m

)

= 0, (80)

where φ is the Newtonian potential energy. As demonstrated hereabove, once
written in terms of ψ, this equation can be integrated to yield a gravitational
Newton-Schrödinger equation :

D2 4 ψ + iD ∂

∂t
ψ =

φ

2m
ψ. (81)

Since the imaginary part of this equation is the equation of continuity, and
basing ourselves on our description of the motion in terms of an infinite family
of geodesics, P = ψψ† can be interpreted as giving the probability density of
the particle position.

Note however that the situation and therefore the interpretation are different
here from the application of the theory to the microphysical domain. The two
main differences are:

(i) while in the microscopic realm elementary “particles” can be defined as
the geodesics themselves (their defining properties such as mass, spin or charge
being defined as internal geometric properties, see [18, 23]), in the macroscopic
realm there does exist actual particles that follow the geodesics;

(ii) while differentiability is definitively lost toward the small scales in the
microphysical domain, the macroscopic quantum theory is valid only beyond
some time-scale transition (and/or space-scale transition) which is an horizon of
predictibility. Therefore in this last case there is an underlying classical theory,
which means that the quantum macroscopic approach is a hidden variable theory
[19].

Even though it takes this Schrödinger-like form, equation (81) is still in
essence an equation of gravitation, so that it must keep the fundamental proper-
ties it owns in Newton’s and Einstein’s theories. Namely, it must agree with the
equivalence principle [32, 33, 34], i.e., it is independent of the mass of the test-
particle. In the Kepler central potential case (φ = −GMm/r), GM provides
the natural length-unit of the system under consideration. As a consequence,
the parameter D takes the form:

D =
GM

2w
, (82)

where w is a fundamental constant that has the dimension of a velocity. The
ratio αg = w/c actually plays the role of a macroscopic gravitational coupling
constant [34, 35]).

3.3 “Dark” potential

Let us now compare our approach with the standard theory of gravitational
structure formation and evolution. Instead of the Euler-Newton equation and
of the continuity equation which are used in the standard approach, we write the
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only above Newton-Schrödinger equation. In both cases, the Newton potential
is given by the Poisson equation. Two situations can be considered: (i) when the
‘orbitals’, which are solutions of the motion equation, can be considered as filled
with the particles (e.g., planetesimals in the case of planetary systems formation,
interstellar gas and dust in the case of star formation, etc...), the mass density ρ
is proportional to the probability density P = ψψ†: this situation is relevant in
particular for addressing problems of structure formation; (ii) another possible
situation concerns test bodies which are not in sufficiently large number to
change the matter density, but whose motion is nevertheless submitted to the
Newton-Schrödinger equation: this case is relevant for the anomalous dynamical
effects which have up to now been attributed to unseen, “dark” matter.

By separating the real and imaginary parts of the Schrödinger equation we
get respectively a generalized Euler-Newton equation (written here in terms of
the Newtonian potential energy φ) and a continuity equation:

m (
∂

∂t
+ V · ∇)V = −∇(φ+Q), (83)

∂P

∂t
+ div(PV ) = 0, (84)

∆φ = 4πGρm. (85)

In the case P ∝ ρ this system of equations is equivalent to the classical one
used in the standard approach of gravitational structure formation, except for
the appearance of an extra potential energy term Q that writes:

Q = −2mD2 ∆
√
P√
P

. (86)

The existence of this potential energy, which has been identified as such by
Bohm in the microphysical case (but without an understanding of its origin,
since it was derived from the a priori axioms of quantum mechanics) is, in
our approach, readily demonstrated and understood: namely, it is the very
manifestation of the fractality of space [43], in similarity with Newton’s potential
being a manifestation of curvature.

In the case (i) where actual particles achieve the probability density distribu-
tion (structure formation), we have ρ = ρ0P ; then the Poisson equation (i.e., the
field equation) becomes ∆φ = 4πGmρ0ψψ

† and it is therefore strongly intercon-
nected with the Schrödinger equation (i.e., the particle motion equation). An
equation for matter alone can finally be written [19] (which has automatically
its equivalent in an equation for the potential alone):

∆

(D2∆ψ + iD∂ψ/∂t
ψ

)

− 2πGρ0|ψ|2 = 0. (87)

This is a Hartree equation of the kind which is encountered in the description
of superconductivity. That the self-structuring gravitational fluid may own su-
perconducting properties has already been suggested by Agop et al. (see e.g.
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[44] and references therein). We expect its solutions to provide us with general
theoretical predictions for the structures (in position and velocity space) of self-
gravitating systems at every scales [36]. This expectation is already supported
by the agreement of several partial solutions with astrophysical observational
data [4, 32, 35, 37, 38, 39, 40, 45].

Indeed, the theory has been able to predict in a quantitative way a large
number of new effects in the domain of gravitational structures. Moreover,
these predictions have been successfully checked in various systems on a large
range of scales and in terms of a common fundamental gravitational coupling
constant, w0 = c αg = 144.7±0.7 km/s. New structures have been theoretically
predicted, then checked by the observational data in a statistically significant
way, for our solar system, including distances of planets [4, 37] and satellites
[45], sungrazer comet perihelions [46], obliquities and inclinations of planets
and satellites [39], exoplanets semi-major axes [32, 35] and eccentricities [47],
including planets around pulsars (for which a high precision is reached) [32, 40],
double stars [38], planetary nebula [48], binary galaxies [18, 49], our local group
of galaxies [48], clusters of galaxies and large scale structures of the universe
[38, 48].

In the case (ii) of isolated test particles, the density of matter ρmay be nearly
zero while the probability density P does exist, but only as a virtual quantity
that determines the potential Q, without being effectively achieved by matter.
In this situation, even though there is no matter at the point considered (except
the test particle that is assumed to have a very low contribution), the effects of
the potential Q are real (since it is the result of the structure of the geodesics
two-fluid). This situation is quite similar to the Newton potential in vacuum
around a mass. We have therefore suggested [41] that this extra-potential may
be responsible for the various dynamical and lensing effects which are usually
attributed to unseen “dark matter”. This interpretation is supported by the
fact that, for a stationary solution of the gravitational Schrödinger equation,
one gets the general relation:

φ+Q

m
=
E

m
= cst, (88)

whereE/m can take only quantized values (which are related to the fundamental
gravitational coupling [34], αg = w/c).

This result can be applied, as an example, to the motion of bodies in the
outer regions of spiral galaxies. In these regions there is practically no longer
any visible matter, so that the Newtonian potential (in the absence of additional
dark matter) is Keplerian. While the standard Newtonian theory predicts for
the velocity of the halo bodies v ∝ φ1/2, i.e. v ∝ r−1/2, we predict in our theory
v ∝ |(φ + Q)/m|1/2, i.e., v = constant. More specifically, assuming that the
gravitational Schrödinger equation is solved for the halo objects in terms of the
fundamental level wave function, one finds Qpred = −GMm

2 rB

(

1− 2 rB

r

)

, where

rB = GM/w2
0 . This is exactly the result which is systematically observed in

spiral galaxies (i.e., flat rotation curves) and which has motivated the assump-
tion of the existence of dark matter. In other words, we suggest that the effects
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tentatively attributed to unseen matter are simply the result of the geometry of
space-time. In this proposal, space-time is not only curved but also fractal be-
yond some given relative time and space-scales. While the curvature manifests
itself in terms of the Newton potential, fractality manifests itself in terms of the
new scalar potential Q, and then finally in terms of the anomalous dynamics
and lensing effects.

4 Conclusion and prospect

The present contribution has mainly focused on the detailed demonstration of
the Schrödinger equation in a non-differentiable space-time, constrained by the
principle of relativity (applied to scale transformations). We have also briefly
considered some applications to the problem of formation and evolution of grav-
itational structures, including the question of “dark matter”.

Other developments and generalizations of the theory, that have not been
considered in the present contribution, have been presented elsewhere: e.g.,
special scale relativity [15], which involves the introduction of a fifth dimension
that plays for scale laws a role similar to that played by time for motion laws
(in this framework, the Planck length-time-scale becomes a minimal, impass-
able horizon, which implies several consequences in elementary particle physics,
see [32, 41]; scale dynamics [20, 42]; motion-scale coupling which leads to a
reinterpretation of gauge invariance [17, 50], and is a first step toward general
scale-motion relativity; variable fractal dimension [18]; generalized Schrödinger
equations in the case of the rotational motion of solids, of Euler and Navier-
Stokes equations, of equations with dissipation and of scalar field equations
(whose solutions give probability amplitudes for the potential) [19]; applications
in cosmology [4, 18] (that lead to a theoretical prediction of the value of the
cosmological constant, ΩΛ = 0.7±0.15 which is now supported by observational
measurements).

Among the possible generalizations of the theory, one can also abandon
the differentiability, not only in the usual space-time of positions and instants,
but also in the space of scales itself. All the previous construction can again
apply to this deeper level of description, that leads to the introduction of a
“quantum mechanics of scale”. In this framework, which is equivalent to a
“third quantization”, fractals “objects” of a new type can be defined. Let us
recall indeed, that, up to now, various kinds of fractal structures have been
physically defined:

(1) The first case is given by Mandelbrot’s fractal objects, that own struc-
tures at well defined scales.

(2) The second case is given by scale-relativistic fractals (the ones that we
consider throughout this work), for which only scale ratios have a physical mean-
ing, never an absolute scale.

(3) A still more profound description of fractal structures allows the scale
ratios to become themselves variable in terms of the space-time coordinates, i.e.,
to become a field. This is an important domain of development of the scale-
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relativity theory, since it leads to a re-interpretation of the very nature of gauge
transformations, and therefore of the gauge field and of their associated charges
[17, 18, 50].

By giving up differentiability in the scale space, a still new case of fractal
structures appears. These are “quantum fractals”, which are defined by the
probability for a scale ratio to have some given value, which is deduced from
the solution of a Schrödinger equation acting in scale space. Such an approach
may be particularly relevant for the description and understanding of complex
systems (in particular in biology), characterized in particular by the occurrence
of imbricated hierarchical levels of organisation and by evolution between these
levels [51, 52, 53, 54, 55].
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