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We present a new step in the foundation of quantum field theory with the tools of scale
relativity. Previously, quantum motion equations (Schrödinger, Klein–Gordon, Dirac,
Pauli) have been derived as geodesic equations written with a quantum-covariant deriva-
tive operator. Then, the nature of gauge transformations, of gauge fields and of conserved
charges have been given a geometric meaning in terms of a scale-covariant derivative tool.
Finally, the electromagnetic Klein–Gordon equation has been recovered with a covariant
derivative constructed by combining the quantum-covariant velocity operator and the
scale-covariant derivative. We show here that if one tries to derive the electromagnetic
Dirac equation from the Klein–Gordon one as for the free particle motion, i.e. as a
square root of the time part of the Klein–Gordon operator, one obtains an additional
term which is the relativistic analog of the spin-magnetic field coupling term of the Pauli
equation. However, if one first applies the quantum covariance, then implements the scale
covariance through the scale-covariant derivative, one obtains the electromagnetic Dirac
equation in its usual form. This method can also be applied successfully to the derivation
of the electromagnetic Klein–Gordon equation. This suggests it rests on more profound
roots of the theory, since it encompasses naturally the spin–charge coupling.
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1. Introduction

The theory of scale relativity generalizes to scale transformations the principle of

relativity, which has been applied by Einstein to motion laws. It is based on giving

up the manifold differentiability assumption, which is a key hypothesis in general

relativity. In the new theory, coordinate transformations are continuous and can

be differentiable (including therefore general relativity) or nondifferentiable. This

implies several consequences,1 leading to successive steps of the theory construction.

We consider here the developments applying only to particle physics and field theory

in the relativistic quantum domain.
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Continuity and nondifferentiability imply space–time fractality,1,2 which we

define as a scale dependence of the reference frames. Therefore, the physical quan-

tities, and in particular the coordinates themselves, become functions of new scale

variables, added to the usual position, orientation and motion variables defining the

reference frames. In a theoretical physics description, these new variables are iden-

tified with the differential elements;3 hence, we write xµ = xµ(dxµ) and a physical

quantity f is represented by a fractal function f [xµ(dxµ), dxµ].

The scale variables are defined only in a relative way; namely, only their ratio

has a physical meaning. This leads to extending to scales the principle of relativity

and to including in the possible changes of the reference frames those implied by

transformations of these scale variables. As a first step of the development of the

theory and for simplification purposes, we have proposed that at each point in

space–time is “attached” an intrinsic “scale space” in which the scale transforma-

tions are defined. This scale space is a mathematical analog of a fiber space, but the

transformations described in its formalism are physical transformations occurring

in the actual space–time. Though nondifferentiability manifests itself everywhere

only at the limit where the scale variables vanish (dxµ → 0), the use of differential

equations of scale (which describe the way they tend to zero, i.e. what happens in

a differential scale transformation ln |dxµ| → ln |dxµ| + d ln |dxµ|), constrained by

the relativity principle, is made possible and various scale laws derived from these

differential equations have been studied.4–6

In the following, we restrict ourselves to the simplest case of Galilean-like scale

transformations characterized by a constant fractal dimension, DF = 2. This choice

relies on a feature exhibited by the typical paths of quantum particles which con-

tribute mainly to the path integral: these are nondifferentiable and fractals of

dimension DF = 2.7,8 Actually, the case of a variable fractal dimension has also

been considered and thoroughly studied,4,5 but DF = 2 can be regarded as a good

approximation for the whole scale domain under consideration here.

The transition from the classical to the quantum domain emerges when we con-

sider the simplest scale differential equation which is a first order renormalization-

group-like equation and when we Taylor-expand its Callan–Symanzik-like function

at first order in powers of the coordinates or of the components of the 4-velocity.1,3,9

In a fractal space–time, the geodesic equations are also scale-dependent and the

number of geodesics that relate any two events (or start from any event) tends to

infinity.1,10 We adopt therefore a generalized statistical fluidlike description where

the standard velocity V µ(s) is replaced by a scale-dependent, fractal velocity field

V µ[xµ(s, ds), s, ds], where ds denotes the intervals of the invariant length, i.e. the

proper time s, on the geodesics.

It has been shown that, for relativistic motion, the transition from the classical

to the quantum domain occurs, in the rest frame, around the Compton scale λc of

the “particle,” the quantum domain being defined by ds < λc.
3,11

The next step consists in writing the geodesic equation. We make the conjecture

that the “internal” properties of quantum “particles” are given by the geometrical
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properties of the geodesic bundle corresponding to their state, according to the

various conservative quantities (prime integrals) which define them. Any measure-

ment performed on the “particle” is interpreted as a selection of the geodesic bundle

linked to the interaction with the measurement apparatus (which depends on its

resolution) and/or to the information known about it (for example, the which-way

information in a two-slit experiment5,10).

Another consequence of nondifferentiability is the breaking of the invariance

by reflection of the differential element ds. Indeed, in terms of fractal functions

f(s, ds), two generalized derivatives are defined instead of one and a complex

quantum-covariant derivative is constructed which includes the various effects of

nondifferentiability and fractality described above.3,5 Using a generalized equiva-

lence principle, formally identical to a strong covariance principle, we can write a

geodesic equation in terms of this covariant derivative and obtain the Klein–Gordon

equation for a free particle.3,5

Then we introduce further symmetry breakings — that of the invariance by

reflection of the differential element dxµ and of the parity and time reflection sym-

metries. These allow us to obtain the free Dirac equation of standard quantum

mechanics.3 At the nonrelativistic limit the Pauli equation is also recovered with

the proper value of the electron magnetic moment.12

The further step is to consider the coupling between motion in the fractal space–

time and transformations of the scale variables. According to the scale relativity

principle, the scale space is fundamentally nonabsolute, i.e. the scale of a structure

(internal to the fractal geodesics which are identified with a “particle”) is expected

to change during a displacement in space–time. In other words, the scale variables

are now interpreted as explicit functions of the coordinates, such as the invariant

ds = ds(t, x, y, z).

In previous works, the nature of gauge transformations, of gauge fields and of

the conserved charges in both the Abelian5,13,14 and the non-Abelian9 cases have

been given a physical meaning as a consequence of this coupling. Then the electro-

magnetic Klein–Gordon equation has been recovered from a geodesic equation in a

fractal space–time where the covariant derivative is constructed through the com-

bination of a complex quantum-covariant velocity operator and the scale-covariant

derivative.11

The present article describes a new step in the foundation of field theory from the

scale relativity first principles. To compare the electromagnetic Dirac equation with

the electromagnetic Klein–Gordon equation in a manner analogous to the scheme

adopted in Ref. 3 for the free particle motion, we first establish a biquaternionic

electromagnetic Klein–Gordon-like equation. Then, we compare it with the equation

obtained when squaring the time part of the biquaternionic electromagnetic Dirac

operator and applying it to the wave function. We obtain thus an additional term

which is the relativistic analog of the spin-magnetic field coupling term encountered

in the Pauli equation. This means that, if we merely combine the two covariances

as done previously for the Klein–Gordon equation when a nonzero spin particle
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is involved, an additional coupling term appears in the Dirac equation. Such a

nonlinearity of the covariant derivatives is not unexpected: indeed, their effect is

clearly distinct only in the spinless case (one giving rise to the quantum effects and

the other to the gauge charges and fields). But adding in the quantum-covariant

derivative the effects of the reflection symmetry breaking dxµ ↔ −dxµ 3,12 leads

to the emergence of spin which, through its connection with the magnetic moment,

becomes coupled to the magnetic field, thus owning properties of an effective charge,

so that the action of the two covariant derivatives is no longer independent.

To get rid of this drawback, we combine otherwise the quantum and scale co-

variances by first applying the quantum covariance such as to obtain the free Dirac

equation as in Refs. 3 and 15 and then by implementing the scale covariance through

the QED covariant derivative previously derived with the scale relativity tools.

Thus, we obtain the electromagnetic Dirac equation in its usual form.

This paper is organized as follows. In Sec. 2, we give a reminder of the construc-

tion of electrodynamics and of the QED covariant derivative in the framework of

scale relativity. In Sec. 3, a short summary of the derivation of the standard electro-

magnetic Klein–Gordon equation with a complex wave function is provided. In

Sec. 4, we first construct a biquaternionic electromagnetic Klein–Gordon-like equa-

tion and compare it to the Dirac equation for an electron/positron immersed in an

electromagnetic field. This yields a spin–charge coupling term which encompasses

the spinorial nature of the electron (positron). Then, we recover the electromagnetic

Dirac equation in its standard form by combining in a different way quantum and

scale covariances. Section 5 is devoted to our conclusions.

2. Electrodynamics in Scale Relativity: A Reminder

2.1. Electromagnetic field and electric charges

In the Abelian case corresponding to electromagnetism, the set of scale variables

has only one element, % = λ/ε, where ε is a given scale interval and λ is a reference

scale needed to make % nondimensional and to implement the scale relativity prin-

ciple. This implies limiting ourselves to the study of global scale transformations

(contractions/dilations) in “scale space.”5,13,14

We have seen in Sec. 1 that, according to the scale relativity principle, the

scale of a structure internal to the fractal geodesics is expected to change during

a displacement in space–time. Hence, scale variables are explicit functions of the

coordinates, i.e. ds = ds(t, x, y, z). We will see below that this applies in the domain

where ds < λc, i.e. in the same application domain as that of quantum particle

relativistic motion.

Therefore, we expect, in a displacement, the appearance of a scale interval

change due to the fractal geometry, which can be written as

δε = −
1

q
Aµ ε dxµ , (1)
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i.e. in terms of the scale ratio:

δ ln % =
1

q
Aµ dxµ . (2)

Here, q is the “active” electric charge.9,14 Defining χ = q ln %, this leads to the

appearance of a dilation field, issuing from the construction of a scale-covariant

derivative:

Dχ = dχ− δχ = dχ−Aµ dxµ . (3)

Finally, we obtain the partial derivative as the sum of the inertial and geometric

terms, i.e.

∂µχ = Dµχ+Aµ . (4)

In the framework of any space–time theory based on a relativity principle, the

variation of the action S of a particle is given directly by the space–time invariant

ds, i.e. δ
∫

dS = 0 becomes a geodesic (Fermat) principle, δ
∫

ds = 0.9,16 But

here the fractality of the geodesics, with which the particle wave field is identified,

means that their proper length is a function of the scale variable, so that S = S(χ).

Therefore, the differential of the action reads

dS =
∂S

∂χ
dχ =

∂S

∂χ
(Dχ+Aµ dxµ) , (5)

so that we obtain

∂µS = DµS +
∂S

∂χ
Aµ . (6)

This result provides us with a definition for the “passive” charge, e (on which

the electromagnetic field acts), given by e/c = −∂S/∂χ.5,9,13 A scale-relativistic

equivalence principle, set to account for the action–reaction principle in Coulomb’s

law, implies that e = q and the above definition becomes a definition for the fine

structure constant α = e2/~c = −∂(S/~)/∂ ln %.

We have therefore recovered from the first principles of the theory the form of

the action in standard electromagnetism as

dS = −mc ds−
e

c
Aµ dxµ . (7)

2.2. Quantum electrodynamics

However, this action is not yet complete, since it should also contain the field term

which we consider now.

As in any relativity theory, the action is equivalent to the space–time invariant,

dS = −mc ds. The total elementary length, dstot, i.e. the proper time in fractal

space–time, reads here

dstot = (hµν dxµ dxν)1/2 +
e

mc2
Aµ dxµ , (8)
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where hµν is the Minkowski metric tensor. It is worth recalling the meaning of

this expression in the scale-relativistic framework. The length of a fractal path

can change, first because its extremity has moved, which is interpreted in terms

of the particle motion (this is expressed by the first term on the r.h.s. of Eq. (8),

which is the same for fractal and nonfractal geometry), but also because of internal

dilations/contractions (this is expressed by the second term). In extreme cases, there

can be a purely internal length increase with no space displacement counterpart

which might be interpreted as a potential energy, or a purely internal length decrease

manifesting itself in terms of motion.11

Then, we use the action-geodesic principle by postulating the following gener-

alized geodesic equation applied to the full invariant proper length:

δ

∫
dstot = 0 . (9)

Although we have recovered the standard variational principle of electromag-

netism, we will nevertheless develop it hereafter so as to be allowed to give a new

geometric interpretation of the electromagnetic field and to define the covariant

derivative of a vector which will be needed subsequently to derive the electromag-

netic Klein–Gordon equation in this framework.

We write the invariant length/proper time variation as

δstot =

∫ (
dxµ dδxµ

ds
+

e

mc2
Aµ dδxµ +

e

mc2
δAν dxν

)
= 0 . (10)

After integration by parts between two fixed values of the coordinates taken as

bounds, Eq. (10) becomes
∫ (

duµ δx
µ +

e

mc2
dAµ δx

µ −
e

mc2
δAν dxν

)
= 0 . (11)

Since δAν = (∂Aν/∂x
µ)δxµ and dAµ = (∂Aµ/∂x

ν)dxν , we obtain
∫ {

duµ

ds
−

e

mc2

(
∂Aν

∂xµ
−
∂Aµ

∂xν

)
uν

}
δxµ ds = 0 . (12)

All the terms additional to the inertial ones have their geometric origin in scale

transformations. We are therefore led to define the scale-covariant differential of

the velocity uν as

Duν = duν −
e

mc2
Fνµ dxµ , (13)

where the “connection,” Fνµ = ∂Aµ/∂x
ν − ∂Aν/∂x

µ, can be identified with the

electromagnetic tensor.

We are now able to define the scale-covariant partial derivative of a scale-

variable-dependent vector, Bν , as11

DµBν = ∂µBν +
e

mc2
Fµν . (14)
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Applying a generalized strong covariance principle, which extends the covariance

principle of general relativity, the motion equation of electrodynamics is established

as a geodesic equation which keeps the form of a free Galilean equation of motion

in terms of the scale-covariant derivative:11

Duν

ds
= uµ Dµuν = 0 . (15)

Expanding the expression of the covariant derivative on the l.h.s. of Eq. (15),

we obtain

duν

ds
−

e

mc2
Fνµu

µ = 0 , (16)

which is nothing else that the Lorentz motion equation in electromagnetism.

Let us now come back to the issue of characterizing the transition to the gauge

theory domain where a small increment of the length invariant ds becomes depen-

dent on the space–time coordinates. Note that the scale-relativistic approach shares

some features with the Weyl–Dirac theory of electromagnetism.17,18 However, in

this last theory, the variation of ds is postulated to exist at all scales, contradicting

the observed invariance of the electron mass, and thus of its Compton length.

In scale relativity, the effects of the coordinate dependence of scale variables are

observable only below the fractal/nonfractal transition, which is identified in the

rest frame with the particle Einstein time scale, τE = ~/mc2. This time scale

corresponds, up to the fundamental constant c, to the Compton scale λc = ~/mc,

which is the quantum/classical transition scale for relativistic motion. This means

that for scales smaller than λc the fractal nondifferentiable fluctuations dominate

the classical behavior; hence the influence of fractality both on motion and on

scale–motion coupling.

2.3. QED covariant derivative

We consider a generalized action which depends on both motion and scale variables.

In the scale-relativistic approach to quantum theory, the 4-velocity Vµ, which de-

scribes a scalar particle, is complex, so that its action is also complex and can be

written as S = S(xµ,Vµ, χ). The wave function is defined in terms of this action as

ψ = exp(iS/~).5

Therefore, Eq. (7) takes the form

dS = −mcVµ dxµ −
e

c
Aµ dxµ = −i~ d lnψ . (17)

We thus obtain a new relation between the complex velocity and the wave

function:

Vµ = iλc Dµ(lnψ) = iλc∂µ(lnψ) −
e

mc2
Aµ . (18)
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We recover here and give a geometric foundation to the standard QED covariant

derivative,

Dµ = ∂µ + i
e

~c
Aµ , (19)

as being the scale-covariant derivative now acting on the wave function.

3. Complex Electromagnetic Klein Gordon Equation as a

Geodesic Equation

Now, we proceed with a generalization of the scale relativity approach to QED.

Here, both the quantum and the electromagnetic properties are expected to emerge

from the fractal geometry of space–time. We therefore combine the quantum-

covariant derivative which describes the effects induced by fractality on motion and

the scale-covariant derivative which describes scale–motion coupling, i.e. nonlinear

effects of the coordinate dependence of scale variables, to obtain a single covariant

tool. Then, as for the free motion case,3,5 we write the Klein–Gordon equation for

a particle submitted to an external electromagnetic field as a free geodesic equation

exhibiting the inertial Galilean form DV/ds = 0, where the quantum behavior and

the field are both generated by the doubly covariant derivative D.

As regards quantum covariance, it is implemented in the simplest motion-

relativistic case (corresponding to a single symmetry breaking, ds ↔ −ds, in the

scale relativity formalism) by the use of a covariant complex velocity operator:11

V̂µ = Vµ + i

(
λc

2

)
∂µ . (20)

In Sec. 2, we recalled how the electromagnetic field can be constructed with

the use of a scale-covariant derivative Dµ which implements dilation/contraction

transformations in the fractal space–time. We combine now the two tools and we

define a doubly (quantum and scale) covariant derivative as

D̂

ds
= V̂µ Dµ , (21)

which we use to write the following inertial-like, strongly covariant geodesic

equation:

D̂

ds
Vν = 0 . (22)

This very simple, free-form equation gives, after integration, the Klein–Gordon

equation in the presence of an external electromagnetic field. The first step amounts

to obtaining a quantum-covariant analog of the Lorentz equation. Successively

developing the covariant derivatives in Eq. (22), we obtain

D̂

ds
Vν = V̂µ DµVν = V̂µ

(
∂µVν +

e

mc2
Fµν

)
= 0 . (23)
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Since d̂/ds = V̂µ∂µ,11 we can write V̂µ∂µVν = d̂Vν/ds. Thus, Eq. (23) becomes

mc
d̂

ds
Vν =

e

c
V̂µ Fνµ , (24)

which exhibits the exact form of the standard Lorentz equation of dynamics but

written with quantum-covariant derivative and velocity.

To proceed with the derivation of the Klein–Gordon equation, we first note that,

thanks to Eq. (18),

∂µVν − ∂νVµ = −
e

mc2
(∂µAν − ∂νAµ) = −

e

mc2
Fµν . (25)

We can therefore replace, in Eq. (23), ∂µVν + (e/mc2)Fµν by ∂νVµ. This gives

V̂µ∂νVµ = 0 . (26)

Now, we first develop the quantum-covariant velocity operator in Eq. (26), and

then we replace Vµ, respectively Vµ, by their scale-covariant form given by Eq. (18)

and we obtain(
iλc∂

µ(lnψ) −
e

mc2
Aµ + i

λc

2
∂µ

)
∂ν

(
iλc∂µ(lnψ) −

e

mc2
Aµ

)
= 0 . (27)

Replacing the Compton length λc by its expression ~/mc and using the identity
(
∂µ(lnψ) +

1

2
∂µ

)
∂ν∂µ(lnψ) =

1

2
∂ν

(
∂µ∂µψ

ψ

)
, (28)

we obtain, after some rearrangements,

∂ν

[
−~

2

(
∂µ∂µψ

ψ

)
− 2i~

e

c
Aµ

∂µψ

ψ
+
e2

c2
AµAµ − i~

e

c
∂µAµ

]
= 0 . (29)

This equation can be integrated, and if we choose the integration constant to

be m2c2, this gives, after some rearrangements,

− ~
2∂µ∂µψ − i~

e

c
∂µ(Aµψ) − i~

e

c
Aµ∂

µψ +
e2

c2
AµAµψ = m2c2ψ , (30)

which is actually the electromagnetic Klein–Gordon equation for a complex wave

function: (
i~∂µ −

e

c
Aµ

)(
i~∂µ −

e

c
Aµ

)
ψ = m2c2ψ . (31)

4. Electromagnetic Dirac Equation

4.1. Spin charge coupling

It has been known for a long time that the free Dirac equation proceeds from the free

Klein–Gordon equation when written in a quaternionic form.19,20 In Refs. 3 and 15

we have proposed introducing naturally, as a consequence of the nondifferentiable

geometry, a biquaternionic covariant derivative operator, leading to the definition

of biquaternionic velocity and wave function, which we have used to derive a free
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Klein–Gordon-like equation in a biquaternionic form. Then, the free Dirac equation

in a biquaternionic form, i.e. a bispinor form, follows. We show in the present section

that if this method is applied when dealing with an exterior magnetic field, a new

term corresponding to the coupling between the spin and the magnetic moment of

the electron shows up.

We use the quaternionic formalism, introduced by Hamilton21 and further

developed by Conway20,22 (see also Ref. 23). Our choice of the metric signature

is (+ −−−).

4.1.1. Biquaternionic electromagnetic Klein–Gordon-like equation

Considering the full consequence of nondifferentiability at the deepest level involves

the subsequent breaking of the symmetries:3,15

ds↔ −ds , dxµ ↔ −dxµ , xµ ↔ −xµ .

The 4-velocity becomes biquaternionic, so that its action is also biquaternionic

and reads S = S(xµ,Vµ, χ). We define the wave function as a re-expression of this

action, i.e.

ψ−1∂µψ =
i

~
∂µS . (32)

Since the action must verify

δS = ∂µSδx
µ = −mcVµδx

µ , (33)

the 4-velocity reads

Vµ = iλcψ
−1∂µψ . (34)

The quantum-covariant derivative operator for relativistic motion is3,15

d̂

ds
= Vµ∂µ + i

λc

2
∂µ∂µ . (35)

Therefore, quantum covariance can still be implemented by means of Eq. (20), but

now with a biquaternionic 4-velocity.

As in Sec. 3, we combine the scale-covariant derivative, as given by Eq. (14), with

the quantum-covariant velocity, as given by Eq. (20), under the form of the geodesic

equation (22), which gives Eq. (23), but here with a biquaternionic 4-velocity.

The form of the action for a particle in an electromagnetic field as given by

Eq. (7) allows us to write

∂µS = −mcVµ −
e

c
Aµ = −i~ψ−1∂µψ , (36)

which gives

Vµ = iλcψ
−1∂µψ −

e

mc2
Aµ . (37)
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We insert this expression for Vµ in the biquaternionic version of Eq. (23) and

obtain, after some rearrangements,
(
iλcψ

−1∂µψ −
e

mc2
Aµ + i

λc

2
∂µ

)

×

[
iλc(∂µψ

−1∂νψ + ψ−1∂µ∂νψ) −
e

mc2
∂νAµ

]
= 0 . (38)

The definition of the inverse of a (bi)quaternion,

ψψ−1 = ψ−1ψ = 1 , (39)

implies that ψ and ψ−1 commute. But this is not necessarily the case for ψ and

∂µψ
−1, or for ψ−1 and ∂µψ and their contravariant counterparts. However, when

we differentiate Eq. (39) with respect to the coordinates, we obtain

ψ · ∂µψ
−1 = −(∂µψ) · ψ−1 ,

ψ−1 · ∂µψ = −(∂µψ
−1) · ψ ,

(40)

and identical formulas for the contravariant analogs.

Using Eqs. (40) and the property ∂µ∂µ∂ν = ∂ν∂
µ∂µ, we obtain, after some

calculations, the identity
(
ψ−1∂µψ +

1

2
∂µ

)(
∂µψ

−1 · ∂νψ + ψ−1∂µ∂νψ
)

=
1

2
ψ−1∂ν

(
∂µ∂µψ · ψ−1) · ψ , (41)

which is the analog for (bi)quaternions of Eq. (28) for complex numbers.

Using this identity and replacing λc by its value ~/mc in Eq. (38), we obtain,

after some rearrangements,

∂ν

[
−~

2
(
∂µ∂µψ · ψ−1

)
− i

~e

c

(
Aµ∂µψ · ψ−1

)
− i

~e

c
∂µAµ +

e2

c2
AµAµ

]
= 0 , (42)

which is a gradient that can be integrated. If we choose the integration constant to

be m2c2, we recover the Klein–Gordon equation in the form of Eq. (31), but now

for a biquaternionic wave function.

4.1.2. Spin–charge coupling term

In Refs. 3 and 15, we have shown how the free Dirac equation can be recovered

from a free Klein–Gordon-like equation written in (bi)quaternionic form. Actually,

a free (bi)quaternionic Klein–Gordon equation is equivalent to applying twice to

the wave function the time part of the free Dirac operator while equating it with

its spatial part.

This is no more the case when an exterior magnetic field comes into play. A

new term appears in this case and we show in the following that it corresponds to

a coupling between the electron intrinsic magnetic moment and the magnetic field.
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4250 M.-N. Célérier & L. Nottale

The standard Dirac equation for a spin 1/2 particle submitted to an exterior

electromagnetic field can be written as
(
i~

∂

c∂t
−
e

c
A0

)
ψ =

[
−α

(
i~∇ +

e

c
A

)
+mcβ

]
ψ . (43)

Using the Conway matrices (see e.g. Ref. 23) corresponding to the Dirac matri-

ces, we write the Dirac operator acting on ψ as

i~
∂

c∂t
−
e

c
A0 = e3

(
i~
∂

∂x
+
e

c
Ax

)
e2 + e1

(
i~
∂

∂y
+
e

c
Ay

)
i

+ e3

(
i~
∂

∂z
+
e

c
Az

)
e1 +mce3( )e3 . (44)

We apply to ψ the difference between the two squared parts of this Dirac oper-

ator, i.e. the square of the time part TD corresponding to the l.h.s. of Eq. (44) and

that of the spatial part SD corresponding to its r.h.s., and we obtain, after some

calculations,

(TD)2 − (SD)2 = KG+AT , (45)

where KG is the biquaternionic Klein–Gordon-like equation, written as

(
i~

∂

c∂t
−
e

c
A0

)2

ψ = e3
2

(
i~
∂

∂x
+
e

c
Ax

)2

ψe2
2 + e1

2

(
i~
∂

∂y
+
e

c
Ay

)2

ψi2

+ e3
2

(
i~
∂

∂z
+
e

c
Az

)2

ψe1
2 +m2c2e3

2(ψ)e3
2 , (46)

and AT reads

AT =
~e

c

[
e2(F

y
z · ψ)e1 + i(F z

x · ψ)e3 − e2(F
x
y · ψ)e2

]
. (47)

Since F y
z = −Bx, F z

x = −By and F x
y = −Bz, where B is the magnetic field,

and since the Conway matrices involved correspond to minus the Dirac α matrices,

AT can be written as

AT =
~e

c
α · Bψ . (48)

This term expresses the coupling between the spin of the particle and the mag-

netic field. It is the relativistic analog of the term −(e~/2mc)σ · B, involving the

electron spin magnetic moment in the Pauli equation. Therefore, obviously, it can-

not appear in the Klein–Gordon equation since this equation applies to a spin zero

particle. However, the presence of this term in Eq. (45) prevents us from obtaining

the standard form of the electromagnetic Dirac equation as a mere square root of

a biquaternionic electromagnetic Klein–Gordon equation, as in the free case. We

must therefore suspect that the electromagnetic Dirac equation proceeds from a

different construction, which we detail in the following subsection.
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4.2. Derivation of the electromagnetic Dirac equation

The Dirac equation can be obtained by combining the quantum and scale covari-

ances, but in a different way.

First, we apply the quantum covariance as in Refs. 3 and 15, and we obtain the

following free Dirac equation:

i~
∂

c∂t
ψ = [−αi~∇ +mcβ]ψ . (49)

Then, we implement the scale covariance through the covariant derivative

Eq. (19). Note that in Eq. (19) the total variation of the wave function is the

sum of the inertial one (represented by the covariant derivative) and the geometric

contribution −i(e/~c)Aµ. This covariant derivative acts in a manner analogous to

that encountered in general relativity, where it amounts to subtracting the geo-

metric contribution in order to keep only the inertial part. This is at variance

with the way covariance is implemented by means of the quantum-covariant deriva-

tive, which includes nondifferentiability effects by adding new terms to the total

derivative.

We therefore combine the quantum and scale covariances by replacing in the free

Dirac equation (49) the ∂µ derivative by its inertial part Dµ as given by Eq. (19).

Thus, we obtain

(
i~

∂

c∂t
−
e

c
A0

)
ψ =

[
−α

(
i~∇ +

e

c
A

)
+mcβ

]
ψ . (50)

Note that this is consistent with the way we have constructed the free equa-

tion as an inertial geodesic equation in a fractal space–time. We thus obtain the

electromagnetic Dirac equation in its usual form, as given by Eq. (43).

It must be stressed that such a method can also be employed to obtain the

electromagnetic Klein–Gordon equation from the free one. This suggests that this

way of combining quantum and scale covariances is grounded on more profound

roots of the theory than the method used in Sec. 3.

Indeed, such a construction of the electromagnetic motion equations of quantum

mechanics is formally analogous to the methods used in the standard field theory.

However, while in this standard theory the form of the equations and of the QED

covariant derivative are merely postulated as being compatible with experiments,

they have been given here more profound physical meanings grounded on the first

principles of the scale relativity theory.

5. Conclusion

In the scale-relativistic framework, the electromagnetic Klein–Gordon equation had

been previously obtained as a geodesic equation constructed as a strongly covariant

combination of the quantum- and scale-covariant tools.11 Quantum covariance was
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implemented by the use of a complex covariant velocity operator, and scale co-

variance by the use of a scale-covariant derivative which implemented the dilation/

contraction transformations in the fractal space–time. The two tools were combined

as in Eq. (21) to define a doubly (quantum and scale) covariant derivative which

was used to write an inertial-like, strongly covariant geodesic equation. The electro-

magnetic Klein–Gordon equation proceeded from the integration of this equation.

We have given a reminder of this derivation in Sec. 3.

Now, when we apply here the same procedure while using the biquaternionic

4-velocity obtained by taking into account the three levels of symmetry breaking

implied by nondifferentiability, we actually obtain a biquaternionic electromagnetic

Klein–Gordon-like equation. However, while in the free case the Dirac operator is

the mere square root of the biquaternionic Klein–Gordon-like operator, this is no

more the case when an electromagnetic field is involved. A new term appears which

corresponds to a coupling of the spin of the electron to the magnetic field. The

explanation is as follows.

In scale relativity, spin proceeds directly from the fractal geometry of space–

time, while charges, which stem from transformations in scale space, are only indi-

rect consequences of this fractality. Indeed, spin is an intrinsic quantum property of

the particles, component of the total angular momentum, which is itself a constant

of motion.

Here, the spin 1/2 can have two different interpretations. First, it can be con-

sidered as a quantum charge of the electron/positron. In this case, in the same

manner as Abelian and non-Abelian charges can be obtained in a geometric way

from scale transformations in scale space,9 spin arises geometrically from the

fractality of space–time implied by both of the symmetry breakings ds ↔ −ds

and dxµ ↔ −dxµ, which are themselves consequences of nondifferentiability.12

This interpretation corresponds to the way spin arises when the first strongly co-

variant method is used to obtain the motion equations. If we combine the two

covariances (as done to recover the electromagnetic Klein–Gordon equation) when

a nonzero spin particle is involved, a coupling term between the two charges, spin

and electromagnetic, is mandatory.

Spin 1/2 can also be considered as being directly linked to the fractal geometry

of space–time. In this case, its coupling to the magnetic field is implicit and there

is no additional term in the Dirac equation which recovers its usual form, as when

the second method is used. This interpretation has been illustrated with numerical

simulations aimed at visualizing the typically spinorial form of some geodesics in

a fractal space–time (see Fig. 2 of Ref. 12). Hence, the fractality influence through

the spin is more fundamental and must be applied first, independently of that of

the field.

This is the reason why the Dirac equation standard form can be obtained by

combining the quantum and scale covariances in the following way. We first apply

the quantum covariance as in Refs. 3 and 15. Then we implement the scale co-

variance through the QED covariant derivative previously recovered in the scale
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relativity framework. This allows us to obtain the electromagnetic Dirac equation

in its usual form, which means that such a method encompasses more naturally the

spin–charge coupling.

We have stressed that this scheme can also be employed to obtain the electro-

magnetic Klein–Gordon equation from the free one. This suggests that this way of

combining quantum and scale covariances is grounded on more profound roots of

the theory than merely combining them as has been done in Ref. 11.
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